
Cumulative Message Authentication Codes for

Resource-Constrained Networks

He Li, Vireshwar Kumar, Jung-Min (Jerry) Park, and Yaling Yang

Department of Electrical and Computer Engineering, Virginia Tech, USA

{heli, viresh, jungmin, yyang8}@vt.edu

Abstract—In emerging applications, such as intelligent auto-
motive systems, Internet-of-Things (IoT) and industrial control
systems, the use of conventional message authentication codes
(MACs) to provide message authentication and integrity is not
possible due to the large size of the MAC output. A straightfor-
ward yet naive solution to this problem is to employ a truncated
MAC which undesirably sacrifices cryptographic strength in
exchange for reduced communication overhead. In this paper,
we address this problem by proposing a novel approach for
message authentication called Cumulative Message Authentication
Code (CuMAC), which consists of two distinctive procedures:
aggregation and accumulation. In aggregation, a sender generates
compact authentication tags from segments of multiple MACs
by using a systematic encoding procedure. In accumulation, a
receiver accumulates the cryptographic strength by verifying the
authentication tags and collecting the underlying MAC segments
encoded in them. Embodied with these two procedures, CuMAC
enables the receiver to achieve an advantageous trade-off between
the cryptographic strength and the latency in processing of
the authentication tags. We have carried out comprehensive
evaluations of CuMAC in two real-world applications: low-
power wide-area network and in-vehicle controller area network.
Our evaluation methodology included simulations as well as a
prototype implementation of CuMAC on a real car.

Index Terms—Message authentication code (MAC); Internet-
of-Things (IoT); Sigfox; Controller area network (CAN).

I. INTRODUCTION

In emerging applications, such as home automation, in-

dustrial controllers and sensor networks, a large number

of energy-constrained computing devices are getting closely

integrated with the existing computer infrastructure through

bandwidth-constrained networks to form the Internet-of-

Things (IoT) [1]. The successful adoption of those applications

will partially depend on our ability to thwart security and

privacy threats, including message forgery and tampering.

Today, message authentication code (MAC) is the most com-

monly used method for providing message authenticity and

integrity in wired/wireless network applications. To employ

MACs in a resource-constrained (i.e., energy and/or bandwidth

constrained) network, we need to consider two problems: the

computational burden on the devices for generating and ver-

ifying the MAC, and the additional communication overhead

incurred due to the inclusion of the MAC in each message

frame/packet. The first problem can be addressed by using

dedicated hardware and cryptographic accelerators [2], [3].

However, the second problem is not as easy to address.

The cryptographic strength of a MAC depends on the cryp-

tographic strength of the underlying cryptographic primitive

(e.g., a hash or block cipher), the size of the MAC output, and

the size and quality of the key. Hence, a conventional MAC

scheme typically employs at least a few hundred bits of MAC

output to ensure a sufficient level of cryptographic strength. In

energy-constrained networks (e.g., low-power wide-area net-

work with battery-powered nodes) and bandwidth-constrained

networks (e.g., in-vehicle network), the payload size of each

packet is very short, e.g., less than 150 bits in protocols like

Sigfox [1] and controller area network [4]. Hence, not more

than a few bits of the payload can be spared to include an

authentication tag associated with the MAC.

The legacy solution for generating a short authentication

tag is to truncate the output of a conventional MAC so that it

fits a message packet [5]–[7]. This type of MAC is called a

truncated MAC. However, in exchange for reduced communi-

cation overhead and energy consumption, the truncated MAC

sacrifices cryptographic strength which may be undesirable, or

even unacceptable, in some applications. Note that the trun-

cated MAC without sufficient cryptographic strength renders

the application vulnerable to collision attacks [8]. To enable

authentication with enhanced cryptographic strength, Katz et

al. propose the concept of aggregate MAC where conventional

MACs of multiple messages are combined into one aggregate

MAC, and transmitted over successive packets [9]. Similarly,

Nilson et al. propose a compound MAC which is calculated on

a compound of multiple messages, and distributed over succes-

sive packets [4]. However, both the aggregate and compound

MAC schemes incur significant latency in the verification of

the messages because the receiver needs to receive and process

all associated packets before being able to verify the MAC.

In summary, we identify two challenges in employing

MACs for resource-constrained networks: (1) incurring min-

imal communication overhead so that the MAC can fit in

a message packet, and (2) ensuring that the cryptographic

strength meets the security need of the application. In this

paper, we propose a novel approach for message authentica-

tion that we refer to as Cumulative Message Authentication

Code (CuMAC) that addresses both of the aforementioned

challenges. In CuMAC, a sender utilizes a procedure called

aggregation through which the sender first divides the full-

sized MAC output of each message into multiple short MAC

segments, and then “aggregates” the MAC segments of multi-

ple messages using a systematic encoding procedure to form

a short authentication tag. This procedure resolves the first

challenge of ensuring low communication overhead.



Further, the receiver utilizes a procedure called accumula-

tion through which it first verifies the MAC segments aggre-

gated into the authentication tag of each received packet, and

then “accumulates” the cryptographic strength by collecting

the verified MAC segments associated with the target mes-

sage. In this procedure, the receiver may incur delay that is

proportional to the accumulated cryptographic strength since

it needs to wait for the relevant tags to be received and

processed. Hence, while the accumulation procedure caters to

the second challenge, it brings up a novel trade-off between the

cryptographic strength and delay. CuMAC enables the receiver

to authenticate the message in real-time with the cryptographic

strength which is commensurate with the size of each tag.

Further, CuMAC enables the authentication with the highest

level of cryptographic strength (which is commensurate with

size of the MAC) after accumulating all segments of the MAC

that covers the message in the associated packets.

The paper’s main contributions are summarized as follows.

1) We propose a novel message authentication scheme

called CuMAC which meets the security need of

resource-constrained networks. CuMAC is an embodi-

ment of two concepts that we refer to as aggregation

(which reduces the communication overhead) and accu-

mulation (which increases the cryptographic strength).

2) We have thoroughly evaluated the effectiveness of

CuMAC through simulations in energy-constrained and

bandwidth-constrained networks. Our results illustrate

that while incurring the same communication overhead

as the truncated MAC scheme, CuMAC achieves the

cryptographic strength equivalent to the conventional

MAC scheme at the cost of increase in latency.

3) We validate our analytical and simulation results using

a prototype implementation on a real car.

II. POTENTIAL APPLICATION SCENARIOS

We discuss two suitable application scenarios of CuMAC,

where the constraints of the network—either in terms of

MAC size or energy/bandwidth consumption of the networked

devices—prohibit the use of the conventional MAC scheme.

We note that the design of CuMAC is not limited by specific

characteristics of these two applications. As such, CuMAC can

be readily employed in a variety of other IoT networks [10]–

[12] satisfying the system model discussed in Section III-A.

A. Low-Power Wide-Area Network (LPWAN)

Many IoT applications (e.g., smart metering and smart

city infrastructure) require a heavily-crowded network of low-

cost energy-constrained battery-operated wireless devices. The

paradigm of LPWAN is aimed at fulfilling these requirements

of IoT networks [1], [5]. Sigfox [13] is one example of a

widely-known LPWAN technology. In Sigfox, each uplink

packet contains a counter, a message (with length between

0 and 96 bits), and an authentication tag (with length between

16 and 40 bits). To enable robust communication over the

unreliable wireless channel, the sender in Sigfox transmits

multiple copies of the same packet sequentially. After trans-

mitting the fixed number of copies of the packet, Sigfox waits

for an acknowledgement from the receiver. In the absence of

the acknowledgement, the packet is considered lost. We note

that Sigfox does not support retransmission of lost packets.

The battery-powered Sigfox devices are expected to have a

service/battery life of several years. As the energy consump-

tion of a Sigfox device is directly proportional to the size of

packet communicated by it, it is imperative to communicate

using short packets to ensure a long battery life. Also, although

the message integrity and authentication are of prime impor-

tance in applications supported by Sigfox [14], it is unfeasible

to communicate the full-sized MAC output due to the small

size of the tag allocated in the Sigfox packet.

B. In-Vehicle Controller Area Network (CAN)

Today’s high-end cars use a hundred or more electronic

control units (ECUs) to enable advanced functionalities, such

as real-time engine control. ECUs in most modern vehicles

communicate with each other over a bandwidth-constrained

wired broadcast channel called the Controller Area Network

(CAN) bus [15], [16]. Because the messages communicated

among ECUs directly affect vital functions of a vehicle,

some of which are safety related (e.g., dynamics control

system [17]), the security and reliability of the CAN bus

and the integrity of the messages on it are critical [3]. We

note that while the state-of-the-art CAN bus supports robust

mechanisms for message acknowledgement and retransmission

of corrupted/lost packets, it does not support any security

mechanism [18]. Several studies have shown that a car’s in-

vehicle network can be compromised through either direct

physical access (e.g., using the on-board diagnostics port)

or a remote connection (e.g., using Bluetooth) to the CAN

bus [19], [20]. Due to one such vulnerability, Jeep had to

recall 1.4 million vehicles in 2015 [21]. To counter such

attacks and protect messages on the CAN bus, the US National

Highway Traffic Safety Administration (NHTSA) recommends

the inclusion of MACs [22].

A CAN packet consists of an 11-bit or a 29-bit identifier

field and a message field with length between 0 and 64 bits.

Except the identifier and message fields, we cannot arbitrarily

change the length or the content of other fields in the CAN

packet as that would make the modified packet incompatible

with the existing CAN protocol. Hence, in the prior art [6],

[23], to realize MAC-based authentication in each packet, the

identifier field is used to accommodate an 18-bit counter,

and the message field is used to accommodate the message

payload as well as the authentication tag. We note although

the design of this modified packet ensures that it is backward-

compatible, inserting a full-sized MAC in the modified packet

is not possible because the maximum allowed length of the

message field in a CAN packet is only 64 bits.



Message TagCounter

Fig. 1: Packet model employed in CuMAC.

Compute 

MAC
Message

Break 

MAC into 

segments

Store in 

segment 

array

Compute 

tag by 

aggregation

Tag

Segments of MACs 

of previous messages

Fig. 2: Schematic of the procedures in the tag generation

algorithm at the sender in CuMAC.

III. OVERVIEW OF CUMAC

A. System Model

We consider an energy-constrained (e.g., Sigfox) and/or

bandwidth-constrained network (e.g., CAN) where a sender

needs to transmit security-critical messages to a receiver using

small packets. As shown in Figure 1, we let the sender

employ a packet format which contains at least three fields:

a packet counter, a message, and an authentication tag. We

note that these three fields are critical for ensuring any secure

message authentication scheme including CuMAC. Hence, if

the network protocol (e.g., Sigfox as discussed in Section II-A)

employs these fields in the conventional packets by design,

CuMAC can readily utilize them; otherwise, the packet con-

tents can be modified in the target network protocol (e.g., CAN

as discussed in Section II-B) to include these fields.

We assume that there exists a message acknowledgement

mechanism which enables the sender to know if a particular

packet was correctly delivered to the receiver [24]. Such

acknowledgement mechanisms are widely utilized in existing

protocols including Sigfox and CAN. The acknowledgement

mechanism assisted with the packet counter enables the sender

and the receiver to maintain the same sequence of packets.

Note that we do not make any assumption about the message

retransmission mechanism, i.e., the network may or may not

support retransmission. We highlight that in this paper, we

provide Sigfox and CAN as concrete application scenarios

for CuMAC, but our system model is generically applicable

to a variety of resource-constrained networks, e.g., those

employing Bluetooth Low Energy [10], Constrained Access

Protocol [11] or Message Queue Telemetry Transport [12].

B. Design of CuMAC

In the above system model, the sender and the receiver (after

sharing a secret key) communicate a sequence of messages and

employ CuMAC for authentication. CuMAC comprises of two

major algorithms: tag generation and tag verification. In the tag

generation algorithm, the sender computes the authentication

tag through two major steps (Figure 2). In the first step,

the sender generates the MAC of the message, breaks the

MAC into n short segments, and stores them into a segment

array. In the second step, the sender retrieves n segments (one

MAC segment of the current message, and n− 1 segments of

mi
mi+1 mi+n-1τi

τi+1 τi+n-1

Real-time authentication

Partially accumulated authentication

Full authentication

mi+r-1 τi+r-1

Fig. 3: Illustration of the levels of authentication in CuMAC.

the MACs of the previously transmitted messages) from the

segment array, and aggregates the segments to generate a tag.

For instance, in the illustration shown in Figure 3, an L-bit

MAC is divided into n segments, such that the size of each

segment is l bits, i.e., L = n · l. Then, an authentication tag of

length l bits is computed using the tag generation algorithm

of CuMAC (Figure 2). Finally, in the ith packet, the sender

transmits the message denoted by mi and the authentication

tag denoted by τi. We note that in CuMAC, the n segments

of the MAC of the message mi are aggregated into the n
authentication tags, τi, · · · , τi+n−1, and transmitted in the

corresponding packets.

Having received each packet, the receiver runs the tag

verification algorithm which includes two major steps. In the

first step, the receiver generates an authentication tag of the

received message using the same procedure employed in the

tag generation algorithm. In the second step, the receiver

compares the generated authentication tag with the received

authentication tag. If the authentication tags match, the re-

ceiver accumulates the MAC segments (aggregated in the au-

thentication tag) with the previously received MAC segments

of the corresponding message. For instance, in the illustration

shown in Figure 3, after receiving and verifying each of the n
authentication tags, τi, · · · , τi+n−1, the receiver accumulates

the MAC segments of the message mi (aggregated in those

tags) to reconstruct the underlying L-bit MAC.

C. Authentication Levels in CuMAC

For CuMAC, we define three levels/features of authentica-

tion: (1) real-time authentication, (2) full authentication, and

(3) partially accumulated authentication. Figure 3 illustrates

the three different levels of authentication, when applied to

message mi. Recall that the MAC of the message mi is divided

into n segments, and distributed in tags τi, · · · , τi+n−1. In

this case, the receiver can perform real-time authentication

immediately after receiving message mi by processing the

tag τi. With real-time authentication, the receiver performs

authentication without any delay, but it achieves the lowest

cryptographic strength since there is no security accumulation

using the subsequent tags. On the other hand, the receiver

can perform full authentication after receiving all of the

segments of the MAC associated with message mi in tags

τi, · · · , τi+n−1. With full authentication, the receiver achieves

the highest cryptographic strength, but needs to incur a la-

tency of n − 1 packets. The receiver can perform partially



accumulated authentication by accumulating and processing

tags τi, · · · , τi+r−1, where 1 < r < n. Partially accumulated

authentication enables the receiver to make a trade-off between

cryptographic strength and message verification latency to

meet the security and performance needs of the application.

D. Attack Model

We consider an adversary which aims to forge valid authen-

tication tags for its malicious messages so that it can deceive

the authentication scheme at the receiver. Specifically, to break

the real-time authentication feature of CuMAC, the adversary

needs to forge a message and a valid tag. The forgery need

to be fresh which means that the sender has not transmitted

the MAC of the same counter and message pair. To break the

partially accumulated authentication feature of CuMAC with r
accumulated segments, the adversary need to forge a sequence

of r messages with valid tags. In this sequence, the forgery for

only the first message needs to be fresh. Similarly, to break the

full authentication feature of CuMAC, the adversary need to

forge a sequence of n messages with valid tags, where forgery

for at least the first message is fresh. While the adversary

can eavesdrop the communication channel to obtain packets

transmitted by the sender, it does not know the secret key

which is shared between the sender and the receiver, and

utilized for generating/verifying the authentication tags.

E. Security Objectives

We convey the cryptographic strength in bits, where a

cryptographic strength of λ bits for a scheme means that for

any adversary making at most 2λ queries or taking at most 2λ

time, the probability of successfully launching an attack on the

scheme is negligibly small [25]. The cryptographic strength

of a conventional MAC depends on three security parameters:

(1) the cryptographic strength of the underlying cryptographic

primitive, (2) the size and quality of the secret key, and (3) the

size of the MAC output. To achieve a cryptographic strength

of λ bits, the minimum size of the key and the MAC output

should be λ bits. In this paper, we present the cryptographic

strength using the size of the MAC output (denoted by L).

From the illustration discussed in Section III-C, we note that

the cryptographic strength of the full authentication depends

on the same three aforementioned security parameters of the

conventional MAC. However, the cryptographic strength of

real-time authentication in CuMAC is limited by the size of

the MAC segment l. Also, the cryptographic strength of the

partially accumulated authentication in CuMAC depends on

the size of the MAC segment l and the number of accumulated

segments r. The security objective of CuMAC is to ensure that

the probability with which an adversary succeeds in breaking

each of the three authentication features is negligible (i.e,

commensurate with the corresponding cryptographic strength).

Due to space constraints, a formal discussion of CuMAC’s

security properties and associated proofs are provided in the

extended version of this paper, which is available at [26].

IV. TECHNICAL DETAILS OF CUMAC

Here, we present the technical details of the algorithms em-

ployed by CuMAC. We also provide an example that illustrates

the generation and verification of the tags in CuMAC.

A. Algorithms

CuMAC is composed of the following algorithms that are

executed by the sender and/or the receiver.

k← KeyGen(1λ)
This probabilistic key generation algorithm is utilized by

the sender and the receiver to obtain the secret key. The

input to this algorithm is the security parameter λ ∈ N, and

the output is the secret key denoted by k. In a resource-

constrained network, this algorithm can be efficiently realized

by leveraging a trusted third party [7], or using an efficient

key distribution mechanism [27].

σi ←MacGen(k, i,mi)
This deterministic MAC generation algorithm is utilized

by the sender and the receiver (as a sub-algorithm of tag

generation and verification algorithms) to compute the MAC of

a message using the secret key. The inputs to this algorithm are

the secret key k, a counter i and a message mi. This algorithm

outputs the L bits long MAC represented by σi. This algorithm

can be realized using a cipher-based (e.g., AES-CMAC) or

a hash-based (e.g., SHA-3) MAC scheme. In this paper, we

utilize the widely used AES-CMAC [28].

τi ← SegAgg(segArray)
This segment aggregation algorithm is utilized by the sender

and the receiver as a sub-algorithm of tag generation and the

tag verification algorithms, respectively. It takes as input a

two-dimensional array of MAC segments segArray. The ith

row of segments in segArray is generated as follows. The

L-bit MAC σi is divided into n segments, such that the size

of each segment is l bits, i.e., L = n · l. The jth segment of

σi is represented by sji , and is extracted from σi as

sji ← (σi)↓[(j−1)·l+1,j·l]. (1)

The notation ↓ implies that the bits in sji correspond to the bits

from ((j − 1) · l + 1)
th

bit to (j · l)
th

bit in σi. Further, this

algorithm extracts n elements from segArray (n−1 previous

MAC segments and one current MAC segment), and computes

the authentication tag τi as follows.

τi ←

n⊕

j=1,i−j+1>0

sji−j+1. (2)

This algorithm outputs the authentication tag τi.

τi ← TagGen(k, i,mi)
This tag generation algorithm is run by the sender to

generate an authentication tag. It takes as inputs the secret

key k, a counter i and a message mi. It utilizes an array

of MAC segments segTx which is stored and maintained by

the sender. This algorithm proceeds as follows to output the

authentication tag τi.



1) Compute the MAC of the message mi and set it as σi,

i.e., σi ← MacGen(k, i,mi).
2) Divide the MAC σi into n segments as shown in equa-

tion (1) and append the segments to the array segTx.

3) Compute and output the tag τi by aggregating the

segments of MACs in segTx as shown in equation (2),

i.e., τi ← SegAgg(segTx).

After receiving the positive acknowledgment of the delivery

of the packet from the receiver, the sender increments the

packet counter i by one for the next packet. We note that

the packet counter i can be readily employed to handle the

case of a lost packet. The sender gets to know that the ith

packet is lost when it does not receive the acknowledgement

from the receiver or it receives a negative acknowledgement. In

this case, if the sender supports a retransmission mechanism,

the sender simply re-transmits the same packet containing the

same counter i, the same message mi and the same tag τi.
Otherwise, if the sender does not support any retransmission

mechanism, the sender does not increment the packet counter,

removes the ith row (i.e., the most recently appended row) of

segments in segTx, and then proceeds with the tag generation

of the next message.

valid/invalid← TagVerify(k, i,mi, τi)
This verification algorithm is run by the receiver for verify-

ing the authenticity of the received message and tag. It takes

as inputs the secret key k, the received counter i, the received

message mi, and the received tag τi. It utilizes an array of

MAC segments segRx, and an array of number of verified

segments accRx. These arrays are stored and maintained by

the receiver. The ith entry in the array accRx is represented

by ri. To initialize the value of ri in the array accRx, the

receiver sets ri = 0. This algorithm verifies whether the tag τi
is generated using the secret key k. If the verification succeeds,

it outputs the value valid; otherwise, it outputs the value

invalid. This algorithm proceeds as follows.

1) Compute the MAC of the message mi and set it as σ̃i,

i.e., σ̃i ← MacGen(k, i,mi).
2) Divide the MAC σ̃i into n segments as shown in

equation (1) and append the segments to the array

segRx. We note that the counter i ensures that the arrays

segTx at the sender and segRx at the receiver remain

synchronized.

3) Compute the tag τ̃i by aggregating the segments of

MACs in segRx as shown in equation (2), i.e., τ̃i ←
SegAgg(segRx).

4) If τ̃i = τi,

a) Update the array of accumulated MAC segments

accRx, such that for each t ∈ [i − n + 1, i], set

rt = rt + 1.

b) Output the value valid.

5) Otherwise, if τ̃i 6= τi, output the value invalid.

B. Instantiation of CuMAC

Table I presents an example of CuMAC. The size of the

tag in each packet is 32 bits (i.e., l = 32). The MAC is

TABLE I: Example illustrating CuMAC with L = 128, n = 4,

and l = 32.
Packet Previous Current

Aggregation of MAC segments Tag
Counter MACs MAC

5 σ2, σ3, σ4 σ5 s
4

2
⊕ s

3

3
⊕ s

2

4
⊕ s

1

5
τ5

6 σ3, σ4, σ5 σ6 s
4

3
⊕ s

3

4
⊕ s

2

5
⊕ s

1

6
τ6

7 σ4, σ5, σ6 σ7 s
4

4
⊕ s

3

5
⊕ s

2

6
⊕ s

1

7
τ7

8 σ5, σ6, σ7 σ8 s
4

5
⊕ s

3

6
⊕ s

2

7
⊕ s

1

8
τ8

generated using the AES-CMAC algorithm. Hence, the size

of the MAC output is 128 bits (i.e., L = 128), which provides

cryptographic strength of 128 bits. Each MAC is divided into

four segments (i.e., n = 4). This means that the cryptographic

strengths for real-time authentication and full authentication

are 32 bits and 128 bits, respectively. To simplify the discus-

sion, we limit the discussions to the packets which are involved

in the authentication of the message transmitted in the fifth

packet, m5. In the fifth packet, the MAC σ5 of the message

m5 is computed. To compute the corresponding tag τ5, the

sender aggregates the segment s15 of the MAC σ5 and the

segments of the MACs of the previously generated messages,

σ2, σ3 and σ4. Further, the tags τ6, τ7 and τ8 are computed

using the segments s25, s35 and s45 of σ5, respectively.

When the receiver receives the fifth packet with the message

m5, the successful verification of the tag τ5 enables the real-

time authentication of message m5 with the cryptographic

strength of 32 bits. Next, the receiver receives and verifies the

validity of tags τ6, τ7, and τ8. If all four tags are verified as

valid, the receiver combines the segments s15, s25, s35 and s45—

which are contained in tags τ5, τ6, τ7 and τ8, respectively—

to accumulate the cryptographic strength. This enables the

receiver to perform full authentication of message m5 with

the cryptographic strength of 128 (= 4 × 32) bits. However,

if the receiver is restricted to process the fifth packet only

after receiving the seventh packet due to latency requirements,

it may also perform partially accumulated authentication of

message m5 with a cryptographic strength of 96 bits after

verifying tags τ5, τ6 and τ7. Note that this ability to perform

the partially accumulated authentication is the most unique

feature of CuMAC when compared to the prior art.

V. EVALUATION

We firstly highlight the advantages of CuMAC by compar-

ing it with the prior art. We then evaluate the performance

of CuMAC in an energy-constrained network application and

a bandwidth-constrained network application. These two ap-

plications have very different constraints, but they share a

common requirement—i.e., messages need to be protected

using short tags—that illustrates the utility of CuMAC.

A. Comparison with the Prior Art

We evaluate the performance of CuMAC by comparing it

with three other schemes from the prior art: the truncated

MAC [6], the compound MAC [4], and the aggregate MAC

[9]. For all four schemes, AES-CMAC with a MAC output

of 128 bits is utilized as the underlying MAC algorithm. We



0 2 4 6 8

Delay (packets)

0

50

100

150
C

ry
p
to

g
ra

p
h
ic

 s
tr

e
n
g
th

 (
b
it
s
)

 Trucated MAC

 Compound/Aggregate MAC

 CuMAC

(a) Trade-off between crypto-
graphic strength and delay.

0 5 10

Packet drop rate (%)

0

20

40

60

80

100

P
a
c
k
e
t 
p
ro

c
e
s
s
in

g
 r

a
te

 (
%

)

 Trucated MAC

 Compound/Aggregate MAC

 CuMAC

(b) Effect of unreliable commu-
nication channel.

Fig. 4: Comparison of CuMAC with the prior art.

set the size of the tag in all the four schemes to 16 bits. In

the truncated MAC scheme, each MAC is truncated to 16 bits,

and transmitted as the tag. In the compound MAC scheme, a

compound MAC of 128 bits is computed over eight messages.

In the aggregate MAC scheme, an aggregate MAC of 128 bits

is computed by aggregating the MACs of eight messages. The

compound MAC and the aggregate MAC are divided into eight

segments each of size 16 bits, and transmitted in each of the

eight packets as the tag. In CuMAC, each MAC of 128 bits

is divided into eight segments each of size 16 bits, and each

tag is generated by aggregating segments of seven previously

transmitted messages and the current message.

Figure 4a presents the cryptographic strengths of four

schemes versus their authentication delay. In the figure, we

observe that CuMAC provides real-time authentication with

cryptographic strength of 16 bits, which is the same as

truncated MAC. As more packets are received, partially ac-

cumulated authentication is achieved and CuMAC provides

gradually increasing cryptographic strength. Finally, CuMAC

provides full authentication with cryptographic strength of 128

bits, which is the same as compound/aggregate MAC.

Most importantly, findings shown in Figure 4a highlight one

critical advantageous attribute of CuMAC. CuMAC enables a

receiver to make a trade-off between (accumulated) crypto-

graphic strength and authentication delay. In some latency-

tolerant applications, this attribute provides the receiver with

operational flexibility to vary the security level and/or packet

processing delay based on particular needs of a protocol or

rules prescribed by network traffic processing policies.

Further, we evaluate the effect of unreliable communication

channel on the four schemes in Figure 4b. The unreliability

of the channel is measured by the packet drop rate which is

equal to the ratio of the lost packets and the total number

of transmitted packets. The performance of each scheme is

measured in terms of the packet processing rate which is

equal to the ratio of successfully authenticated packets at

the receiver and the total number of transmitted packets. We

note that although the packet processing rates in CuMAC and

the truncated MAC are equal (Figure 4b), the cryptographic

strengths for their full authentication are 128 bits and 16 bits,

respectively (Figure 4a).

TABLE II: Parameters utilized for computing the service life

of a sensor node in a Sigfox network.
Battery capacity 8000 mAh × 3600 s/h = 28800 C

Sleep charge 1.3 µA × 86400 s/day = 0.11 C/day

Packet transmission rate 1 packet/h = 24 packets/day

Packet transmission without payload 0.20 C

Payload transmission 0.002 C/bit

Further, in Figure 4b, we observe that the com-

pound/aggregate MAC can enable processing of significantly

lower number of packets than CuMAC. This is because in

compound/aggregate MAC, the verification of a MAC requires

the receiver to receive all of the packets that contain the

messages utilized to compute that particular MAC, and loss

of any one of those packets leads to the failure in processing

of other packets. This implies that given the packet drop rate

of ρ, the packet processing rate can be represented by (1− ρ)
in CuMAC, but (1 − ρ)n in the compound/aggregate MAC.

Hence, for a typical packet drop rate ρ = 10% and n = 8,

the packet processing rate in the compound/aggregate MAC is

around 43% which is an unacceptable rate in a typical network.

B. Advantages in an Energy-Constrained Network

We consider an air quality monitoring system which consists

of a base station and multiple sensors nodes distributed over a

large area [13]. Each sensor node utilizes the Sigfox protocol

to send the air quality data to the base station once in every

hour [29]. The data is examined at the base station and

finally made available to the responsible authorities. In this

application scenario, there are two important performance

requirements—(1) service life: each battery-operated sensor

node needs to operate for a few years independently without

any physical access which means that the network is energy-

constrained; and (2) robust authentication: message authen-

tication scheme is needed to ensure verification of received

data despite losing some packets. Note that in this scenario,

the latency requirement is not stringent as the data is collected

and analyzed at the base station with some inherent delay.

1) Service Life: We evaluate the effect of appending an

authentication tag in each packet on the service life of a sensor

node, which is equal to its battery life. To compute the service

life, we utilize the charge consumption data from a Sigfox

compliant transceiver IC produced by ON Semiconductor [30].

Table II presents the parameters utilized in the computation

of the service life. We employ two 1.5 V Alkaline C batteries

connected in series. Each battery holds a charge of 8000 mAh.

The transmission time in every hour is limited to 2 seconds,

and hence the device is considered to be in sleep almost all the

time. We ignore the battery self discharge in this calculation.

Figure 5 presents the service life of a sensor node for

different sizes of message and authentication tag. We observe

that by appending authentication tags in transmitted packets,

each sensor node consumes a significantly more energy on

data transmission which shortens the service life. Specifically,

we consider a 48-bit message without tag as the benchmark

which results in the service life of around 11 years. Figure 5



0 20 40 60 80 100

Size of message (bits)

4

6

8

10

12

14

16
S

e
rv

ic
e

 l
if
e

 (
y
e

a
r)

No tag

16-bit tag

128-bit tag

Fig. 5: Effect of size of message and authentication tag on the

service life of a sensor node in a Sigfox network.

TABLE III: Distribution of size and period of messages in

CAN.
Size 1 byte 2 bytes 4 bytes 6 bytes

Share 35 % 49 % 13 % 3 %

Period 5 ms 10 ms 20 ms 50 ms 100 ms 200 ms 1000 ms

Share 7 % 25 % 25 % 3 % 20 % 1 % 19 %

illustrates that in comparison to this benchmark, utilizing the

conventional MAC of size 128 bits results in a significant

loss of around 45% of service life. However, CuMAC can

utilize the 16-bit tag in each packet without compromising

the cryptographic strength (128 bits) for full authentication,

and with a modest (around 10%) reduction in the service life

as compared to the benchmark. Hence, for the LPWAN (like

Sigfox) where the size of the tag in each packet is usually

limited due to the energy constraints, we assert that CuMAC

is a much more viable solution for message authentication than

the full-size conventional MAC.

2) Robust Authentication: Recall that in Sigfox, the sender

becomes aware of the lost packet when it does not receive the

acknowledgement from the receiver. Since Sigfox does not

support retransmission of packets, the authentication scheme

needs to be robust against packet drops. In CuMAC, the packet

counter readily handles such cases, and ensures synchroniza-

tion of packets between the sender and receiver. This implies

that with CuMAC, all received messages can be authenticated

with the cryptographic strength of 128 bits, albeit with some

delay. However, in this application, the truncated MAC cannot

provide high cryptographic strength as shown in Figure 4a,

and the compound/aggregate MAC cannot provide robust

authentication to all received packets as shown in Figure 4b.

C. Advantages in a Bandwidth-Constrained Network

We consider the CAN bus as an illustrative bandwidth-

constrained network. We simulate the performance of the

CAN bus when the authentication tag along with the message

is inserted in the CAN packets. Table III illustrates the

distribution of the size and the period of messages utilized in

the simulation. This distribution is based on the open-source

benchmark presented by Kramer et al. [31]. The bus speed

utilized in the simulation is 500 kbps. In the simulation, we let

0 20 40 60 80 100 120

Number of messages

0

20

40

60

80

100

B
u

s
 l
o

a
d

 (
%

)

No tag

16-bit tag

128-bit tag

Fig. 6: Effect of size of message and authentication tag on the

CAN bus load.

the maximum size of the message to be 6 bytes which means

2 bytes (16 bits) of tag can be readily inserted in the data field.

An 18-bit packet counter is inserted in the CAN identifier field

[6], [23]. To communicate the full 128-bit tag, an ECU may

employ the trailing MAC scheme in which the ECU needs to

transmit two extra packets with the tag for each packet with

the message [32]. Recall that a maximum of 64 bits of tag can

be transmitted in one CAN packet. In the above scenario, we

evaluate two performance metrics of the CAN bus: bus load

and message processing delay.

1) Bus Load: The bus load is a critical parameter for

evaluating the overall latency performance of the CAN bus.

Typically, the CAN bus load is between 30 % to 40 %, but

with systematic approaches based on scheduling analysis, the

bus load can be increased to around 80 % [33]. The bus load

is directly proportional to the number of supported messages

on the CAN bus. A high bus load may increase the latency of

messages that may lead to problems, such as car functions

being delayed and high possibility of communication fault

situations [18]. Hence, it is critical to keep the bus load low.

Figure 6 illustrates the effect of increasing the number

of messages and inserting authentication tags in the CAN

packet on the CAN bus load. We observe that at a typical

bus load of 40 %, the number of supported messages without

authentication is 60. While maintaining the same bus load,

CuMAC with a 16-bit tag is able to support 45 messages, but

a trailing MAC with a 128-bit tag supports only 12 messages.

Further, considering the maximum bus load of 80 %, the

maximum number of messages supported by the bus with a 16-

bit tag is 91, but that with a 128-bit tag is only 27. This means

that to support 91 messages, a vehicle needs only one CAN

bus when the messages are authenticated using CuMAC, but it

needs three CAN buses when the messages are authenticated

using a full-size MAC. Note that increasing the number of

CAN buses increases the overall cost of the vehicle.

2) Message Processing Delay: Message processing delay is

an important design metric for the CAN bus which supports

safety-critical functions of a vehicle [33]. The major compo-

nents of this delay includes the delay in the generation of the

authentication tag at the sender, communication of the CAN

packet over the bus, and then verification of the authentication



TABLE IV: Comparison of the MAC schemes using the prototype implementation on a real car.

Scheme Code Space
Increase in Real-Time Auth. Full Auth. Partially Accum. Auth.

Bus Load Delay Strength Delay Strength Delay Strength

Trailing MAC 7410 bytes 300 % 3.451 ms 0 bit 5.616 ms 128 bits 50.000 ms 128 bits

Truncated MAC 7410 bytes 8 % 3.440 ms 16 bits 3.440 ms 16 bits 50.000 ms 16 bits

Compound/Aggregate MAC 7450 bytes 8 % 3.887 ms 0 bit 84.143 ms 128 bits 50.000 ms 0 bits

CuMAC 7522 bytes 8 % 3.798 ms 16 bits 83.983 ms 128 bits 50.000 ms 64 bits

ECU 

prototypes

OBD-II 

connection

External channel 

for synchronization

Fig. 7: Prototype connected to a car’s CAN bus.

tag at the receiver. We note that although the CAN bus enforces

strict message processing deadlines, the individual communi-

cation delay encountered by each message type (which denotes

all messages with the same message identifier) on the bus

can vary significantly between 5 ms and 1000 ms [18]. Also,

recall that CuMAC supports accumulation of cryptographic

strength as per the flexible delay requirement as shown in

Figure 4a. This implies that with CuMAC, some message types

can be authenticated with high cryptographic strength. Unlike

CuMAC, the truncated MAC does not support accumulation

of cryptographic strength, and the compound/aggregate MAC

cannot provide real-time authentication guarantee which is

essential for the CAN bus.

VI. IMPLEMENTATION RESULTS

We discuss the results from the experiments performed with

a prototype implementation. These results are also utilized to

compare CuMAC with the MAC schemes in the prior art.

A. Details of the Prototype Implementation

Figure 7 illustrates the prototype implementation and the

setup that were used for running our experiments. The pro-

totype implementation comprised of two ECU prototypes

connected to the on-board diagnostics (OBD) port of the CAN

bus (with the bus speed of 500 kbps) of a 2016 Toyota Corolla

LE. The ECU prototype consisted of an Arduino UNO board

and a Seeed studio CAN shield. The Arduino UNO board

was used to emulate the controller unit of an ECU, and the

Seeed studio CAN shield worked as the interface between the

Arduino UNO board and the CAN bus. The Arduino UNO

board utilizes an Atmel ATmega328P chip, which includes

a low-power 8-bit micro-controller running at 16 MHz clock

speed along with a 32 KB flash memory and a 2 KB RAM.

These specifications of the ECU prototype are representative

of a typical state-of-the-art automotive-grade controller [34].

With the above experimental setup, we compared five

schemes: the trailing MAC, the truncated MAC, the compound

MAC, the aggregate MAC and CuMAC. For all five schemes,

AES-CMAC with a MAC output of 128 bits was utilized

as the underlying MAC algorithm. We utilized an open-

source cryptography library [35] to implement AES-CMAC.

We found that the computation time (calculated by averaging

the computation time over 1000 executions) of generating a

MAC was 0.786 ms. For the truncated MAC, the compound

MAC, the aggregate MAC and CuMAC, the size of the tag was

set to 16 bits, and the message and tag were inserted into the

data field of the same CAN packet. For the trailing MAC, the

128-bit MAC was split into two tags of 64 bits, and inserted

into the data fields of two consecutive CAN packets. These

packets were transmitted immediately after the CAN packet

containing only the message.

To evaluate the delay performance, we utilized one ECU

prototype (called Tx-ECU) to transmit 6-byte messages with

the tags on the CAN bus, and another ECU prototype (called

Rx-ECU) to measure the end-to-end delay. In the experiment,

the Rx-ECU requested the Tx-ECU (through an external

synchronization channel) to send a message, and started the

timer. The Rx-ECU stopped the timer after verifying the tag

and authenticating the message. The delay was measured as the

time between starting the timer and stopping the timer. We let

the Rx-ECU trigger the transmission of messages with a period

of 10 ms. Also, we let that the message processing deadline

for the message type utilized in the experiment be 50 ms.

Note that the processing deadline represents the time within

which the authentication tags corresponding to the message

are expected to be generated, communicated and verified.

B. Results

Table IV summarizes the results from the experiments. The

end-to-end delay shown in the table is the worst case delay

in processing 1000 CAN packets. The table also presents

the cryptographic strengths for real-time, full and partially

accumulated authentication in each scheme. From Table IV,

we make four important observations: (1) In comparison to the

truncated MAC, additional 112 bytes of storage is required to



store the segments of the MACs of seven previous messages

in CuMAC. (2) Unlike the trailing MAC, CuMAC does not

increase the bus load significantly. (3) Unlike the compound

MAC and the aggregate MAC, CuMAC provides real-time

authentication with the cryptographic strength of 16 bits. (4) In

comparison with the truncated MAC, the compound MAC

and the aggregate MAC schemes, CuMAC provides higher

cryptographic strength for partially accumulated authentication

by enabling the verification of four tags contained in the four

packets transmitted (with the periodicity of 10 ms) within the

processing deadline of 50 ms.

VII. CONCLUSION

We proposed a novel concept for message authentication

that we refer to as cumulative MAC (CuMAC). CuMAC incurs

low communication overhead, and provides high cryptographic

strength which is commensurate with the delay in authen-

tication. Our promising simulation and experimental results

show that CuMAC provides significant advantages over the

MAC schemes in the prior art when deployed in a number

of emerging applications, including those that run on energy-

constrained or bandwidth-constrained networks.

ACKNOWLEDGEMENT

This work was partially sponsored by National Science

Foundation (NSF) through grants 1563832, 1642928, and

1822173, and by the industry affiliates of the Broadband

Wireless Access & Applications Center (BWAC).

REFERENCES

[1] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low power wide
area networks: An overview,” IEEE Communications Surveys Tutorials,
vol. 19, no. 2, pp. 855–873, 2017.

[2] R. Escherich, I. Ledendecker, C. Schmal, B. Kuhls, C. Grothe, and
F. Scharberth, “SHE: Secure hardware extension - Functional specifi-
cation, Version 1.1,” Hersteller Initiative Software (HIS) AK Security,
2009.

[3] R. Soja. Automotive security: From standards to implementation.
Accessed: July 1, 2019. [Online]. Available: https://www.nxp.com/docs/
en/white-paper/AUTOSECURITYWP.pdf

[4] D. K. Nilsson, U. E. Larson, and E. Jonsson, “Efficient in-vehicle
delayed data authentication based on compound message authentication
codes,” in IEEE 68th Vehicular Technology Conference, 2008, pp. 1–5.

[5] H. Wang and A. O. Fapojuwo, “A survey of enabling technologies of
low power and long range machine-to-machine communications,” IEEE

Communications Surveys Tutorials, vol. 19, no. 4, pp. 2621–2639, 2017.
[6] C. Szilagyi and P. Koopman, “A flexible approach to embedded network

multicast authentication,” in Proceedings of the 2nd Workshop on

Embedded Systems Security (WESS), 2008.
[7] H. Schweppe, Y. Roudier, B. Weyl, L. Apvrille, and D. Scheuermann,

“Car2x communication: securing the last meter-a cost-effective approach
for ensuring trust in car2x applications using in-vehicle symmetric
cryptography,” in 2011 IEEE Vehicular Technology Conference (VTC

Fall). IEEE, 2011, pp. 1–5.
[8] K. Bhargavan and G. Leurent, “Transcript collision attacks: Breaking

authentication in TLS, IKE, and SSH,” in Network and Distributed

System Security Symposium (NDSS), 2016.
[9] J. Katz and A. Lindell, “Aggregate message authentication codes,” Topics

in Cryptology–CT-RSA, pp. 155–169, 2008.
[10] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation of

Bluetooth Low Energy: An emerging low-power wireless technology,”
Sensors, vol. 12, no. 9, pp. 11 734–11 753, 2012.

[11] C. Bormann, A. P. Castellani, and Z. Shelby, “CoAP: An application
protocol for billions of tiny internet nodes,” IEEE Internet Computing,
no. 2, pp. 62–67, 2012.

[12] M. Singh, M. Rajan, V. Shivraj, and P. Balamuralidhar, “Secure MQTT
for Internet of Things (IoT),” in Fifth International Conference on

Communication Systems and Network Technologies, 2015, pp. 746–751.
[13] Sigfox. Technical overview. Accessed: July 1, 2019. [On-

line]. Available: https://www.disk91.com/wp-content/uploads/2017/05/
4967675830228422064.pdf

[14] R. Roman, J. Zhou, and J. Lopez, “On the features and challenges
of security and privacy in distributed internet of things,” Computer

Networks, vol. 57, no. 10, pp. 2266–2279, 2013.
[15] R. Bosch, “CAN specification - Version 2.0,” 1991.
[16] International Organization for Standardization, “ISO/IEC 11898-1:2015:

Road vehicles - Controller area network (CAN) - Part 1: Data link layer
and physical signalling,” Standard.

[17] K. H. Johansson, M. Törngren, and L. Nielsen, “Vehicle applications
of controller area network,” in Handbook of Networked and Embedded

Control Systems, 2005, pp. 741–765.
[18] G. M. Zago and E. P. de Freitas, “A quantitative performance study

on CAN and CAN FD vehicular networks,” IEEE Transactions on

Industrial Electronics, vol. 65, no. 5, pp. 4413–4422, 2018.
[19] S. Checkoway, D. Mccoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-

age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehensive
experimental analyses of automotive attack surfaces,” in Proceedings of

the 20th USENIX Security Symposium, 2011.
[20] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,

D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage,
“Experimental security analysis of a modern automobile,” in IEEE

Symposium on Security and Privacy, 2010, pp. 447–462.
[21] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger

vehicle,” Black Hat USA, 2015.
[22] National Highway Traffic Safety Administration, “Cybersecurity best

practices for modern vehicles,” No. DOT HS 812, vol. 333, 2016.
[23] H. Ueda, R. Kurachi, H. Takada, T. Mizutani, M. Inoue, and S. Horihata,

“Security authentication system for in-vehicle network,” SEI Technical

Review, no. 81, 2015.
[24] F. Wang and J. Liu, “Networked wireless sensor data collection: Issues,

challenges, and approaches,” IEEE Communications Surveys Tutorials,
vol. 13, no. 4, pp. 673–687, 2011.

[25] D. J. Bernstein and T. Lange, “Non-uniform cracks in the concrete:
the power of free precomputation,” in International Conference on the

Theory and Application of Cryptology and Information Security, 2013,
pp. 321–340.

[26] H. Li, V. Kumar, J.-M. Park, and Y. Yang, “Cumulative message
authentication codes for resource-constrained networks,” arXiv preprint

arXiv:2001.05211, 2020.
[27] W. Du, J. Deng, Y. S. Han, P. K. Varshney, J. Katz, and A. Khalili,

“A pairwise key predistribution scheme for wireless sensor networks,”
ACM Transactions on Information and System Security (TISSEC), vol. 8,
no. 2, pp. 228–258, 2005.

[28] M. Bellare, J. Kilian, and P. Rogaway, “The security of the cipher block
chaining message authentication code,” Journal of Computer and System

Sciences, vol. 61, no. 3, pp. 362–399, 2000.
[29] R. A. Rohde and R. A. Muller, “Air pollution in China: Mapping of

concentrations and sources,” PloS One, vol. 10, no. 8, pp. 1–14, 2015.
[30] ON Semiconductor. Ultra-low power, AT command controlled, Sigfox

compliant transceiver IC for up-link and down-link. Accessed: July
1, 2019. [Online]. Available: https://www.onsemi.com/pub/Collateral/
AX-SIGFOX-D.PDF

[31] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive
benchmarks for free,” in 6th International Workshop on Analysis Tools

and Methodologies for Embedded and Real-time Systems (WATERS),
2015.

[32] B. Groza, S. Murvay, A. V. Herrewege, and I. Verbauwhede, “LiBrA-
CAN: A lightweight broadcast authentication protocol for controller area
networks,” in Cryptology and Network Security, 2012, pp. 185–200.

[33] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller area
network (CAN) schedulability analysis: Refuted, revisited and revised,”
Real-Time Systems, vol. 35, no. 3, pp. 239–272, 2007.

[34] P.-S. Murvay, A. Matei, C. Solomon, and B. Groza, “Development
of an AUTOSAR compliant cryptographic library on state-of-the-art
automotive grade controllers,” in 11th IEEE International Conference

on Availability, Reliability and Security (ARES), 2016, pp. 117–126.
[35] Arduino cryptography library. Accessed: July 1, 2019. [Online].

Available: https://github.com/rweather/arduinolibs


