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Abstract

In this paper we propose a new method for estimating depth using a fusion of defocus and stereo.
It avoids the correspondence problem of stereo. Main advantage of this algorithm is simultaneous
recovery of depth and image restoration. Restoration of image degraded by linear shift variant blur,
by itself, is a challenging task. The depth (blur or disparity) in the scene and the intensity process
in the focused image are individually modeled as Markov random fields (MRF). It avoids the
windowing of data and allows incorporation of multiple observations in the estimation procedure.
The performance of the proposed method is evaluated for different set of images. The accuracy
of depth estimation and the restored image are improved compared to the individual depth from
defocus or the stereo method.

1 INTRODUCTION

In recent years, an important area of research in computer vision has been the recovery of 3D
information about a scene from its 2D images. In the case of human vision, there is also the
concept of binocular fusion, which is when stereoscopically presented image appears a single
entity. Julesz[?] showed that random dot stereograms provide a cue for disparity even when each
image does not provide any high level cue for disparity. Pentland [?] reported that the gradient
of focus inherent in biological and most of the optical system is actually a useful source of depth
information. Binocular stereo matching is in general ambiguous if the matching is evaluated
independently at each point purely by using image properties. All stereo matching algorithms
examine the candidate matches by calculating how much support they receive from their local
neighborhood. Marr and Poggio[?] proposed a cooperative stereo algorithm based on a multi
resolution framework. Barnard and Thompson[?] proposed a feature based (statistical approach)
iterative algorithm for correspondence problem. Large number of papers have appeared in the
literature on stereo analysis and review of them can be found in [?].

Let us now look at the literature on depth recovery from defocused images. Rajagopalan and
Chaudhuri proposed new methods, based on block shift-variant blur model[?] that incorporates
the interaction of blur among neighboring subregions. Space variant approach for depth recovery
using a space-frequency representation framework are given in [?],[?]. They have also proposed
a method [?] of estimating SV blur as well as focused image of the scene from two defocused
images. In this method, both focused image and blur are modeled as separate MRFs and their
MAP estimates are obtained using SA.

Computationly efficient methods are available in the literature for each of them. Kanade and
Okutomi[?] have given new stereo matching algorithm with an adaptive window, the size of the
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window is selected by evaluating the local variation of the intensity and the disparity. In [?],
nonlinear diffusion is used to estimate the window size. But accuracy of estimates in depth from
defocus(DFD) are inferior to that of stereo based methods, while the stereo gives a sparse depth
map and the setting up the correspondence is a difficult task. In this method we fuse these two
methods to estimate the depth information for an improved accuracy. Tsai and others[?] proposed
a scheme of integrating stereo and defocus. But they have used rough depth estimates obtained
from defocus as a guideline for the stereo algorithm. Yoav and others[?] have given analysis of
defocus vs stereo and responses of DFD stereo and motion to the perturbations. As we know in
stereo the disparity is directly related to depth. In defocus blur parameter is o is also directly
related to the depth. Hence disparity, a function of ¢, is known in terms of lens settings and base
line distance. This information is used to fuse the two methods, there by getting the advantages
of both the methods. In the proposed method, given four images of a scene, ie, two defocused
stereo pairs of images, we estimate the focused image of the scene and a dense depth (blur or
disparity) map, which is space variant, using an MAP-MRF approach. Computational problem
for the MAP-MRF is solved using simulated annealing(SA).

In section 2 detailed theory for the proposed method is developed. Section 3 describes the
different parameters involved in the iterative algorithm. The performance of the algorithm is
validated by a set of results in section 3. Main conclusions are given in section 4.

2 FUSION OF DEFOCUS AND STEREO

In this proposed method we are simultaneously estimating blur/disparity and restoring one of the
focused image of the scene in the stereo pair (say the left image). Estimating the other stereo
pair is trivial once we know the disparity. As in the most literature we assume the epipolar line
constraint, so that disparity is only in the y direction. The left image is given by

fR = fL($7y+dT(l‘7y)) +’(.U(.’L',y)

where d, is the disparity associated with the stereo pair and w is white Gaussian noise. The
basic structure of the method is given in figure-1.
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Figure 1: Basic structure of depth from defocused stereo

Let us denote by, L1 = left image with o1(z,y) as a blur parameter, L2 = left image with
o2(x,y) as a blur parameter, R1 = stereo pair of L1 with same blur parameter o1 (z,y), R2 =
stereo pair of L2 with same blur parameter oo(z,y). For the DFD camera setup, we also have

02(‘Tay) :OtUl(iE,y)+,8 (1)

Where « and 8 are known constants that depend on camera settings. The relative blur between
the two defocused images is estimated using the intensity information by assuming an



appropriate model for the optical transfer function. Usually a Gaussian model is assumed.
Though the Gaussian blur is of infinite extent, a finite spatial extent approximation (+30 pixels)
is assumed for Gaussian blurring windows. We note that blurring PSF o;(z,y), i=1,2 is space
varying and it is directly related to the depth in the scene for a fixed camera setting. Similarly
oi(z,y) is directly related to the scene disparity d,(z,y) through a known relationship.
The problem is addressed under the framework of MAP-MRF approach. Computation based on
simulated annealing is carried out for simultaneous recovery of depth estimates and the focused
image. The utility of MRF lies in its ability to capture local dependencies and its equivalence to
the Gibbs random fields(GRF). Space variant blur parameter which is related to depth is
modeled as an MRF. The local property of MRF leads to an algorithm which can be
implemented in a local and parallel manner. Let S denote the random field corresponding to
space variant (SV) blur parameter S;; = 01(%,5) , and G denote the random field corresponding
to observed image while /F' denote the random field corresponding to the focused image
(intensity process). Assume that S can take P possible levels and F' can take M possible levels.
S is statistical independent to both F' and noise field W. The noise field is assumed to be white
Gaussian with zero mean and variance o2, The relation between focused image and defocused
image is governed by the observation model given by

g=Hf+W

where g, f and w represent lexicographical ordering of g(i,7), f(i,7) and w(i,j) respectively. H
is the blur matrix corresponding to SV blurring function h(i,j;mmn). Since it is SV H does not
possess the nice property of having a block toeplitz structure. The above problem of recovering
f given g is ill posed and may not yield unique solution, unless additional constraints like
smoothness are added to restrict the solution space. Since S is modeled as MRF, we can write

P(S =s) = %ewp{— RAO)! )

cCC

Where z is a partition function.
A posteriori probability distribution of S is given by P(S = s/G = g). Using Bayes’ rule, the
problem of estimating the SV blur parameter can then be posed as following MAP problem.

P(G=g/S=s)P(S=5s)

max
P(G =yg)

since S and F are statistically independent of each other, for each image g fixed ,
P(G = g/S = s) is Gibbs distribution with energy function U?(s) can be assumed to be
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Extending above analysis for four observed images g;,, gi,, gr, and g,, with random fields Gp,,
Gr,, Gr, and G, respectively. The observation model are

g, = Hk‘fL + wg, 9ry, = Hk(d’/')fR + W-

As both S and Fj, are modeled as MRFs we can write

P(S=s)= %e:vp{—Us(S)}a



P(F=f) = “eap{-U7 (1))

The terms U*(.) and U/ (.) correspond to the energy functions of the space-variant blurring
process and intensity processes respectively. Given realization of s the blurring function hq(.) is
known and hence the matrix H; is known. Moreover, hs(.) is also determined by
0ij, = oy, + 3. Now, given the four observed images the posteriori conditional joint probability
of S and F' is given by Bayes’ rule,

P(S =s,F = f/GLl = Glys ey GRz = 97“2) = P(Sis)P(Fijf()gl(fi;l:,g_l_%:éf;?g:j)m/Sis,Fif)
Since S and F7, are assumed to be statistically independent, we pose the problem of
simultaneous space-variant blur estimation and image restoration as the following MAP problem.

"of P(GL, =gy,--/S=s8F=f)P(S=sF=f)

For fixed observations with an appropriate model (first order smoothness), one can show that
the posterior energy function is given by
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From the above analysis computing MAP estimates is equivalent to minimizing the posteriori
energy function. Smoothness constraints on the estimates of space-variant blur parameter and
the intensity process are encoded in the potential function. In order to preserve the
discontinuities in the blurring process and the focused image of the scene, line fields are also
incorporated into the energy function. The horizontal and vertical line fields corresponding to
the blurring process and binary intensity process are denoted by [j;, vy, lzf] and ”w respectively.

The posterlorl energy function to be minimized is defined including line fields as
UP (s, fr,13 ijr Vijs U, Z]) , where the smoothness term in equation-3 can be replaced by
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Simulated annealing algorithm is used to obtain the MAP estimates of the SV blur parameter
and focused image simultaneously. The temperature variable is introduced in the objective
function . Annealing cum cooling schedule are carried out at each iteration with linear cooling.
Since the random fields associated with SV blur and image are assumed to be statistically
independent, the values of blur at every point(o;;) and f;; are changed independently. The
parameters of MRF model are chosen in an ad hoc way. The initial estimates of blur are
obtained from Subbarao’s window based method[?]. The posteriori energy function is, in general
non-convex, algorithms based on steepest descent are prown to get trapped in a local minima.
Hence we chose simulated annealing (SA) algorithm for minimizing the posteriori energy
function. It is important to note that the locality property of the posteriori distribution is what
enables us to successfully employ the SA algorithm.

3 RESULTS

In this section, we present the performance of the proposed method in estimating the space
variant blur and restoring the image. Results of experimentation are presented on a random dot
pattern and a corridor image. The number of discrete levels for SV blur was chosen as 32. For
the intensity process, 256 levels were used which is the same as the CCD dynamic range.
Defocused versions of random dot pattern were first generated such that o; jo» = 0.50; ;1.
Figure-2 shows the four defocused stereo pair of images. Window based method of Subbarao is
used to estimate the SV blur parameter from the noisy defocused images (size of window 8x8
pixels). Figure-2 (2g) shows the initial estimates of the blur.The rms value of the error in the
estimate of the blur is 0.55. These estimates are used to initialize the proposed scheme. The
values of various parameters used in SA algorithm were Ty = 10.0, A\; = 5000.0, Ay = 0.005,
Ast = 0.01, v, = 10.0, vf = 15.0, 6 = 0.9, 0s = 0.4, 6y = 25.0, 05 = 0.1, o f = 6.0, annealing
iterations=200, metropolis iterations=100. Where Tj is the initial temperature, 65 and 0 are
threshold for deciding an edge in the blur and image respectively. 0,2 and o f2 are variances with
which new samples are estimated. The estimated SV blur and restored image are shown in
figure-2 (2f) and (2h) respectively. The value of rms error reduced to 0.12. From the figure it is
seen that the blur is well captured even at the edges. It is important to note that using the
proposed method we have been able to perform simultaneous SV image restoration.

The algorithm is now tested on a corridor image in which the ceiling has less spectral content
than the floor. The original fully focused image is shown in figure-3 (3e) and actual depth map
is shown in fig-3(3f). From fig-3(3g), which is restored image using defocus alone, the estimates
are poor at maximum blur which does not have enough spectral content. Results were improved
with the proposed scheme since it fuses stereo also. From fig-3(3i) which shows the estimates of
SV blur using defocus method. Again the estimates are poor where there is a less spectral
content. Estimates at the ceiling of the corridor were poor since it is homogeneous region
without any spectral content. we can see the improvement whenever the image does not contain
enough variations where the defocus method fails (like near the ball). The rms error is reduced
from 0.78 to 0.34. The method can be easily extended to having multiple observations.

4 CONCLUSIONS

We have proposed a new method of fusing the DFD and the stereo based methods to improve
the accuracy of the depth estimation. The method uses the advantages of both DFD and stereo.
The rms error in the estimates of space varying blur is reduced compared to DFD alone. One



can simultaneously restore the image of the scene also. The recovered depth map is dense and
no separate interpolation or feature matching is required. Currently we are looking at ways to
speed up the computation.

Figure 4: Focused Image and Reconstructed image.



