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Motivation of selecting MAP-MRF framework

P Bayesian framework suitable for problems in Computer
Vision

» MAP-MRF with Gibbs gives easy implementation and
formulation.

» Problems: High computational cost or Standard methods
used are very slow.

» Boykov et.al proposed methods to solve MAP-MRF using
graph-cut algorithms -MAP-MRF estimation is equivalent to
min-cut problem on a graph

P Applied to many vision problems
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MAP-MRF framework

» MRF framework: Given set of pixels S= {s;...Sn} and set

of labels A = {l1...I_} and neighborhood system N, Find
mapping of Sto A.

» Let F be the configuration for labels
F={fi...fn}, fi € Alis the label for S

» F is MRF with respect to N iff
o Positivity: P(F=f)>0 V feF
e Markovianity:

P(FS: fs/Fr — fr,vr # S) — P(FS: fs/Fr — fr,vr < Ns)

P Easy Implementability
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MAP-MRF framework contd..

Let G be the observed image

» G=@H(F))+N
where H =Camera Transfer Function and (¢ =Recorder
distortion
H is assumed to be LSl and @is invertible nonlinear
function and N is additive noise assumed to be iid

» In the framework of Restoration :Given G What is F?

e P(F=1f/G=g), Maximum likelihood of F = f given
G=g¢

e From Bays rule
PF=f/G=9g)0P(G=g/F =f)P(F = f)
where P(G = g/F = f)=Data model, P(F = f) =Prior
and P(F = f /G = g)=Aposteriori distribution

e Need to maximize aposteriori(MAP) distribution
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Gibbs Distribution

» Geman and Geman proved equivalence between MRF and
Gibbs distribution

1

P(f) = S exp(~U(1)/T)

where U(f) = ¥ V¢(f)= Energy function, V¢=Clique

ceN
potential, Z= Yexp(—U(f)/T) =Partition function and
f

T=Temperature

» Hammersely Clifford Theorem:

F is MRF on Swith respectto N
If and only if
F is Gibbs random field on Swith respect to N

P Relates the conditional distribution(local characteristics) and
JOlnt d|Str|but|On(G|bbS measure) Phd seminar series - Uma Mudenagudi - 31.03.20C



MAP-MRF

e

» f = argmax P(f/g)
f

» From Bays Rule |
f = argmax P(g/f)P(f)
f

I-term: Likelihood function and lI-term:Prior Model

VaN

b £ = argmax exp{y € (p(9/fp))— 3 Vpq(fp fq)}
f p P,geN

> MAP estimate of f given g is equivalent to minimizing
energy function with prior and data model

e

f = argmin {—3In(p(g/fp))+ T Vpg(fp fq)}
f p P,aeN
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MAP-MRF

» The Energy Function has data term and regularization term

> U() ={S(@—eH(f)+ 5 Vij(fi, 1))
| I,]€
» Different ways of defining Clique potential which defines the
regularization term or smoothness term in the energy
function and describes the prior probability of a particular
realization of the elements of the clique.

» Data model should capture the cost of assigning the label

» MAP-MREF is usually solved using SA which is very slow but
guarantees the global minima for any arbitrary energy
function

» Boykov et.al suggested max-flow/min-cut graph algorithms
to solve some class of energy functions with MAP-MRF
framework within a known factor of global minimum
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Mapping of MAP-MRF to graph-cut

P Vision problems as image labeling:Depth(stereo), Object
Index(Segmentation), Original Intensity(Restoration)

P Labeling problem can be cast in terms of energy
minimization
e Labeling of pixels
e Penalty for pixel labeling

¢ Interaction between neighboring pixels:Smoothness
term

P All pixels and labels are considered as vertices, edge and
edge weights are calculated dynamically

P Min-cut on G has unique binary segmentation

P Segmentation associated with min-cut that satisfies user
defined constraints minimizes the energy function
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Energy Minimization

» Global minimum can be found in polynomial time if the
energy function

e IS CONvex,
e or has only two labels, eg. Icing model.

P Discontinuity- preserving energy function is not convex, eg.
Potts model. Thus global minimization is NP- hard, takes
exponential time,

» Thus global minimization Approximation algorithm to find
local minimum

e EM, Belief Propagation, Graph-Cuts

» What is Graph-Cuts?

¢ Minimize an energy function with non binary variables
by repeatedly minimizing an energy function with binary
variables using Max- flow/ min- cut method
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s-t graph-cuts for Binary Energy Minimization

» Posterior energy (MRF)

» Complete characterization of binary energies that can be
minimized with s-t graph cuts.

> U(f) =3 (Dp(fp)) + 5 V(fp, fg)
p pdEN

» U(f) can be minimized by graph-cuts
< V(s,5) +V(t,t) <V(st)+V(t,s)

2 A

Example: binary image restoration
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s-t graph-cuts for multi label problems

P Class of Energy that can be minimized exactly : Energies
with convex interactions

e excludes robust discontinuity-preserving interactions

P Guaranteed quality approximation algorithms for multi-label
energies with discontinuity-preserving interactions like Potts
model of interactions and Metric interactions

Graph G(C) = <V, E-C >
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Different types of Pixel Interactions

Discontinuity preserving Convex interactions:
interactions: Linear Models

Potts

model “linear”

model
dL=Lp-| >
dL:Lp'Lq
+ V(dL) tV(dL)

MdL:Lp- dL-Lp-Lq
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Convex vs. Discontinuity-preserving

“lincar” V

| >

truncated
“linear” V

. >
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Multi way Graph-cut

Equivalent to
minimization of t-links n-links

oot o oL 00 My Z_DP(LP) T Zwm'amth
g pgeN

of labeling L
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Multi way Graph-cut algorithms by Boykov

et.al

» Equivalent to Potts energy minimization

» NP-hard problem (3 or more labels)
e two labels can be solved via s-t cuts (Greig et. al., 1989)

» Two approximation algorithms ( Boykov et.al 1998,2001)
Basic ldea:break multi-way cut computation into a sequence
of binary s-t cuts.

e (- Expansion
Each label competes with the other labels for space in
the image

e O —[3 Swap : Define a move which allows to change
pixels from a to 3 and 3 to a
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O-Expansion approximation algorithm

Guaranteed quality approximation

» within a factor of 2 from Global minimum (Potts Model)

P applies to a wide class of energies with robust interactions
P Potts model (BVZ 1989), Metric interactions (BVZ 2001),

Sub modular interactions (KZ 2002,2004)

Algorithm
1. Start with any arbitrary labeling f
2. Setsuccess=0
3. For each label a € L (random order)
(@) find f = argmin U(f1) among f! within one
o-expansion f
(b) 1f U(f)<U(f),setf=fandsuccess=1
4. If success= 1 go to step 2

return f
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o — [3 Swap approximation algorithm

Handles more general energy functions

» Experimentally proved results

Algorithm
1. Start with any arbitrary labeling f
2. Setsuccess=0
3. For each pair of labels {a,3} € L (random order)
(@) find f = argmin U(f1) among f! within one o — B
swap of f
(b) 1fU(f) <U(f), set f = f and success= 1
4. If success= 1 go to step 2
5. return f
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Moves

initial labe'ing (- F-swap (-eXpansion
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Finding optimal expansion move

3.a step in algo. The structure of the graph is dynamically
determined by the current position P and label Q.
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Figure 6: An example of G, for a 1D image. The set of pixels in the image is P = {p, q,r, 5}
and the current partition is P = {P,,P:, P.} where P, = {p}, P. = {q,7}, and P, =
{s}. Two auxiliary nodes a = @pq), b = af,) are introduced between neighboring pixels
separated in the current partition. Auxiliary nodes are added at tTH€ SRRFRTEEVVOE Metgagedi - 31.03.20C



Expansion move-assignment of weights

edge | weight for
to 00 p € P,
ty | Dolfp) p & Pa
to D,(«) peEP
efpa} | V(fp, @)
elag) | Vi fo) | {pa} €N, o # fo
ta | Ve fo)
epay | Vo) [{p.a} €N, o= fa
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Finding optimal swap move

3.1 step in algo. The structure of the graph is dynamically
determined by the current position P and labels a, [3.

Figure 4: An example of the graph G.s for a 1D image. The set of pixels in the image is
Pog = Pa UPs where P, = {p, 7,5} and Ps = {g,...,w}.
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Optimal swap move-assignment of weights

edge weight for
t> | Dy(a) + Z;gipﬂ Via, f,) | p € Pas
| Dp(B)+ X < V(B,f5) | € Pap

€{p.a} V(a, ) f&gﬁg
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a-Expansion move

initial solution
@ -expansion

@ ©xpansion

. -gxpansion

@ -expansion
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Example for Metric Interactions
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Comparison

single “one-pixel” move
(simulated annealing, ICM,...)

single a-expansion move

s »
* Only one pixel can change its + Large number of pixels can
label at a time change their labels simultaneously
* Finding an optimal move is * Finding an optimal move is
computationally trivial computationally intensive O(2*n)
(s-f cuts)
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Comparisons contd..

simulated annealing

4

P Initialization is important

Finds local minimum of
energy with respect to
small one-pixel moves

» solution could be

arbitrarily far from the
global minima

May not know when to
stop. Practical
complexity may be
worse than exhaustive
search

Can be applied to any-

thing

a-Expansion

» Finds local minimum of
energy with respect to
very strong moves

» In practice, results do
not depend on
Initialization

» solution is within the

factor of 2 from the
global minima

» In practice, one cycle
through all labels gives
sufficiently good results

P Applies to a restricted
CIaSS Of energice&mar series - Uma Mudenagudi - 31.03.20C
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What Energy functions can be minimized with

Graph-cuts?

P a-expansion algorithm can be applied to pairwise
Interactions that are metric on the space of labels

o V(a,a) =0
° V(a, b) >0
e V(a,b) <V(a,c)+V(c,Db)

P Any truncated metric is also a metric(includes robust
Interactions)

P a-expansion algorithm further generalizes to submodular
pair-wise interactions

» V(c,c)+V(ab) <V(ac)+V(cDb)

» o — 3 swap can be applied to pairwise interactions which
are semi-metric on the space of labels

» Let E be a function of binary variables. If E is not regular,
then E is not graph-representable. Phd seminar series - Uma M udenagudi - 31.03.20C



Regular functions

» All functions of one variable are regular

» A function V of two variables is called regular if
V(0,0)+V(1,1) < V(0,1)+V(1,0)

» A function V of more than two variables is called regular if
all projections of V of two variables are regular.

» LetV be a function of n binary variables from F3, ie.
V(X1,...Xn) =

SVIX)+ SVH X))+ 3 VUK, Xj,%). Then, V is
| <] <)<k
graph-representable if and only if V is regular

P Any projection of a graph-representable function is
graph-representable.
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Moves

initial labeling -/ F-awap (-eXpansion

If V is Metric, then each expansion move is regular
E(0,0)+E(1,1) =V(B,y)+V(a,a) < V(B,a)+V(a,y) =
E(0,1)+E(1,0)

If V is Semi-metric, then each swap move is regular
E(0,0)+E(1,1) =V(B,B)+V(a,a) < V(B,a)+V(a,p)=
E(0,1)+E(1,0)
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Some examples of MAP-MRF using graph-cut

» Image segmentation 1: Jiangjian Xiao and Mubarak Shah
CVPR 2005

e Motion cue to segment using graph-cut
e refine the segmentation by alpha matte
e Example 1

» Image segmentation/Object Extraction: Yuri Boykov and
Vladimir Kolmogorov 2004

e Combine both active contours and graph-cuts
e Reduces the metrification error
e Example 2
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Examples contd..

P Texture Synthesis :Image quilting by Efros and Freeman,
2001
Example

P Video Texture :3D generalization of Image quilting by
Kwatra, Schodl, Essa, Bobick 2003

Process

Source |

Synthesized

P Stereo: Boykov et.al 98, 2002
Example

P Multiview reconstruction by Boykov et.al 2004
Example

» Interactive Digital photomontage by microsoft research lab
Example
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MAP-MRF framework for Super Resolution

» The Energy function is given by
b E(f) =

vV VvV VvV VvV Vv

>Dp(fp)+ > Vpa(fp,fa)+ 3 Vipg)qa(9pid; Goia)
p P,aeNp (P,a)1dE€Np

where D = g— DH f is a data model term and next two
terms are regularization terms. g=observed image,
D=decimation function and H= Camera transfer function.

f is the Super Resolution Image - needs to estimate

Regularization terms are truncated linear models
Vpa( fp, fg) =min(K, [fp — fq|)
V(D,Q)w (gmd» gq¢d) = min(K, |gp¢d — gq¢d|)

Once we have the MAP-MRF framework for SR, we can
apply Graph-cuts to estimate f.
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Summary

» MAP-MRF framework
» What energy functions can be minimized with Graph-cuts

P a—Expansion and a — 3 Swap algorithms in Graph-cuts
P Examples using Graph-cuts

» Framework of SR
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Thank you

THANK YOU
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