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Abstract

In this paper we propose a new method for estimat-
ing depth using a fusion of defocus and stereo, that
relaxes the assumption of a pinhole model of the cam-
era. It avoids the correspondence problem of stereo.
Main advantage of this algorithm is simultaneous re-
covery of depth and image restoration. The depth (blur
or disparity) in the scene and the intensity process in
the focused image are individually modeled as Markov
random �elds (MRF). It avoids the windowing of data
and allows incorporation of multiple observations in
the estimation procedure. The accuracy of depth esti-
mation and the quality of the restored image are im-
proved compared to the depth from defocus method,
and a dense depth map is estimated without correspon-
dence and interpolation as in the case of stereo.

1 INTRODUCTION

In recent years, an important area of research in
computer vision has been the recovery of 3D informa-
tion about a scene from its 2D images. In the case
of human vision, there is the concept of binocular fu-
sion, when stereoscopically presented images appear
as a single entity. Julesz[1] showed that random dot
stereograms provide a cue for disparity even when an
individual image does not provide any high level cue
for depth. Pentland [2] reported that the gradient of
focus inherent in biological and most optical systems is
actually a useful source of depth information. Conven-
tional stereo analysis assumes an ideal pin-hole camera
model which o�ers an in�nite depth of �eld. Any prac-
tical camera system is bound to provide depth related
blurring in images, which itself is an important cue.
Hence, in this paper we fuse stereo and defocus cues
to obtain an improved accuracy.
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Binocular stereo matching is, in general, ambigu-
ous if the matching is evaluated independently at each
point purely by using image properties. All stereo
matching algorithms examine the candidate matches
by calculating how much support they receive from
their local neighborhood. Marr and Poggio[3] pro-
posed a cooperative stereo algorithm based on a multi
resolution framework. Barnard and Thompson[4] pro-
posed a feature-based iterative algorithm to solve the
correspondence problem. A large number of papers
have appeared in the literature on stereo analysis and
a review of them can be found in [5].

Let us now look at the literature on depth recovery
from defocused images. In [6] Subbarao proposed a
more general method compared to that of Pentland
[2] in which he removed the constraint of one of the
images being formed with a pin-hole aperture. In [7],
Xing and Shafer proposed two methods, one is depth
from focusing and the other is depth from defocusing.
In depth from defocus, they proposed a new camera
calibration model, by considering geometric as well as
imaging blur. Rajagopalan and Chaudhuri proposed
various methods, for example, a block shift-variant
blur model[8] that incorporates the interaction of blur
among neighboring subregions. Space variant (SV)
approaches for depth recovery using a space-frequency
representation framework are given in [9],[10]. They
have also proposed a method [11] of estimating space
variant blur as well as the focused image of the scene
from two defocused images. In this method, both the
focused image and the blur are modeled as separate
MRFs and their MAP estimates are obtained using
simulated annealing (SA) [12].

Computationally eÆcient methods are available in
the literature for stereo analysis. Kanade and Oku-
tomi [13] have given a new stereo matching algorithm
with an adaptive window, the size of the window is
selected by evaluating the local variation of the in-
tensity and the disparity. In [5], a nonlinear di�usion



is used to estimate the window size. The accuracy of
estimates in depth from defocus (DFD) methods is in-
ferior to that of stereo based methods, while in stereo,
setting up the correspondence is a diÆcult task. In
this paper we fuse these two methods to estimate the
depth information for an improved accuracy. Tsai et
al. [14] proposed a scheme of integrating stereo and
defocus. But they have used rough depth estimates
obtained from defocus as a guideline for the stereo
matching algorithm. A comparative analysis of DFD
and stereo based methods can be found in [15].

As we know in stereo the disparity is directly re-
lated to depth. In DFD the blur parameter � is also
directly related to the depth. Hence disparity, a func-
tion of �, is known in terms of lens settings and the
base line distance. This information is used to fuse the
two methods, thereby getting the advantages of both
the methods. In the proposed method, given four im-
ages of a scene, ie, two defocused stereo pairs of im-
ages, we estimate the focused image of the scene and
a dense depth (blur or disparity) map using an MAP-
MRF approach. The computational problem for the
MAP-MRF is solved using simulated annealing.

2 FUSION OF DEFOCUS AND

STEREO

In this proposed method we are simultaneously es-
timating blur (or disparity) and restoring one of the
focused image of the scene in the stereo pair (say, the
left image). Estimating the other stereo pair is trivial
once we know the disparity. As in the most litera-
ture, we assume the epipolar line constraint so that
the disparity is only in the y-direction. For the given
observation model, the right image is given by

fR(x; y) = fL(x; y + d(x; y)) + w(x; y); (1)

where d(x; y) is the disparity associated with the
stereo pair at a point (x; y) and w is the white Gaus-
sian noise. We continue to assume that there is no
di�erence in scene illumination between the left and
the right images. The basic structure of the proposed
method is given in �gure 1. Let us denote by L1 =
left image with �1(x; y) as a blur parameter, L2 = left
image with �2(x; y) as a blur parameter, R1 = stereo
pair of L1 with same blur parameter �1(x; y+d(x; y)),
R2 = stereo pair of L2 with same blur parameter
�2(x; y+ d(x; y)). For the DFD camera setup, we also
have (see [12] for details)

�1(x; y) = ��2(x; y) + �; (2)

where � and � are known constants that depend on
camera settings. The relative blur between the two
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Figure 1: Basic structure of the depth from defocused
stereo.

defocused images is estimated using the intensity in-
formation by assuming an appropriate model for the
optical transfer function. Usually a Gaussian shaped
blur model is assumed. Though the Gaussian blur
is of in�nite extent, a �nite spatial extent approxi-
mation (�3� pixels) is assumed for Gaussian blurring
windows. We note that the blurring PSF given by
�i(x; y), i=1,2 is space varying and it is directly re-
lated to the depth in the scene for a �xed camera set-
ting. The depth (D) is related to the disparity, the
baseline distance (b) and the focal length of the cam-
era. If the focal length of the camera is changed, then
for the same depth the disparity changes. Let dm be
the disparity and fm be the focal length for an ideal
pin-hole camera associated with the image with blur
parameter �m, m = 1; 2. From the stereo analysis we
can write,

dm =
bfm

D
; m = 1; 2: (3)

Eliminating D we get,

d1 =
f1

f2
d2: (4)

Similarly for a DFD system, the relationship between
the blur parameter �m, the focal length Fm, the aper-
ture rm and the lens to image plane distance Vm is
given by [12]

�m = �rmVm(
1

Fm
�

1

Vm
�

1

D
); m = 1; 2; (5)

where � is a constant parameter related to the resolu-
tion of the CCD camera and the subscript m denotes
two di�erent observations.

If we now relax the pin-hole camera model for stereo
and substitute the value of depth in terms of disparity,
we get the disparity in the DFD equation as a function



of blur parameter and camera settings, ie.

dm = bfm(
1

Fm
�

1

Vm
�

�m

�rmVm
); m = 1; 2: (6)

If we assume fm = Vm (since the focal length fm in a
pin-hole model is nothing but Vm in the DFD system,
as de�ned earlier), then the above equation reduces to

dm = b(
Vm

Fm
� 1�

�m

�rm
); m = 1; 2: (7)

From the above analysis, once the blur is estimated,
the disparity can be determined from the known cam-
era settings and we get a dense depth map without
explicitly solving the correspondence problem.

The estimation problem is addressed under the
framework of MAP-MRF approach. Computation
based on simulated annealing is carried out for simul-
taneous recovery of depth estimates and the focused
image. The utility of MRF lies in its ability to capture
local dependencies and its equivalence to the Gibbs
random �eld(GRF). The space variant blur parameter
which is related to depth is modeled as an MRF. The
local property of MRF leads to an algorithm which
can be implemented in a local and parallel manner.

Let S denote the random �eld corresponding to
space variant (SV) blur parameter Sij = �1(i; j) in
the �rst observation and FL denote the random �eld
corresponding to the left focused image fL (intensity
process). Assume that S can take P possible levels
and FL can take M possible levels. S is statistically
independent to both FL and the noise �eld W . The
noise �eld is assumed to be white Gaussian with zero
mean and variance �2w. The relation between the fo-
cused image and the defocused image is governed by
the observation models, for four observed images gl1 ,
gl2 , gr1 and gr2 with random �elds GL1

, GL2
, GR1

and
GR2

, respectively

glk = HkfL + wk ; (8)

grk = Hk(d)fR + w0

k k = 1; 2: (9)

where g, f and w represent lexicographical ordering of
g(i; j), f(i; j) and w(i; j) respectively. H is the blur
matrix corresponding to SV blurring function

h(i; j;m;n)=
1

2��2m;n

expf
�1

2�2m;n

[(i�m)2+ (j �n)2]g:

H(d) is same as H with the shift due to dispar-
ity. Since blur is space variant, H does not possess
the nice property of having a block toeplitz structure.
The above problem of recovering fL given four obser-
vations is ill posed and may not yield a unique solu-
tion, unless additional constraints like a smoothness

are added to restrict the solution space. Since S and
FL are modeled as separate MRFs, we can write

P (S = s) =
1

zs
expf�Us(s)g; (10)

P (FL = fL) =
1

zf
expf�UfL(fL)g: (11)

The terms Us(:) and UfL(:) correspond to the en-
ergy functions associated with the space-variant blur-
ring process in the left image and the intensity pro-
cesses in the left image, respectively. Given a real-
ization of S the blurring function h1(:) is known and
hence the matrix H1 is known. Moreover, h2(:) is also
determined by �ij2 = ��ij1 + �. Since the disparity
is a function of space variant blur h1(:), h2(:) for the
right pair is calculated. Now, given the four observed
images, the a posteriori conditional joint probability
of S and FL is given by,

P (S = s; FL = fLjGL1
= gl1 ; :::; GR2

= gr2) =

P (S=s; FL=fL)P (GL1
=gl1 ; ::jS=s; FL=fL)

P (GL1
= gl1 ; :::; GR2

= gr2)
: (12)

Since S and FL are assumed to be statistically inde-
pendent, and from Bayes' rule we can write,

P (S = s; FL = fLjGL1
= gl1 ; :::; GR2

= gr2) =

P (S=s)P (FL=fL)P (GL1
=gl1 ; ::jS=s; FL=fL)

P (GL1
= gl1 ; :::; GR2

= gr2)
: (13)

As discussed before, we pose the problem of simultane-
ous space-variant blur estimation and image restora-
tion as the following MAP problem.

max
s;fP (GL1

=gl1 ; :::jS=s; FL=fL)P (S=s)P (FL = fL):

For �xed observations with an appropriate regulariz-
ing term (say, �rst order smoothness), one can show
that the posterior energy function is given by

UP (s; fL) =
jjgL1 �H1fLjj

2

2�2w
+
jjgL2 �H2fLjj

2

2�2w

+
jjgR1 �H1(d)fRjj

2

2�2w
+
jjgR2 �H2(d)fRjj

2

2�2w

+

Z
[�s(s

2
x + s2y) + �f (f

2
x + f2y )]dxdy

+�st jj gR1 � gL1(y + d(x; y)) jj
2

+�st jj gR2 � gL2(y + d(x; y)) jj
2
; (14)



where

fR(x; y) = fL(x; y + d(x; y));

and �s, �f are the regularization parameters corre-
sponding to the blur and the intensity processes, re-
spectively. Here �st stands for how well the stereo
image pairs are matched in terms of disparity.

From the above analysis computing MAP estimates
is equivalent to minimizing the posterior energy func-
tion. Smoothness constraints on the estimates of
space-variant blur and the intensity processes are en-
coded in the potential function. In order to preserve
the discontinuities in both the blurring process and
the focused image of the scene, line �elds are also in-
corporated into the energy function [16]. The horizon-
tal and vertical binary line �elds corresponding to the
blurring process and intensity process are denoted by
lsij , v

s
ij , l

fL
ij and vfLij , respectively. The a posteriori en-

ergy function to be minimized is de�ned including line
�elds as UP (s; fL; l

s
ij ; v

s
ij ; l

fL
ij ; v

fL
ij ), where the smooth-

ness term in equation 14 can be replaced by

X
i;j

�s[(si;j � si;j�1)
2
(1� vsi;j) + (si;j+1 � si;j)

2

(1� vsi;j+1)+(si;j � si�1;j)
2
(1� lsi;j)+(si+1;j � si;j)

2

(1� lsi+1;j)] +
X
i;j

�f [(fLi;j � fLi;j�1)
2(1� v

fL
i;j )

+(fLi;j+1 � fLi;j)
2(1� v

fL
i;j+1) + (fLi;j � fLi�1;j)

2

(1� l
fL
i;j ) + (fLi+1;j � fLi;j)

2
(1� l

fL
i+1;j)]

+s[l
s
i;j + lsi+1;j + vsi;j + vsi;j+1]

+f [l
fL
i;j + l

fL
i+1;j + v

fL
i;j + v

fL
i;j+1];

where s and f are the penalty terms associated with
each line �eld for the blur and the intensity processes,
respectively.

The simulated annealing algorithm is used to ob-
tain the MAP estimates of the SV blur parameter
and the focused image simultaneously. The temper-
ature variable is introduced in the objective function.
Annealing-cum-cooling schedule is carried out at each
iteration with linear cooling. Since the random �elds
associated with the SV blur and the image are as-
sumed to be statistically independent, the values of
blur sij at every point (i; j) and fij are perturbed in-
dependently. Currently the parameters of MRF mod-
els are chosen in an adhoc way. The initial estimates of
the blur are obtained from Subbarao's window based
method[6]. The a posteriori energy function is, in gen-
eral non-convex, and algorithms based on steepest de-
scent are prone to get trapped in local minima. Hence

we chose the simulated annealing (SA) algorithm for
minimizing the posterior energy function. It is impor-
tant to note that the locality property of the posterior
distribution is what enables us to successfully employ
the SA algorithm.

3 RESULTS

In this section, we present the performance of the
proposed method in estimating the space variant blur
(depth) and restoring the image. Results of experi-
mentation are presented on a simulated random dot
pattern, a corridor image and real images of the lab.
The number of discrete levels for SV blur was cho-
sen as 64. For the intensity process, 256 levels were
used which is the same as the CCD dynamic range.
Defocused versions of random dot pattern were �rst
generated such that �i;j2 = 0:5�i;j1. The estimates
of s and fL are perturbed by an i.i.d Gaussian noise
with variances �2s and �2fL , respectively. Figures 2(a-
d) show the four defocused stereo pair of images. The
window based method of Subbarao is used as the ini-
tial estimate for the proposed scheme (size of window
8x8 pixels). Figure 3(c) shows the initial estimates of
the blur �1(x; y). The rms value of the error in the
initial estimate of the blur is 0.55. The values of vari-
ous parameters used in SA algorithm were T0 = 10:0,
�s = 5000:0, �f = 0:005, �st = 0:01, s = 10:0,
f = 15:0, �s = 0:4, �f = 25:0, �s = 0:1, �f = 6:0,
annealing iterations=200, metropolis iterations=100,
where T0 is the initial temperature, �s and �f are
thresholds for deciding edges in the blur and image, re-
spectively. Here �s

2 and �f
2 are variances with which

new Gibbs samples are generated. The restored im-
age and the estimated SV blur are shown in �gure 3(b)
and (d), respectively. The value of rms error in esti-
mating the blur process is reduced to 0.12 using the
proposed technique. From the �gure it is seen that
the blur is well captured even at the edges. It is im-
portant to note that using the proposed method we
have been able to perform simultaneous space variant
image restoration.

The algorithm is now tested on a corridor image
shown in Figure 4(a-d) in which the ceiling has a less
spectral content than the oor. From �gure 5(a), while
restoring the image using defocus alone, the estimates
are poor at places of large blur which do not have
enough spectral content. Results were improved with
the proposed scheme as shown in Figure 5(b), since it
fuses stereo also. Figures 5(c) and (d) show the esti-
mates of the depth using only the defocus method and
the proposed scheme (darker gray level indicates more
depth). Again the estimates are poor where there is



a less spectral content. Estimates at the ceiling of the
corridor were poor since it is a homogeneous region
without any spectral content. The rms error in esti-
mating the blur process is reduced from 0.78 to 0.34.

Finally the performance of the proposed scheme
was tested on a real image data set. Figures 6(a-d)
show the left and the right defocused pairs of im-
ages. The restored focused images using the DFD
alone and the proposed scheme are shown in Figures
7(a) and (b), respectively. The left defocused pair is
used to �nd the initial depth estimates using the win-
dow based method. Figures 7(c) and (d) show the
estimates of depth from the DFD alone and that from
the proposed method, respectively. From �gures it is
clear that the proposed scheme gives better estimate
of the focused image when image has more blur. The
planer nature of the depth variation in the scene is
more visible from the result of the proposed method.

4 CONCLUSIONS

We have proposed a new method of fusing the DFD
and the stereo based methods to improve the accu-
racy of the depth estimation. The method uses the
advantages of both the DFD and the stereo. The rms
error in the estimates of space varying blur is reduced
compared to the DFD method alone. One can simul-
taneously restore the image of the scene also. The re-
covered depth map is dense and no separate interpola-
tion or feature matching is required. The method can
be easily extended to multiple observations by adding
additional terms in equation 14 appropriately. Cur-
rently we are looking at ways to speed up the compu-
tation.
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(a) (b)

(c) (d)
Figure 2: Left defocused image with (a) blur �1,
(b) blur �2. (c,d) Stereo pair of (a,b), respectively.

(a) (b)

(c) (d)
Figure 4: (a) Left defocused image. (b) Left defocused
image with di�erent camera parameters. (c,d) Stereo
pair corresponding to (a,b).

(a) (b)

(c) (d)
Figure 6: (a) Left defocused image . (b) Left defo-
cused image with di�erent camera setting. (c) Right
defocused image, ie. stereo pair of (a). (d) Stereo pair
of (b).
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(c) (d)
Figure 3: (a) Original focused image. (b) Recon-
structed pin-hole image using proposed method. (c)
Initial values of �1(x; y). (d) Final estimate of �1(x; y).

(a) (b)

(c) (d)
Figure 5: Reconstructed image for �gure 4 using (a)
only DFD method, (b) proposed method. Estimated
values of �1 using (c) only DFD scheme, (d) proposed
scheme.

(a) (b)

(c) (d)
Figure 7: Reconstructed image for �gure 6 using (a)
only DFD method, (b) proposed method. Estimated
values of depth using (c) only DFD scheme, (d) pro-
posed scheme.


