next up previous
Next: About this document ... Up: CSL361 Problem set 5: Previous: Least-squares

Orthogonal Projections

Let be a subspace. $ {\bf P} \in \mathbb{R}^{n \times n}$ is the orthogonal projection onto $ S$ if $ range({\bf P}) = S$, $ {\bf P}^2 = {\bf P}$ and $ {\bf P}^T = {\bf P}$.

  1. Show the following:
    1. If $ {\bf x} \in \mathbb{R}^n$ and $ {\bf P}$ is an orthogonal projection on to $ S$ ( $ {\bf Px} \in S)$, then $ ({\bf I} - {\bf P})$ is an orthogonal projection onto $ S^\perp$ ( $ ({\bf I} - {\bf P}){\bf x} \in S^\perp$) where $ S^\perp$ is the orthogonal complement of $ S$.
    2. The orthogonal projection onto a subspace is unique.
    3. If $ {\bf v} \in \mathbb{R}^n$, then $ {\bf P} = {\bf v}{\bf v}^T/{\bf v}^T{\bf v}$ is the orthogonal projection onto $ S = span\{{\bf v}\}$.
    4. If the columns of $ {\bf V} = \left[ {\bf v_1},\ldots,{\bf v_k}\right]$ are an orthonormal basis for $ S$, then $ {\bf V}{\bf V}^T$ is the unique orthonormal projection onto $ S$.
  2. Suppose that the SVD of $ {\bf A}$ is $ {\bf A} = {\bf U}{\bf\Sigma}{\bf V}^T$ and $ rank({\bf A}) = r$. If we have the $ {\bf U}$ and $ {\bf V}$ partitionings:

         

    Then, show that
    1. $ {\bf V_r}{\bf V_r}^T = $ projection onto $ null({\bf A})^\perp = range({\bf A}^T)$
    2. $ {\bf\tilde{V}_r}{\bf\tilde{V}_r}^T = $ projection onto $ null({\bf A})$
    3. $ {\bf U_r}{\bf U_r}^T = $ projection onto $ range({\bf A})$
    4. projection onto $ range({\bf A})^\perp = null({\bf A}^T)$
  3. Let $ {\bf v} \in \mathbb{R}^n$ be non-zero. The $ n \times n$ matrix

    $\displaystyle {\bf P} = {\bf I} - 2\frac{{\bf v}{\bf v}^T}{{\bf v}^T{\bf v}}
$

    is the Householder reflection discussed in class. Show that:
    1. $ {\bf P}$ is an orthogonal projection.
    2. When a vector $ {\bf v} \in \mathbb{R}^n$ is multiplied by $ {\bf P}$, it is reflected in the hyperplane .
    3. If

      $\displaystyle {\bf v} = {\bf x} \pm \Vert{\bf x}\Vert _2 {\bf e_1}
$

      Then,


next up previous
Next: About this document ... Up: CSL361 Problem set 5: Previous: Least-squares
Subhashis Banerjee 2005-10-03