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Abstract—In resource-constrained Internet-of-Things
networks, the use of conventional message authentication
codes (MACs) to provide message authentication and integrity
is not possible due to the large size of the MAC output. A
straightforward yet naive solution to this problem is to employ
a truncated MAC which undesirably sacrifices cryptographic
strength in exchange for reduced communication overhead.
In this article, we address this problem by proposing a novel
approach for message authentication called cumulative MAC
(CuMAC), which consists of two distinctive procedures: 1) aggre-
gation and 2) accumulation. In aggregation, a sender generates
compact authentication tags from segments of multiple MACs
by using a systematic encoding procedure. In accumulation,
a receiver accumulates the cryptographic strength of the
underlying MAC by collecting and verifying the authentication
tags. Embodied with these two procedures, CuMAC enables
the receiver to achieve an advantageous tradeoff between the
cryptographic strength and the latency in the processing of the
authentication tags. Furthermore, for some latency-sensitive
messages where this tradeoff may be unacceptable, we propose a
variant of CuMAC that we refer to as CuMAC with speculation
(CuMAC/S). In addition to the aggregation and accumulation
procedures, CuMAC/S enables the sender and receiver to
employ a speculation procedure for predicting future message
values and precomputing the corresponding MAC segments.
For the messages which can be reliably speculated, CaMAC/S
significantly reduces the MAC verification latency without
compromising the cryptographic strength. We have carried out
a comprehensive evaluation of CuMAC and CuMAC/S through
simulation and a prototype implementation on a real car.

Index Terms—Controller area network (CAN), Internet of
Things (IoT), message authentication code (MAC).

I. INTRODUCTION

N EMERGING applications, such as intelligent automo-

biles, industrial control systems, and smart city networks,
a large number of energy-constrained computing devices are
getting closely integrated with the existing computer infras-
tructure through bandwidth-constrained networks to form the
Internet of Things (IoT) [1]. The successful adoption of those
applications will partially depend on our ability to thwart
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security and privacy threats, including message forgery and
tampering. Today, message authentication code (MAC) is the
most commonly used method for providing message authen-
ticity and integrity in wired/wireless network applications. To
employ MACs in a resource-constrained (i.e., energy and/or
bandwidth-constrained) network, we need to consider two
problems: 1) the computational burden on the devices for
generating/verifying the MAC and 2) the additional com-
munication overhead incurred due to the inclusion of the
MAC in each message frame/packet. The first problem can
be addressed by using dedicated hardware and cryptographic
accelerators [2], [3]. However, the second problem is not as
easy to address.

Problem: The cryptographic strength of a MAC depends
on the cryptographic strength of the underlying cryptographic
primitive (e.g., a hash or block cipher), the size and qual-
ity of the key, and the size of the MAC output. Hence,
a conventional MAC scheme typically employs at least a
few hundred bits of MAC output to ensure a sufficient
level of cryptographic strength. Unfortunately, in resource-
constrained IoT networks [e.g., energy-constrained low-power
wide-area network (LPWAN) with battery-powered devices
and bandwidth-constrained in-vehicle controller area network
(CAN)], the payload size of each packet is very short, i.e.,
less than a hundred bits [4]. As such, not more than a few bits
can be spared to include an authentication tag, prohibiting the
usage of the conventional MAC [1].

Related Work: The legacy solution for generating a short
authentication tag is to truncate the output of a conven-
tional MAC so that it fits a message packet [5]-[7]. This
type of MAC is called a truncated MAC. However, the trun-
cated MAC sacrifices cryptographic strength in exchange for
reduced communication overhead and energy consumption,
which may be undesirable, or even unacceptable, in some
applications. Note that the truncated MAC without sufficient
cryptographic strength renders the application vulnerable to
collision attacks [8]. To enable authentication with enhanced
cryptographic strength, Katz and Lindell proposed the con-
cept of aggregate MAC where conventional MACs of multiple
messages are combined into one aggregate MAC and trans-
mitted over successive packets [9]. Similarly, Nilson et al. [4]
proposed a compound MAC which is calculated on a com-
pound of multiple messages and distributed over successive
packets. However, both the aggregate and compound MAC
schemes incur significant latency in the verification of the
messages because the receiver needs to receive and process
all associated packets before being able to verify the validity
of the MAC.
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Challenges: In the above discussion, we identify three criti-
cal challenges in employing MACs for IoT networks: 1) incur-
ring minimal communication overhead so that the MAC can fit
in a packet; 2) ensuring that the cryptographic strength meets
the security need of the application; and 3) incurring minimal
latency so that the MAC generation and verification processes
do not cause unacceptable delays in the packet processing.

Proposed Solution: In this article, we address the afore-
mentioned challenges through a novel approach for message
authentication that we refer to as cumulative MAC (CuMAC).
In CuMAC, a sender utilizes a procedure called aggregation
through which the sender first divides the full-sized MAC of
each message into multiple short MAC segments, and then
“aggregates” the MAC segments of multiple messages using a
systematic encoding procedure to form a short authentication
tag. This procedure resolves the first challenge of ensuring low
communication overhead.

Furthermore, the receiver utilizes a procedure called accu-
mulation through which it first verifies the MAC segments
aggregated into the authentication tag of each received packet,
and then ‘“accumulates” the cryptographic strength by col-
lecting the verified MAC segments associated with the target
message. In this procedure, the receiver may incur a delay that
is proportional to the accumulated cryptographic strength since
it needs to wait for the relevant tags to be received and pro-
cessed. Hence, while the accumulation procedure caters to the
second and the third challenge, it brings up a novel and flex-
ible tradeoff between the cryptographic strength and latency.
CuMAC enables the receiver to authenticate the message in
real time with the cryptographic strength which is commen-
surate with the size of each tag. Meanwhile, CuMAC also
enables the authentication with the highest level of crypto-
graphic strength after accumulating all segments of the MAC
that cover the message in the associated packets.

Moreover, in latency-sensitive [oT applications, the receiver
may be required to immediately authenticate a message with
high cryptographic strength as it arrives. In such cases, the
tradeoff made by CuMAC may not be sufficient. To address
this need, we propose a variant of CuMAC called CuMAC
with speculation (CuMACY/S) that enables a receiver to accu-
mulate the MAC’s cryptographic strength while incurring a
minimal delay. The core concept of CuMAC/S is motivated
by the technique of speculative execution' which is widely
employed in modern computer systems [10], [11]. CuMAC/S
can be utilized in IoT applications where future messages can
be predicted correctly with high reliability with an appropriate
speculation model using the current and past messages.

In CuMACY/S, a sender speculates future messages, com-
putes the corresponding MACs, and aggregates the MAC
segments of the speculated messages into the authentication
tag of the current packet. If the speculated value of a received
message is equal to the actual value, then all its segments can
be verified in current and previous tags, and hence the receiver

]Specu]ative execution is an optimization technique in which a computer
system performs speculative execution where some outcome is predicted and
execution proceeds along a predicted path. Work is done before it is known
whether it is actually needed, so as to prevent a delay that would have to be
incurred by doing the work after it is known that it is needed.
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Fig. 1. Architecture of typical IoT networks.

can accumulate cryptographic strength without having to wait
for tags included in forthcoming packets; this significantly cuts
down on the MAC verification delay.

This article’s main contributions are summarized as follows.

1) We propose a novel message authentication scheme
called CuMAC, which meets the security need of
resource-constrained IoT applications. CuMAC is an
embodiment of two novel concepts that we refer to as
aggregation (which reduces the communication over-
head) and accumulation (which increases the crypto-
graphic strength).

2) We propose a variant of CuMAC called CuMAC/S that
meets the security need of delay-sensitive, resource-
constrained IoT applications. CuMAC/S enables the
accumulation of cryptographic strength while incur-
ring minimal delay by employing the novel idea of
speculation.

3) We have thoroughly evaluated the effectiveness of
CuMAC and CuMAC/S through a simulated in-vehicle
CAN and a prototype implementation on a real car.
Our results illustrate that while incurring the same com-
munication overhead as the truncated MAC scheme,
CuMAC achieves the cryptographic strength equivalent
to the conventional MAC scheme at the cost of increased
latency. Furthermore, for the messages which can be
accurately speculated, CuMAC/S achieves the crypto-
graphic strength equivalent to the conventional MAC
scheme without any additional latency.

II. MOTIVATION FOR SHORT MACS

IoT networks consist of resource-constrained devices at the
lowest layer as shown in Fig. 1. To enable message authenti-
cation in such networks, it is imperative to use short MACs as
demonstrated by the following discussion of two specific appli-
cation scenarios—one with the energy-constrained devices and
another with the bandwidth-constrained devices.

A. Low-Power Wide-Area Network

Many IoT applications (e.g., smart metering and smart city
infrastructure) require a densely deployed network of low-
cost energy-constrained battery-operated wireless devices. The
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Fig. 2.  Effect of the size of message and authentication tag on the ser-
vice life of a sensor node in Sigfox (the results are obtained using the
battery consumption data from a Sigfox compliant transceiver produced by
ON Semiconductor [13].)

paradigm of LPWAN is aimed at fulfilling these requirements
of IoT networks [1], [5]. Sigfox [12] is one example of a
widely known LPWAN technology. In Sigfox, each uplink
packet contains a counter, a message (with the length between
0 and 96 bits), and an authentication tag (with the length
between 16 and 40 bits). To enable robust communication over
the unreliable wireless channel, the sender in Sigfox transmits
multiple copies of the same packet sequentially. After trans-
mitting the fixed number of copies of the packet, the sender
waits for an acknowledgment from the receiver. In the absence
of the acknowledgment, the packet is considered lost. Sigfox
does not support retransmission of such lost packets.

The battery-powered Sigfox devices are expected to have a
service/battery life of several years. As the energy consump-
tion of a Sigfox device is directly proportional to the size of
communicated packets, it is imperative to communicate using
short packets to ensure long service life. Fig. 2 illustrates that
in comparison to the standard benchmark of 48-bit messages
without any tags, while utilizing a short MAC with 16-bit
tags achieves a modest (around 10%) reduction in the service
life, utilizing the conventional MAC with 128-bit tags results
in a significant loss of around 45% of the service life. As
such, although the message integrity and authentication are of
prime importance in applications supported by Sigfox [14], the
energy overhead of communicating the full-sized MAC output
in the Sigfox packet is undesirably high.

B. In-Vehicle Controller Area Network

Today’s high-end cars use a hundred or more electronic
control units (ECUs) to enable advanced functionalities,
such as adaptive cruise control and Internet of Vehicles
(IoV) [15]-[17]. As shown in Fig. 3, these ECUs communicate
with each other over a bandwidth-constrained wired broadcast
channel called the CAN bus [18], [19]. Because the messages
communicated among ECUs directly affect vital functions of
a vehicle, some of which are safety-related (e.g., dynamics
control system [20]), the security and reliability of the CAN
bus and the integrity of the messages on it are critical [3]. We
note that while the state-of-the-art CAN bus supports robust
mechanisms for message acknowledgment and retransmission
of corrupted/lost packets, it does not support any security
mechanism [21].
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Fig. 3. Architecture of an in-vehicle CAN.

Several studies have shown that a car’s in-vehicle network
can be compromised through either direct physical access
[e.g., using the on-board diagnostics (OBDs) port] or a
remote connection (e.g., using Bluetooth) to the CAN
bus [22], [23]. Due to one such vulnerability, Jeep had to
recall 1.4 million vehicles in 2015 [24]. Although the exist-
ing literature [25]-[27] addresses some of the authentication
issues in a vehicle-to-smart grid (V2G) or IoV scenarios, there
is a lack of an effective and practical scheme to counter
impersonation attacks against ECUs in CAN. To this end,
the U.S. National Highway Traffic Safety Administration
(NHTSA) recommends the inclusion of MACs for the end-
to-end authentication of the messages on the CAN bus [28].

A CAN packet consists of an 11-bit or a 29-bit identifier
field and a message field with a length between O and 64
bits. Except for the identifier and message fields, we cannot
arbitrarily change the length or the content of other fields
in the CAN packet as that would make the modified packet
incompatible with the existing CAN protocol. Hence, in the
prior art [6], [29], to realize MAC-based authentication in each
packet, the identifier field is used to accommodate an 18-bit
counter, and the message field is used to accommodate the
message payload as well as the authentication tag. Although
such a design of the modified packet ensures that it is backward-
compatible, inserting a full-sized MAC in the modified packet
is not possible because the maximum allowed length of the
message field in a CAN packet is only 64 bits. Furthermore,
since the bandwidth of a typical CAN bus is only 500 kbit/s,
transmitting additional trailing packets containing only the
authentication tag undesirably increases the bus load [30].

Proposed Design: In both the above application scenarios
(LPWAN and CAN), the constraints of the IoT network—
either in terms of the MAC size or energy/bandwidth con-
sumption of the networked devices—prohibit the use of the
conventional MAC scheme. To address this challenge, we pro-
pose CuMAC and CuMAC/S which can be readily employed
in these scenarios to achieve the desired level of security
provided by short MACs. In this article, we utilize CAN
as a concrete application scenario to highlight the advan-
tages of CUMAC and CuMAC/S. However, these two schemes
can be applied to other resource-constrained network applica-
tions, including IoT applications (e.g., LPWAN, Bluetooth low
energy (BLE) [31], constrained access protocol (CoAP) [32],
or message queue telemetry transport (MQTT) [33]).

III. MODEL AND SECURITY OBJECTIVES

Here, we discuss the network model and define the security
objectives of the proposed MAC schemes.
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Fig. 4. Considered packet model.

A. Model and Assumptions

System Model: We consider an energy-constrained and/or
bandwidth-constrained IoT network where a sender needs to
transmit security-critical messages to a receiver using small
packets. Hence, the sender and the receiver (after sharing a
secret key) employ a MAC scheme for message authentica-
tion. As shown in Fig. 4, we let the sender employ a packet
format that contains at least three fields: 1) a packet counter;
2) a message; and 3) an authentication tag. We note that
these three fields are critical for ensuring any secure message
authentication scheme, including CuMAC and CuMAC/S. If
the network protocol (e.g., Sigfox as discussed in Section II-A)
employs these fields in the conventional packets by design,
we can readily utilize them; otherwise, the packet contents
can be modified in the target network protocol (e.g., CAN as
discussed in Section II-B) to include these fields.

We assume that there exists a message acknowledgment
mechanism that enables the sender to know if a particu-
lar packet was correctly delivered to the receiver [34]. The
acknowledgment mechanism assisted with the packet counter
enables the sender and the receiver to maintain the same
sequence of packets. Note that we do not make any assumption
about the message retransmission mechanism, i.e., the network
may or may not support retransmission.

Threat Model: We consider an adversary that aims to forge
valid authentication tags for its malicious messages so that it
can deceive the authentication scheme at the receiver. While
the adversary can eavesdrop on the communication channel to
obtain packets transmitted by the sender, it does not know the
secret key (used for generating and verifying authentication
tags) shared between the sender and the receiver.

Cryptographic Strength: We convey the cryptographic
strength in bits, where a cryptographic strength of A bits
for a scheme means that for any adversary making at most
2% queries or taking at most 2* time, the probability of
successfully launching an attack against the scheme is negli-
gibly small [35]. The cryptographic strength of a conventional
MAC depends on three security criteria: 1) the cryptographic
strength of the underlying cryptographic primitive; 2) the size
and quality of the secret key; and 3) the size of the MAC out-
put. In this article, we assume that the first and second criteria
have been satisfied, and focus only on the third criterion. As
such, to achieve a cryptographic strength of A bits, the min-
imum size of the MAC output (denoted by L) should be A
bits.

B. Proposed Approach and Security Objectives

MAC Design: As shown in Fig. 5, we consider that an L-
bit MAC of a message m; is divided into n segments each of
length [, and distributed in tags 7, ..., Titn—1. Also, if after
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generating the message m;_,+1, the message m; can be spec-
ulated as m;, the corresponding MAC is computed as 6;. The
MAC 0; is divided into n segments, and the last n— 1 segments
are distributed in tags tj_n+1, ..., Ti—1, Which are transmitted
before 7.

Authentication Levels: To compare the proposed approach
with the prior art, we define three levels/features of authenti-
cation: 1) real-time authentication; 2) full authentication; and
3) partially accumulated authentication. Fig. 5 illustrates these
different levels of authentication, when applied to message
m;. Here, the receiver can perform real-time authentication
immediately after receiving message m; by processing the
current tag t; and the previous tags Ti—n+1, ..., Ti—1. With
real-time authentication, the receiver performs authentication
without any delay, but it achieves the lowest cryptographic
strength since there is no security accumulation using the sub-
sequent tags. On the other hand, the receiver can perform full
authentication after receiving all of the segments of the MAC
associated with message m; in tags Ti_,+1, ..., Titn—1. With
full authentication, the receiver achieves the highest crypto-
graphic strength but needs to incur a latency of n — 1 packets.
The receiver can perform partially accumulated authentica-
tion by accumulating and processing tags Ti—n+1, .- -, Titr—1,
where 1 < r < n. Partially accumulated authentication enables
the receiver to make a tradeoff between cryptographic strength
and message verification latency to meet the security and
performance needs of the application.

Security Objectives: The security objective of the proposed
MAC scheme is to ensure that the probability with which an
adversary succeeds in breaking each of the three authentica-
tion features is negligible (i.e., as difficult as random guessing).
Specifically, to break the real-time authentication feature, the
adversary needs to forge a message and a valid tag. The forgery
needs to be fresh which means that the sender has not gener-
ated the MAC of the same counter and message pair using the
same shared key. As such, the cryptographic strength of real-
time authentication depends on the size of the MAC segment /.
To break the partially accumulated authentication feature with
r accumulated segments, the adversary needs to forge a
sequence of r messages with valid tags. In this sequence, the
forgery for only the first message needs to be fresh. Hence, the
cryptographic strength of partially accumulated authentication
depends on the size of the MAC segment / and the number of
accumulated segments r. Similarly, to break the full authenti-
cation feature, the adversary needs to forge a sequence of n
messages with valid tags, where forgery for at least the first
message is fresh. Hence, the cryptographic strength of full
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Fig. 6. Schematic of the procedures at the sender in CuMAC.

authentication is limited by the size of MAC L. In the case of
the speculation of future messages, the cryptographic strengths
of the real time and the partially accumulated authentication
also depend on the message speculation accuracy.

A formal discussion of the security properties and associated
proofs corresponding to CuMAC and CuMAC/S are provided
in Appendixes A and B.

IV. TECHNICAL DETAILS OF CUMAC

CuMAC comprises two major algorithms: 1) tag genera-
tion and 2) tag verification. In the tag generation algorithm,
the sender computes the authentication tag through two major
steps (Fig. 6). In the first step, the sender generates the MAC
of the message, breaks the MAC into short segments, and
stores them into a segment array. In the second step, the
sender retrieves one MAC segment of the current message,
and several segments of the MACs of the previously trans-
mitted messages from the segment array, and aggregates the
segments to generate a tag. Having received each packet, the
receiver runs the tag verification algorithm which includes
two major steps. In the first step, the receiver generates an
authentication tag of the received message using the same pro-
cedure employed in the tag generation algorithm. In the second
step, the receiver compares the generated authentication tag
with the received authentication tag. If the authentication tags
match, the receiver accumulates the MAC segment (aggregated
in the authentication tag) with the previously received MAC
segments of the corresponding message.

Below, we present the technical details of the algorithms
in CuMAC, and an instantiation that illustrates the generation
and verification of the tags in CuMAC.

A. Algorithms

CuMAC is composed of the following algorithms, where the
KeyGen(1*) and MacGen(k, i, m;) algorithms utilize existing
approaches and the rest ones are proposed in this article.

1) k < KeyGen(1*): This probabilistic key generation
algorithm is utilized by the sender and receiver to obtain the
secret key. The input to this algorithm is the security parameter
A € N, and the output is the secret key denoted by k. In a
resource-constrained network, this algorithm can be efficiently
realized by leveraging a trusted node [7]. In the absence of
such a node, it can also be realized using an efficient key
distribution scheme [36].

2) o; < MacGen(k, i, m;): This deterministic MAC gen-
eration algorithm is utilized by the sender and the receiver
(as a subalgorithm of tag generation and verification algo-
rithms) to compute the MAC of a message using the secret
key. The inputs to this algorithm are the secret key k, a
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counter i, and a message m;. This algorithm outputs the L bits
long MAC represented by o;. This algorithm can be realized
using a cipher-based (e.g., AES-CMAC [37]) or a hash-based
(e.g., SHA-3) MAC scheme. In this article, we utilize the
widely used AES-CMAC.

3) t; < SegAgg(segArray): This segment aggregation
algorithm is utilized by the sender and the receiver as a sub-
algorithm of tag generation and tag verification algorithms,
respectively. It takes as input a 2-D array of MAC segments
segArray. This algorithm proceeds as follows. The ith row
of segments in segArray is generated as follows. The L-
bit MAC o; is divided into n segments, such that the size of
each segment is [ bits, i.e., L = n - [. The jth segment of o; is
represented by sﬁ, and is extracted from o; as

s« (0D | [G-1)-1+1,41]- M

It means that the bits in sf correspond to the bits from ((j —
1) - 14 1)th bit to (j- )th bit in o;. Furthermore, this algorithm
extracts n elements from segArray (n — 1 previous MAC
segments and one current MAC segment), and computes the
authentication tag t; as follows:

n .
@ Si—j-ﬁ-l'

j=1,i—j+1>0

T <

€5

This algorithm outputs the authentication tag T;.

4) t; < TagGen(k, i, m;): This tag generation algorithm
is run by the sender to generate an authentication tag. It takes
as inputs the secret key k, a counter i and a message m;. It
utilizes an array of MAC segments segTx which is stored and
maintained by the sender. This algorithm proceeds as follows
to output the authentication tag t;.

1) Compute the MAC of the message m; and set it as oj,

ie., o, < MacGen(k, i, m;).

2) Divide the MAC o; into n segments as shown in (1) and

append the segments to the array segTx.

3) Compute and output the tag t; by aggregating the

segments of MACs in segTx as shown in (2), i.e.,
7; < SegAgg(segTx).

After receiving a positive acknowledgment of the delivery of
the packet at the receiver, the sender increments the counter i
by one for the next packet. We note that the counter i can
be readily employed to handle the case of a lost packet. The
sender gets to know that the ith packet is lost when it does not
receive the acknowledgment from the receiver or it receives
a negative acknowledgment. In this case, if the sender does
not support any retransmission mechanism, the sender does
not increment the packet counter, removes the ith row (i.e.,
the most recently appended row) of segments in segTx, and
then proceeds with the tag generation of the next message.

5) valid/invalid <« TagVerify(k, i, m;, t;): This ver-
ification algorithm is run by the receiver for verifying the
authenticity of the received message and tag by regenerat-
ing the authentication tag and compared to the received tag.
It takes as inputs the secret key k, the received counter i, the
received message m;, and the received tag t;. It also utilizes an
array of MAC segments segRx and an array of verified MAC
segments accRx. These arrays are stored and maintained by
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TABLE I
EXAMPLE ILLUSTRATING CUMAC WITH L = 128, n =4, AND [ = 32

Packet Previous Current .
Aggregation of MAC segments Tag
Counter MACs MAC
5 02,03,04 o5 S%EBS%EDSE@S% 75
6 03,04,0%5 o6 s D s; B2 Dst T6
7 04,05,06 o7 53 @ s3 D st D sk 7
8 05,06,07 o8 stdsi@siasi | 1

the receiver. This algorithm first generates the tag for the
received message using the TagGen algorithm while updating
the MAC segments in segRx, i.e., T; < TagGen(k, i, m;).
It then verifies whether the generated tag T; is equal to the
received tag 7;. If the verification succeeds, it updates the array
of accumulated MAC segments accRx and outputs the value
valid; otherwise, it outputs the value invalid.

B. Illustration

Table I presents an example of CuUMAC. The size of the tag
in each packet is 32 bits (i.e., I = 32). The MAC is gener-
ated using the AES-CMAC algorithm. Hence, the size of the
MAC output is 128 bits (i.e., L = 128), which provides cryp-
tographic strength of 128 bits. Each MAC is divided into four
segments (i.e., n = 4). In the fifth packet, the MAC o5 of the
message ms is computed. To compute the corresponding tag
75, the sender aggregates the segment sé of the MAC o5 and
the segments of the MACs of the previously generated mes-
sages, 02, 03, and o3. Furthermore, the tags t¢, 77, and tg are
computed using the segments s%, sg, and sg of o3, respectively.

When the receiver receives the fifth packet with the mes-
sage ms, the successful verification of the tag ts enables
the real-time authentication of message ms with the cryp-
tographic strength of 32 bits. Next, the receiver receives
and verifies the validity of tags t¢, 77, and tg. If all four
tags are verified as valid, the receiver combines the seg-
ments sé, sg, sg, and sg‘—which are contained in tags ts,
76, 77, and tg, respectively—to accumulate the cryptographic
strength. This enables the receiver to perform full authenti-
cation of message ms with the cryptographic strength of 128
(= 4 x32) bits. However, if the receiver is restricted to process
the fifth packet only after receiving the seventh packet due
to latency requirements, it may also perform partially accu-
mulated authentication of message ms with a cryptographic
strength of 96 bits after verifying tags ts, 76, and 7. We
highlight that this ability to perform the partially accumulated
authentication is the most unique feature of CuMAC when
compared to the prior art.

V. TECHNICAL DETAILS OF CUMAC/S

In latency-sensitive applications, the receiver must authen-
ticate a message as it arrives. For such applications, the
tradeoff between the cryptographic strength and latency made
by CuMAC may not be sufficient. To address this challenge,
we present CuMAC/S, which employs a novel concept of
message speculation for MAC generation. Equipped with an
accurate message speculation algorithm, CuMAC/S achieves
both high cryptographic strength and low verification latency.
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Fig. 7. Example illustrating the feasibility of speculation of a vehicle’s

transmission torque values through an ARIMA model whose parameters are
determined using the autocorrelation function (ACF) and partial ACF (PACF).
(a) Original data. (b) First-order differenced data.

A. Feasibility of Speculation

We discuss the feasibility of speculation of future messages
by analyzing the messages communicated on a CAN bus in a
typical vehicle. To evaluate the speculation accuracy for dif-
ferent CAN messages, we utilize trace files of a real vehicle,
which have been recorded using the OpenXC platform [38].
These files present different types of CAN messages which
can be identified and interpreted by OpenXC libraries. To
speculate future message values, we utilize the autoregressive
integrated moving average (ARIMA) model, which is a widely
used model for time series analysis.

The ARIMA model with hyperparameters (p, d, g) implies
that for the dth-order difference of the time series values, a
speculated future message value is the linear combination of
p previous values, and g previous error values in the spec-
ulation. We utilize the Box-Jenkins [39] method to compute
the hyperparameters of the ARIMA model for each type of
CAN message. In this method, we determine the values for
p, d, and g by observing the autocorrelation and partial auto-
correlation of the message values. We illustrate this procedure
in Fig. 7 which presents the autocorrelation and partial auto-
correlation of the values of the message corresponding to the
torque at transmission in a vehicle. From the results shown
in Fig. 7(a), we observe that there is high autocorrelation
between message values. Furthermore, from the results shown
in Fig. 7(b), we observe that the autocorrelation decays grad-
ually, and the partial autocorrelation is close to zero after a
lag of 3 message values. Hence, according to the rules of
the Box-Jenkins approach, we set ARIMA (3, 1, 0) model to
speculate the message values corresponding to the torque at
the transmission.

In our analysis, we train the ARIMA model using the first
90% of the message values, and then we employ the model on
the last 10% of message values for the test. Here, the accuracy
of correct speculation/prediction of future message values is
measured using a metric called speculation error rate (SER),
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TABLE 11
SPECULATION ACCURACY FOR TYPICAL CAN MESSAGES

Signal SER SER after ignoring 3 LSBs
Longitude <0.0001 <0.0001
Latitude <0.0001 <0.0001
Odometer <0.0001 <0.0001
Fuel level <0.0001 <0.0001
Fuel consumed since restart | <0.0001 <0.0001
Accelerator pedal position 0.0030 0.0002
Torque at transmission 0.0100 0.0020
Engine speed 0.2329 0.0880
Vehicle speed 0.2478 0.0975
Steering wheel angle 0.4763 0.3595

which is defined as the ratio between the number of incorrect
speculations and the total number of speculations. Note that
the speculation is correct only if the message is correctly pre-
dicted up to the least significant bit (LSB). Table II shows
the SER of ten message-types. We observe that certain types
of CAN messages (e.g., the first five message types listed
in Table II) can be predicted with high reliability using the
ARIMA model.

We can improve the speculation accuracy by using more
sophisticated and further tuned models. Moreover, we can
mitigate the impact of speculation errors by increasing the
robustness of the MAC scheme against such errors. For exam-
ple, if the message contains some values for which some of the
LSBs can be safely ignored (without impacting performance
or security), then these bits do not need to be protected by a
MAC, and hence the MAC calculation can be limited to only
the part of a message that can be predicted with high reliabil-
ity. In the rightmost column of Table II, we show that the SER
can be significantly improved for some types of messages by
ignoring the last three least LSBs.

Now we present the technical details of the algorithms in
CuMAC/S and an instantiation that illustrates the generation
and verification of the tags in CuMAC/S.

B. Algorithms

The KeyGen and MacGen algorithms in CuMAC (dis-
cussed in Section IV) and those in CuMAC/S are the same,
and hence we do not provide their details in this section. We
present the details of other algorithms in CuMAC/S as follows.

1) msgArray’ <« MsgSpec(msgArray): This deter-
ministic message speculation algorithm is utilized by the
sender and receiver for the speculation of future mes-
sage values. It takes an array of the transmitted and
speculated messages msgArray as input. At the ith
instance, the array msgArray can be represented as
{m1 , Mo, ..., mj—1, M;, r%i_;,_] s I?l,u,.z, PN fﬁ,’.,.n_z}. This algo-
rithm generates the predicted value of the message mjt,—1,
which is represented by 7i;1,—1, appends it to the array
msgArray, and outputs the updated array msgArray’. Since
the speculation model used in this algorithm is deterministic,
the sender and the receiver run the same set of steps, and obtain
the same speculated messages given the same input messages.

11853

Segments of MACs of
previous messages

Break Compute
Message ——>| ™ C‘;J["/{’gm [ MAC into [ | tag by
segments aggregation

— Tag

Store in Store in
message segment
array array
Break

L C‘I'v'l“:;‘e LI MACinto|_,)

Speculate
message

Speculated message —>

Fig. 8. Schematic of the procedures at the sender in CuMAC/S.

2) 1; < SegAgg(segArray): This segment aggregation
algorithm is run by the sender and the receiver. It takes as input
a 2-D array of MAC segments segArray. The segArray
comprises of the segments of the MACs of the transmitted and
speculated messages. The ith entry in segArray is generated
by the segment si Vj € [1,n] using the (1). This algorithm
extracts 2n — 1 elements from segArray (n — 1 previous
MAC segments, current MAC segment, and n — 1 speculated
MAC segments), and computes the authentication tag 7; as
follows:

n

D

j=L,i—j+1>0

Ti < Si‘—j+l

oD ®
j=2

This algorithm outputs the authentication tag t;.

3) 1, <« TagGen(k, i, m;): This tag generation algorithm
is utilized by the sender to generate an authentication tag. It
takes as inputs the secret key k, a counter i and a message m;.
It utilizes an array of the transmitted and speculated messages
msgTx, and an array of MAC segments of the transmitted and
speculated messages segTx. The arrays msgTx and segTx
are stored and maintained by the sender. Fig. 8 presents an
overview of the algorithm which proceeds as follows.

1) Extract m; from msgTx and verify whether m; = m;.

a) If m; = ﬁ,‘, set o; = a

b) Otherwise, if m; # m;, compute the MAC of
the message m; and set it as oj, i.e., 0; <
MacGen(k, i, m;). Divide the MAC o; into n seg-
ments and replace the MAC segments of 0; in the
array segTx.

2) Predict the value of the message m;,—1 and append the
speculated message m;1,—| to the array msgTx, i.e.,
msgTx <« MsgSpec(msgTx).

3) Compute the MAC of the message 7;1,—1 and set it as
Gitn—1, 1.€., Oian—1 < MacGen(k, i, M;y,—1). Divide
the MAC Gj4,—1 into n segments and append to the
array segTx.

4) Compute the current tag t; by aggregating the segments
of MAC:s of the previous, current and future messages,
i.e., 1; < SegAgg(segTx)

4) valid/invalid <« TagVerify(k, i, m;, t;): This ver-
ification algorithm is run by the receiver for verifying the
authenticity of the received message and tag by regenerat-
ing the authentication tag and compared to the received tag.
It takes as inputs the secret key k, the received counter i, the
received message m;, and the received tag t;. It stores and man-
ages an array of previously received and speculated messages
msgRx, an array of MAC segments segRx, and an array
of verified segments accRx. This algorithm first generates
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TABLE III
EXAMPLE ILLUSTRATING CUMAC/S WITHL = 128, n =4, AND [ = 32

Packet Previous Current Previous Current .
Aggregation of MAC segments Tag
Counter MACs MAC speculated MACs | speculated MAC
2 o1 o2 G3,04 G5 2D siDEEDE; DSe T2
3 01,02 o3 54,05 o SS@sIDsi DT D DS, 3
4 01,02,03 o4 05,06 o7 sStDssDsiDs; DSED3E DSt T4
5 02,03,04 o5 06,07 o8 s%@s%@si@s%@?ﬁ@?%@?é 5
6 03,04,05 a6 G7,08 G9 sipsiosiaslosZesios; T6
7 04,05,06 o7 Gy, 09 G10 s D s DsEDst D52 DS DL, 77
8 05,06,07 o8 39,010 G11 stost sl D5z @5, ®5, | T8

the tag for the received message using the TagGen algorithm
while updating the speculated message in msgRx and MAC
segments in segRx, i.e., T; < TagGen(k, i, m;). It then ver-
ifies whether the generated tag T; is equal to the received tag
7;. If the verification succeeds, it updates the array of accumu-
lated MAC segments accRx and outputs the value valid;
otherwise, it outputs the value invalid.

C. Illustration

Table III presents an example of CuMAC/S, which follows
the example of CUMAC presented in Section IV-B. When the
receiver receives the fifth packet with the message ms, it veri-
fies whether it matches the speculated message 7is. If they do
not match, the successful verification of the tag 75 enables the
real-time authentication of message ms with a cryptographic
strength of 32 bits, which is the same as in CuMAC. Next, the
receiver receives and verifies the validity of tags ts, ..., 3. If
all four tags are verified as valid, the receiver combines the
segments s;, sg, sg, and sg‘—which are contained in tags Ts,
76, 77, and tg, respectively—to accumulate the cryptographic
strength. This enables the receiver to perform full authenti-
cation of message ms with a cryptographic strength of 128
(=4 x 32) bits.

However, if the message ms and nis match, and tags 17, T3,
74, and 75 are verified as valid, the receiver combines the
segments sé,’s\g,’s\g, and?‘s‘—which are contained in tags ts, 14,
73 and T3, respectively. This enables the receiver to perform
real-time authentication of message ms with a cryptographic
strength of 128 bits. We highlight that this unique ability
to achieve equal cryptographic strengths for the real-time
authentication and full authentication in spite of using short
authentication tags distinguishes CuMAC/S from prior art.

VI. SIMULATION RESULTS

In this section, we consider a simulated IoT environment,
where we assume AES-CMAC with a MAC output of 128 bits
as the underlying MAC algorithm, and we set the size of the
tag in all schemes to 16 bits. We evaluate the performance of
CuMAC and CuMAC/S by comparing them with three other
schemes from the prior art: 1) the truncated MAC [6]; 2) the
compound MAC [4]; and 3) the aggregate MAC [9]. In the
truncated MAC scheme, each MAC is truncated to 16 bits,
and transmitted as the tag. In the compound MAC scheme, a
compound MAC of 128 bits is computed over eight messages.
In the aggregate MAC scheme, an aggregate MAC of 128 bits

2150
g
£
2
3 100
@
Q
=
< 50 Trucated MAC
> H Compound MAC|
g % CuMAC
= © cumac/s
= ol | | | | | | T
o 0

0 1 2 3 4 5 6 7 8

Delay (packets)
(@)

;\?10
g
© 80
2
% 60
@
[0}
8 40
E‘ Trucated MAC
2 20 B3 Compound/Aggregate MAC
8 # CuMAC, CUMAC/S
& o . )

0 5 10

Packet drop rate(%)
(b)
Fig. 9. Illustration of the higher cryptographic strength and higher packet

processing rate achieved by CuMAC and CuMAC/S in comparison with the
prior art. (a) Tradeoff between cryptographic strength and delay. (b) Effect of
unreliable communication channel.

is computed by aggregating the MACs of eight messages. The
compound MAC and the aggregate MAC are divided into
eight segments each of size 16 bits and transmitted in each
of the eight packets as the tag. In CuMAC and CuMAC/S,
each MAC of 128 bits is divided into eight segments each of
size 16 bits. In CuMAC, each tag is generated by aggregat-
ing segments of seven previously transmitted messages and the
current message. In CUMAC/S, each tag is generated by aggre-
gating segments of seven previously transmitted messages, the
current message, and seven speculated messages.
Cryptographic Strength: Fig. 9(a) presents the cryptographic
strengths of the MAC schemes versus their authentication
delay. In the figure, we observe that CuMAC provides
real-time authentication with cryptographic strength of 16
bits, which is the same for the truncated MAC. As more
packets are received, partially accumulated authentication
is achieved and CuMAC provides increasing cryptographic
strength. Finally, CuMAC provides full authentication with
cryptographic strength of 128 bits, which is the same as
the compound/aggregate MAC. This way, CuMAC enables
a receiver to make a tradeoff between (accumulated) cryp-
tographic strength and authentication delay. In some latency-
tolerant IoT applications, this attribute provides the receiver

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY DELHI. Downloaded on July 30,2021 at 06:07:19 UTC from IEEE Xplore. Restrictions apply.



LI et al.: CUMULATIVE MESSAGE AUTHENTICATION CODES FOR RESOURCE-CONSTRAINED IoT NETWORKS

11855

TABLE IV
COMPARISON OF THE MAC SCHEMES USING THE PROTOTYPE IMPLEMENTATION ON A REAL CAR

Increase in Real-Time Auth. Full Auth. Partially Accum. Auth.
Scheme Code Space

Bus Load Delay Strength Delay Strength Delay Strength

Trailing MAC 7410 bytes 200 % 3.451 ms 0 bit 5.616 ms 128 bits | 50.000 ms 128 bits
Truncated MAC 7410 bytes 8 % 3.440 ms 16 bits 3.440 ms 16 bits 50.000 ms 16 bits
Compound/Aggregate MAC | 7450 bytes 8 % 3.887 ms 0 bit 84.143 ms | 128 bits | 50.000 ms 0 bits
CuMAC 7522 bytes 8 % 3.798 ms 16 bits 83.983 ms | 128 bits | 50.000 ms 64 bits
CuMAC/S 7640 bytes 8 % 3.809 ms | 128 bits | 83.994 ms | 128 bits | 50.000 ms 128 bits

with operational flexibility to vary the security level and/or
packet processing delay based on particular needs of a protocol
or rules prescribed by network traffic processing policies.

Most importantly, findings shown in Fig. 9(a) highlight one
critical advantageous attribute of CuMAC/S. We observe that
CuMAC/S enables the receiver to achieve 128 bits of crypto-
graphic strength for real-time authentication. In other words,
for the messages which can be reliably predicted, the receiver
achieves the cryptographic strength of the full authentica-
tion without any delay (i.e., immediately after the message
is received).

Unreliable Communication Channel: The unreliability of
the channel is measured by the packet drop rate which is equal
to the ratio of the lost packets and the total number of trans-
mitted packets. The performance of each scheme is measured
in terms of the packet processing rate which is equal to the
ratio of successfully authenticated packets at the receiver and
the total number of transmitted packets.

We evaluate the effect of unreliable communication chan-
nels on the MAC schemes in Fig. 9(b). In the figure, we
observe that the packet processing rate in CuMAC and
CuMAC/S is equal to that in the truncated MAC. However,
the compound/aggregate MAC can enable the processing of
a significantly lower number of packets than CuMAC and
CuMAC/S. This is because, in compound/aggregate MAC, the
verification of a MAC requires the receiver to receive all of
the packets that contain the messages utilized to compute that
particular MAC, and loss of any one of those packets leads
to the failure in the processing of other packets. For instance,
with a typical 10% packet drop rate, the packet processing
rate in the compound/aggregate MAC is around 43% which
might lead to an unacceptable performance in any typical IoT
application.

VII. IMPLEMENTATION RESULTS

Here, we discuss the results obtained from a prototype
implementation of CuMAC and CuMAC/S on a real car.

A. Details of Prototype Implementation

Fig. 10 illustrates the prototype implementation and the
setup that was used for running our experiments. The prototype
implementation comprised of two ECU prototypes connected
to the OBD port of the CAN bus (with the bus speed of
500 Kb/s) of a 2016 Toyota Corolla. The ECU prototype con-
sisted of an Arduino UNO board and a Seeed Studio CAN
shield. The Arduino UNO board was used to emulate the

Fig. 10. Prototype connected to a car’s CAN bus.

controller unit of an ECU, and the Seeed Studio CAN shield
implemented the OBD-II protocol stack. The Arduino UNO
board utilizes an Atmel ATmega328P chip, which includes
a low-power 8-bit microcontroller running at 16-MHz clock
speed along with a 32-kB flash memory and a 2-kB RAM.
These specifications of the ECU prototype are representative
of a typical state-of-the-art automotive-grade controller [40].

With the above experimental setup, we compared six
schemes: 1) the trailing MAC; 2) the truncated MAC; 3) the
compound MAC; 4) the aggregate MAC; 5) CuMAC; and
6) CuMAC/S. For all schemes, AES-CMAC with a MAC out-
put of 128 bits was utilized as the underlying MAC algorithm.
We utilized an open-source cryptography library [41] to imple-
ment AES-CMAC. We found that the average computation
time (calculated by averaging the computation time over 1000
executions) of generating a MAC was 0.786 ms. For all MAC
schemes except the trailing MAC, the size of the tag was set
to 16 bits, and the message and tag were inserted into the
data field of the same CAN packet. For the trailing MAC, the
128-bit MAC was split into two tags of 64 bits and inserted
into the data fields of two consecutive CAN packets. These
packets were transmitted immediately after the CAN packet
containing only the message.

To evaluate the delay performance, we utilized one ECU
prototype (called Tx-ECU) to transmit 6-byte messages with
the tags on the CAN bus, and another ECU prototype (called
Rx-ECU) to measure the end-to-end delay. In the experi-
ment, the Rx-ECU requested the Tx-ECU (through an external
synchronization channel) to send a message and started the
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timer. The Rx-ECU stopped the timer after verifying the tag
and authenticating the message. The delay was measured as
the time between starting the timer and stopping the timer.
Also, we let the message processing deadline for the mes-
sage type utilized in the experiment be 50 ms. Note that
the processing deadline represents the time within which the
authentication tags corresponding to the message are expected
to be generated, communicated, and verified.

B. Results

Table IV summarizes the results from the experiments. The
end-to-end delay shown in the table is the worst-case delay
in processing 1000 CAN messages. The table also presents
the cryptographic strengths for real time, full, and partially
accumulated authentication in each scheme. From Table IV,
we observe that: 1) in comparison to other MAC schemes,
additional storage for CuMAC and CuMAC/S is at most
2 kB, which is acceptable compared to 32-kB total flash
memory; 2) unlike the trailing MAC, CuMAC and CuMAC/S
do not increase the busload significantly; 3) unlike the com-
pound MAC and the aggregate MAC, CuMAC and CuMAC/S
provide real-time authentication; 4) in comparison with the
truncated MAC, the compound MAC, and the aggregate MAC
schemes, CuUMAC and CuMAC/S provide significantly higher
cryptographic strength for partially accumulated authentication
within the processing deadline; and 5) CuMAC and CuMAC/S
bring at most 0.4 ms extra delay, which is acceptable compared
to the case where the service delay on the IoV can be several
seconds [16].

Table IV also shows that compared to CuMAC, CuMAC/S
achieves significantly higher cryptographic strength for real-
time authentication and partially accumulated authentication
at the cost of slightly higher verification delay and extra
code space. Hence, in delay-sensitive application scenarios,
such as CAN, CuMAC/S achieves an advantageous trade-
off. Meanwhile, since CuMAC/S shows no advantage over
CuMAC for full authentication, CuMAC would be more
preferable in delay-insensitive application scenarios, such as
Sigfox.

VIII. CONCLUSION

We proposed a novel concept for message authentication
that we refer to as CuMAC. CuMAC incurs low commu-
nication overhead and provides high cryptographic strength
which is commensurate with the delay in the authentication.
We also proposed a variant of CuMAC called CuMAC/S that
is more suitable for latency-sensitive applications. Our promis-
ing simulation and experimental results validate that CuMAC
and CuMAC/S provide significant advantages over the MAC
schemes in the prior art when deployed in emerging IoT
applications, including those that run on energy/bandwidth-
constrained networks.

APPENDIX A
SECURITY DEFINITION

Here we present the formal security definitions for CuMAC
and CuMAC/S. Katz et al. provide the first concrete proof
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which illustrates that if multiple conventional MACs with
cryptographic strength of A bits are aggregated by XOR oper-
ation to form an aggregate MAC, then the aggregate MAC is
secure with the cryptographic strength of A bits [9], [42]. The
aggregation procedure employed in CuMAC and CuMAC/S
share similar attributes with the scheme proposed by Katz et al.
Hence, we present the security definitions which closely follow
those presented by Katz et al.

The security evaluation for CuMAC is centered around
the notion of unforgeability under chosen message attack
with parameter r (uf-cma-r), where r indicates the number
of packets accumulated for tag verification. We denote by
Advgfm‘}fg (A, X, q), the advantage of the adversary A in forg-
ing a message for a random key k < KeyGen(1*), where A
can make g queries to the tag generating oracle of CuMAC
Ocumac (k, -), and verification is performed after accumulat-
ing r segments of each MAC. CuMAC is considered to be
secure if the advantage of the adversary A is negligibly small.
Formally, the advantage can be expressed by the probability
(represented by Pr[]) that the following experiment returns 1.

EXPEAG (A 2 4)

k < KeyGen(1%)

Invoke A%cumac(k:) who can make up to g queries to the
tagging oracle of CUMAC Ocymac(k, ). A can query
Ocumac(k, -) with n arbitrarily chosen messages and
receive their CUMAC tags in response.

A outputs a set of n pairs ({m;}7_,, {T:}}_)).

Return 1 if valid <« TagVerify(k, i, m;, t;) for all
1 <i<n,and A did not make the query for m; to
Ocumac(k, ), where i* =n —r+ 1.

Return O otherwise.

Definition 1: CuMAC is (¢, q, €, r)-uf-cma secure if for any
probabilistic polynomial time (PPT) adversary A running in
time f, Pr[]Exp”CfL'f,\‘,l“Rg A r, g =1<e.

Similar to the experiment Expgfm“;‘g (A, A, g), the uf-cma-r
experiment for CUMAC/S can be readily defined as follows.

uf-cma-r

EXpcimacs(As 4. 9)
k < KeyGen(1%)
Invoke A%CuMAC/s(%:) who can make up to g queries
to the tagging oracle of CuMAC/S Ocymac/s(k, ). A
can query Ocumac/s(k, -) with 2n—1 arbitrarily chosen
messages and receive their CuMAC/S tags in response.
A outputs a set of 2n — 1 pairs ({mi}fQI], {tl-}iz;’;]).
Return 1 if valid <« TagVerify(k, i, m;, t;) forall 1 <
i <2n—1, and A did not make the query for m;+ to
Ocumac/s(k, ), where i* = 2n —r.
Return O otherwise.

Definition 2: CuMAC/S is (¢, g, €, r)-uf-cma
if for any PPT adversary A running in
PrIEXpE A s (A, A, @) = 1 < e.

Note that if CuMAC and CuMAC/S are (¢, g, €, r)-uf-cma
secure for all r, then they are also (, g, €)-uf-cma secure which
is the standard notion of security for a MAC scheme. We uti-
lize the aforementioned uf-cma-r security model to define the
cryptographic strength for full authentication, partially accu-
mulated authentication, and real-time authentication. Note that
in the uf-cma-r experiment, when the experiment returns a

secure
time f,
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value of 1, it implies that 4 can forge a valid tag for a packet
at which point the receiver has already accumulated » pack-
ets. Therefore, if CUMAC or CuMAC/S is (t, g, €, n) secure,
i.e., r = n, then CuMAC or CuMAC/S is secure in terms
of full authentication. Similarly, if CuMAC or CuMAC/S is
(t,q, €, 1) secure for all 2 < r < n — 1, then the scheme is
secure for partially accumulated authentication; and if CuMAC
or CuMAC/S is (¢, g, €, 1) secure, i.e., r = 1, then the scheme
is secure in terms of real-time authentication.

The security of CAMAC and CuMAC/S is based on the fol-
lowing assumption that defines the security of the underlying
MAC algorithm [37].

Assumption 1: The underlying deterministic MAC algo-
rithm, MacGen, is (z, g, €)-uf-cma secure—i.e., the probabil-
ity that an adversary will be successful in producing a forged
tag after running for a polynomial time ¢ and making g queries
is negligible.

APPENDIX B
SECURITY PROOF

Here, we present theorems and corresponding proofs for the
security for CUMAC and CuMAC/S. Let CuMAC be instan-
tiated with parameters ([, n), i.e., each MAC is divided into
n segments, each of length [ bits. Let CUMAC/S be instanti-
ated with parameters (B, [, n), i.e., the SER for the messages
is B, and each MAC is divided into n segments, each of
length [ bits. Note that in CUMAC and CuMAC/S, the receiver
performs real-time authentication by setting r = 1, partially
accumulated authentication by setting 1 < r < n, and full
authentication by setting r = n.

Theorem 1: For any t,q € N and € > 0, if the underly-
ing deterministic MAC algorithm, MacGen, is (¢, ¢, €)-uf-cma
secure, then CuMAC with parameters (I, n) is (7, ¢, €', r)-uf-
cma secure, where

/ /

—n—+1
{~1t, qzq—,

n

e = 21(n—r) €.

Proof: Let there be an adversary A that succeeds to create
a forgery of an authentication tag for CuMAC with a nonneg-
ligible probability. We construct a simulator S that interacts
with the adversary A and creates a forgery of a MAC for the
MacGen algorithm with a nonnegligible probability.

Let CuMAC and the MacGen algorithm utilize the same
secret key k which is not known to the adversary A. Also,
let the MAC of a message in CuMAC be computed by a
query to the tag generating oracle of underlying MAC, which
is denoted as Opacgen(k, -). In this way, S perfectly simulates
Ocumac(k, -), and hence, the uf-cma-r experiment. Suppose
the uf-cma-r experiment for CuMAC returns 1 with the prob-
ability €’ in time ¢/, where an adversary A outputs a valid
forgery ({m;}7_,, {r;}}_,) after ¢’ queries to Ocymac (k, -) sim-
ulated by S. To create a forgery of a MAC for the MacGen
algorithm, the simulator S proceeds as follows.

For all i € [1,n] and i # i*, the simulator S queries the
OMacGen (k, -) for the MAC of m;, and obtains the correspond-
ing o;. It divides each MAC into n segments as shown in (1). It
recovers the MAC segments of the message m;+ by removing
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the mask by the MAC segments of other messages as follows:

n
. .
s =1 ®@ P sy “
J=Lj#k

Since i* = n — r + 1, the simulator S cannot recover
the segments sf* with k > r + 1. Hence, it makes a ran-
dom guess for the rest of the n — r segments, such that

”s'i‘* <~ ${o0, l}l for all k € [r + 1, n]. Finally, to create the

forgery for the underlying MAC algorithm, MacGen, it con-
catenates all the recovered segments and the guessed segments:
O < sil*||sl-2* e ||s{*||“s'lfj]|| ---5%. This means that given a
successful forgery of the authentication tag in CuMAC, the
probability of creating the forgery of MacGen is 27/,

To achieve the forgery of MacGen as shown above, the sim-
ulator S conducts at most n-g" queries to the OpacGen(k, -) to
reply the ¢’ queries by A to Ocymac(k, -). Also, the simulator
S conducts n—1 queries to Opacgen(k, *) to obtain {Ti}?:l,i;éi*’
Therefore, if these exists an adversary A running in time ¢
and achieving Pr[]Exp‘(’;fL'f,\‘,lnX('{ (A, A, q)=1 < €, then it can
be leveraged to create a forgery for the underlying MAC algo-
rithm, MacGen, in time ¢ plus the time required to evaluate
the (4), by making ng’ + n — 1 queries, and with probability
2-l=")¢’ Hence, if the underlying MAC algorithm, MacGen,
is (t, g, €)-uf-cma secure, then CuMAC is (¢, q/, €', r)-uf-
cma secure, where ¥ ~ t, ¢ = (¢q—n+1)/(n), and
€ =2/, [ |

Theorem 2: For any t,q € N and € > 0, if the under-
lying deterministic MAC algorithm, MacGen, is (z, g, €)-
uf-cma secure, then CuMAC/S with parameters (8,1, n) is
(', q, €, r)-uf-cma secure, where

q—3n+3 , €
_—, € = .
2n—1 (1 —pB)+ p2-la=n

/ /o

=i,

Proof: Let there be an adversary .4 that succeeds to create
a forgery of an authentication tag for CuMAC/S with a non-
negligible probability. We construct a simulator S that interacts
with the adversary A and creates a forgery of a MAC for the
MacGen algorithm with a nonnegligible probability.

Let CuMAC/S and the MacGen algorithm utilize the same
secret key k which is unknown to the adversary A. Also,
let the MAC of a message in CuMAC/S be computed by
a query to OmacGen(k, ). In this way, S perfectly simu-
lates Ocumac/s(k, -), and hence the uf-cma-r experiment for
CuMAC/S. Suppose the uf-cma-r experiment for CuMAC/S
returns 1 with the probability €’ in time ¢, where an adver-
sary A outputs a successful forgery ({m,'}?il_l, {r,-}?il_l) after
g queries to Ocymac/s(k, -) simulated by S. To create a
forgery of a MAC for the MacGen algorithm, the simulator
S proceeds as follows.

For all i € [1,2n — 1] and i # i*, the simulator S queries
OMacGen(k, -) for the MAC of m;, and obtains the corre-
sponding o;. Additionally, it queries Opmacgen(k,-) for the
MAC of the speculated messages m; and obtains o; for all
i€[i*+1,i*+n—1]. It divides each MAC into n segments
as shown in (1). It recovers the MAC segments of the mes-
sage m;+ by removing the mask by the MAC segments of other
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messages as follows:

n n
. . :
Sip < Tirh—1 @ @ Sk @ @Eﬁ*ﬂ'-&—k—?

J=1.j#k J=2

(&)

By following the above procedure, the simulator S recovers r
MAC segments. For all k > r+ 1, the simulator S attempts to
recover si-‘* from the tags received before tag 7;+ as follows:

n n
. . .
Sip < Tir—kt1 @ @Sji*—k—jﬂ ® @ S

j=1 J=2.j#k

These segments can be recovered with a probability 1 —f. If a
speculation error occurs, then the corresponding MAC segment
is not recovered. In this case, S sets the value of the MAC
segment by randomly guessing the bits. Finally, the simula-
tor S creates a fresh forgery for the underlying deterministic
MAC algorithm, MacGen, by concatenating all recovered and
guessed segments. The probability that such forgery is correct
is (1—p)+p-2710=1,

To achieve the forgery of MacGen as shown above, the sim-
ulator S conducts at most (2n— 1)¢’ queries to OpacGen (K, )
to answer ¢’ queries by A to Ocymac/s(k, ). In order to
compute operations in (5) and (6), the simulator S con-
ducts at most 2n — 2 queries t0 OpmacGen(k, ) to obtain
{Ti},'zif,} > and at most n — 1 queries to obtain {6}};3,?;11.
Therefore, if for an adversary A running in time ¢, we have
Pr[]Exp%fl'f,\;ang /S(.A, A, q) =1 < €, then we can leverage it
to break the underlying MAC algorithm, MacGen, in time ¢
plus the time required to evaluate (5) and (6), by making (2n—
1)¢'+3n—3 queries, and with probability €’ (1—pg+p27/"),
Hence, if the underlying MAC algorithm, MacGen, is
(t, g, €)-uf-cma secure, then CuMAC/S is (¢, ¢, €/, r)-uf-cma
secure, where ¢ ~ t, ¢ = [(g—3n+3)/2n—1)], and
¢ =[(e)/(1 =B+ p271=)]. L]

(6)
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