
Altering Backward Pass Gradients
to Improve Convergence

Bishshoy Das∗, Milton Mondal∗, Brejesh Lall, Shiv Dutt Joshi, and Sumantra Dutta Roy

Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 110016, India
{bishshoy.das, milton.mondal, brejesh, sdjoshi,

sumantra}@ee.iitd.ac.in

Abstract

In standard neural network training, the gradients in the
backward pass are determined by the forward pass. As a
result, the two stages are coupled. This is how most neu-
ral networks are trained hitherto. Gradient modification in
the backward pass has seldom been studied in the litera-
ture. In this paper we explore decoupled training, where
we alter the gradients in the backward pass. We propose
a simple yet powerful method called PowerGrad Transform
(PGT), that alters the gradients before the weight update
in the backward pass and significantly enhances the predic-
tive performance of a convolutional neural network. PGT
trains networks to arrive at a better optima at convergence.
It is computationally efficient, and adds no additional cost
to either memory or compute, but results in improved final
accuracies on both the training and test datasets. Power-
Grad Transform is easy to integrate into existing training
routines, requiring just a few lines of code. PGT acceler-
ates training and makes it possible for the network to better
fit the training data. With decoupled training, our method
improves baseline accuracies for ResNet-50 by 0.73%, for
SE-ResNet-50 by 0.66% and by more than 1.0% for the non-
normalized ResNet-18 network on the ImageNet classifica-
tion task.

1. Introduction

Backpropagation is traditionally used for training deep
neural networks [9]. Gradients are computed using basic
calculus principles to adjust the weights during backpropa-

∗Equal contribution.

gation [8]. Alternatives to traditional gradients has rarely
been studied in the literature hitherto. In normal train-
ing procedures, gradients are computed immediately in the
backward pass utilizing the values obtained in the forward
pass. This makes the backward pass coupled with the for-
ward pass. However, decoupling the backward pass from
the forward pass by modifying the gradients to improve
training efficiency and final convergent accuracy has hardly
been explored. In this paper we explore the landscape of de-
coupling the forward pass from the backward pass by alter-
ing the gradients and subsequently updating the network’s
parameters with the modified gradients. There are several
ways to achieve gradient modification in the backward pass.
We discuss a few techniques in Fig. 1.

Type 0: No modification: In this method, we calculate
the gradients using the standard calculus rules and use the
chain rule to calculate the gradients of the rest of the net-
work’s parameters, also known as backpropagation as por-
trayed in Fig. 1(a). The network is then updated with the
gradient descent equation:

W t+1
i = W t

i −λ∇Wi
(L) i = D,D− 1, . . . , 1 (1)

Type I: Independent gradient modification at multiple
points: Here the gradients are first computed using stan-
dard procedure and then individually altered as shown in
Fig. 1(b). Gradient clipping [12] and Adaptive gradient
clipping [1] are examples of such modifications. In both of
these methods, the gradients are first computed using stan-
dard rules and then they are modified using some function.
It can be described as:

W t+1
i = W t

i −λ f(∇Wi(L)) i = D,D− 1, . . . , 1 (2)

where the gradients ∇Wi
(L) are transformed using the

transformation function ‘f ’ before the weight update.

Figure 1: Different ways of altering gradients in the backward pass. Blue blocks denote a different layers. Orange blocks
indicate the backward graph with unmodified gradients. Green blocks represent transformation functions, while red blocks
indicate transformed gradients.

Type II: Gradient modification at a point very early in
the backward graph: In this type of modification, the gradi-
ent is altered at a very early stage in the backward compu-
tation graph and then all subsequent gradients are generated
using the values obtained with the modified gradients. We
illustrate this type of modification in Fig. 1(c). Because
of the chain rule, network parameters whose gradients are
connected to the point of alteration in the computation graph
also gets subsequently altered. It can be described as:

W t+1
D = W t

D − λ f(∇WD
(L)) (3)

W t+1
i = W t

i − λ ∇Wi
(L)∗ i = D − 1, . . . , 1 (4)

where the gradient ∇WD
(L) is first transformed using

the transformation function ‘f ’ and then this transformed
gradient is propagated through the rest of the backward
graph. All other gradient vectors ∇Wi

(L)∗ are computed
as is, but because of the early injection of the transformed
gradient ∇WD

(L), all other gradient vectors that are con-
nected to the transformed gradient through the chain rule
(∇Wi

(L)∗, i=D-1,. . . ,1), gets subsequently altered.
Type I is computationally more expensive than type II as

it requires altering the gradients of each and every parame-
ter individually. Type II modification recomputes gradients
at each and every location through the natural flow of back-
propagation. We propose PowerGrad Transform (PGT), a
type II method that modifies the gradients at the softmax
layer.

The following are the major contributions of this paper:

1. We propose PowerGrad Transform, which decouples
the backward and the forward passes of neural network
training and enables a considerably better fit to the
dataset. PGT is a performance enhancement method
that alters the gradients in the backward pass before the
update step leading to accelerated training and a signif-
icant boost in the network’s predictive performance.

2. We perform theoretical analysis of the properties of
the PowerGrad transformation and explore its effect on

weight parameters and gradients, logits and loss values
(section 3.1). We show that in non-BN networks, PGT
can be used to increase the network’s convergence rate
and improve the final accuracy.

3. We provide complete results from a variety of mod-
els (non-BN and BN ResNets, SE-ResNets) using the
ImageNet dataset. We empirically conclude that PGT
helps a network to improve by locating a more opti-
mum convergence point. Additionally, we conduct ab-
lation studies and compare its effects to those of regu-
larization methods.

2. Related Works

Gradient Clipping [12] is a gradient modification method
that involves clipping/altering the gradients with respect to
a predefined threshold value during backward propagation
through the network and updating the weights using the
clipped gradients [18][14]. By rescaling the gradients, the
weight updates are likewise rescaled, significantly reduc-
ing the risk of an overflow or underflow [11]. GC can be
used for training networks without batch-normalization. At
larger batch sizes, the clipping threshold in GC becomes
highly sensitive and requires extensive finetuning for vari-
ous models, batch sizes, and learning rates. As we demon-
strate later in our studies, GC is not as effective in improv-
ing the performance of non-normalized networks. Adaptive
Gradient Clipping [1] is developed to further enhance back-
ward pass gradients than what is performed by GC. It takes
into account the fact that the ratio of the gradient norm to
the weight norm can provide an indication of the expected
change in a single step of optimization. Label smoothing,
introduced by Szegedy et al. [15], utilizes smoothing of the
ground truth labels as a method to impose regularization on
the logits and the weights of the neural network. AGC per-
forms better than GC in non-normalized networks. How-
ever, we show that PGT outperforms both in networks such
as ResNets.

2

(a) Unordered distribution (b) Rank ordered distribution

Figure 2: Illustration of the impact of PowerGrad Transform
on probability values of an arbitrary distribution (number of
classes, C = 10). α = 1 indicates the unmodified distribu-
tion. As α reduces from 1 to 0, the probability distributions
(left: unordered or right: ordered) becomes flatter and flat-
ter, approaching the uniform distribution of 1/C for every
index.

Knowledge distillation (KD) [6] is a process in which
two networks are trained with hard and soft labels alter-
natively. Variants of knowledge distillation include self-
distillation [19], identical student network distillation [3],
channel distillation [4], regularizing wrong predictions [17]
and representation or embedding based knowledge distilla-
tion [16]. Even though both PGT and KD requires probabil-
ity manipulation, the key difference is that in the latter the
transformation is applied in the forward pass, while PGT is
a backward pass modification only. In distillation settings
the temperature parameter is a part of the network’s compu-
tation graph. In the case of PowerGrad Transform, we di-
rectly tamper the gradients without introducing any change
in the forward pass. PGT differs from self-knowledge dis-
tillation as it neither introduces any additional sub-modules
nor creates different ensembles to improve the performance
of the model. PGT follows the standard neural network
training mechanism with modified gradients.

3. PowerGrad Transform

A neural network with parameters W generates C log-
its denoted by z for every input vector x. z is given as
z = Wx. Then a set of probability values pi are gener-
ated from the logits using a softmax function which is de-
fined as pi = ezi∑C

j=1 ezj
. pi and zi represent the predicted

probability values and the logits for the ith class respec-
tively. Following this step, the loss function is invoked and
the loss between the predicted probability values the ground
truth labels (which is also a probability distribution) is cal-
culated. If the loss function is cross-entropy loss, then the
value of the loss is given as L = −

∑C
i=1 qi log (pi) where

qi is the ground truth label of the ith class for a particular
training example. By standard gradient update rule, we can
calculate the gradient of the loss with respect to the logits
which takes the form ∂L

∂zi
= pi − qi.

The PowerGrad Transform technique is now described.

We introduce a hyperparameter α, which takes a value be-
tween [0, 1] and regulates the degree of gradient modifica-
tion. The PowerGrad Transform method modifies the pre-
dicted probability values in the backward pass as follows:

p′i =
pαi∑C
j=1 p

α
j

i = 1, . . . , C 0 ≤ α ≤ 1 (5)

The above transformation changes the gradient of the
loss with respect to the logits as follows:

∂̂L

∂zi
= p′i − qi (6)

The rest of the backward pass proceeds as usual. We de-
note the original probability distribution as P (with values
pi at the ith index) and the transformed distribution as P ′

(with values p′i at the ith index).

3.1. Properties of the PowerGrad transformation

We use the same setup as described in section 3. To ex-
plore the properties of PGT, we start by investigating the
effect of the transform on the softmax probabilities.

Lemma 1. For any arbitrary probability distribution P
with probability values given by pi for i = 1, . . . , C, the
corresponding transformed probability values p′i given by

[Eq. 5] has a threshold
(∑C

j=1 p
α
j

) 1
α−1

and

p′i ≥ pi, if pi ≤
(C∑

j=1

pαj

) 1
α−1

p′i < pi, if pi >
(C∑

j=1

pαj

) 1
α−1

(7)

We call this threshold, the stationary threshold. The sta-
tionary threshold is that value of pi that does not change
after the transformation. Therefore, when pi is greater than
the stationary threshold, p′i < pi.

Proposition 1. At α = 0, the stationary threshold equals
1/C and all values of the transformed distribution p′i re-
duces reduces to the uniform distribution for i = 1, . . . , C,.

Proof. From Eq. (7), we see that the stationary threshold
at α = 0 is 1/C. Also, following from the definition of the
transformed probabilities (Eq. 5) we conclude that if α = 0,
then all values of p′i are 1/C. Therefore the transformed
distribution at α = 0 is a uniform distribution.

We have established that values of pi which are greater
than the stationary threshold decreases and move down to-
wards the stationary threshold, and values in pi lower than
the stationary threshold moves up towards the stationary
threshold. Therefore, this transformation makes the distri-
bution more uniform (i.e. it smooths out the actual distri-
bution) as α is decreased from 1 and down towards 0. This
final observation in the following theorem.

3

Theorem 1. For any arbitrary probability distribution P
with probability values pi for i = 1, . . . , C, the stationary
threshold of the transformed distribution P ′ with probabil-
ity values p′i =

pα
i∑C

j=1 pα
j

, 0 ≤ α ≤ 1 is a monotonically

non-decreasing function with respect to α.
Proof. To prove monotonicity, we first compute the gra-

dient of the stationary threshold with respect to the variable
in concern, α.

∂

∂α

 c∑
j=1

pαj

 1
α−1

=

 c∑
j=1

pαj

 1
α−1

∑c
j=1 p

α
j log (pj)

(α− 1)
∑c

j=1 p
α
j

−
log

(∑c
j=1 p

α
j

)
(α− 1)2

=

1

α(α− 1)2

 c∑
j=1

pαj

 1
α−1 ×

 (α− 1)
∑C

j=1 p
α
j log

(
pαj

)∑c
j=1 p

α
j

− α log

 c∑
j=1

pαj

(8)

If a1, . . . , an and b1, . . . , bn are non-negative numbers,
then using the log sum inequality,
we get

∑n
j=1 aj log

(
aj

bj

)
≥

(∑n
j=1 aj

)
log

(∑n
j=1 aj∑n
j=1 bj

)
.

Setting aj = pαj and bj = 1, we get the following lower
bound

C∑
j=1

pαj log
(
pαj

)
≥

 C∑
j=1

pαj

 log

 1

C

C∑
j=1

pαj

 (9)

Substituting (9) in (8), we get:

∂

∂α

 c∑
j=1

pαj

 1
α−1 ≥ 1

α(α− 1)2

 c∑
j=1

pαj

 1
α−1 ×

(1− α) log(C)− log

 C∑
j=1

pαj

(10)

pα is concave, and so by Jensen’s inequality we get the
following upper bound for the second term: 1

C

C∑
j=1

pj

 α ≥ 1

C

C∑
j=1

pαj (11)

⇒ log

 C∑
j=1

pαj

 ≤ (1− α) log(C) (12)

Substituting (12) in (10),

∂

∂α

 c∑
j=1

pαj

 1
α−1 ≥ 0 (13)

We conclude that the stationary threshold is a monotonic
non-decreasing function with respect to α. Also the deriva-
tive of PGT function with respect to the true probabilities is
non-negative which in turn means that the transformation is
an order-preserving map. All values greater than the thresh-
old move towards the threshold after transformation and all
values below the threshold also move towards the thresh-
old, and the threshold itself moves monotonically towards
1/C as α is decreased from 1 to 0. This concludes that the
transformation smooths the original distribution.

4. Experiments

We perform experiments on different variants ResNets
using the ImageNet-1K dataset [2]. All models are trained
on four V100 GPUs with a batch size of 1024. We utilize a
common set of hyperparameters for all experiments, which
are as follows: 100 epoch budget, 5 epochs linear warmup
phase beginning with a learning rate of 4×10−4 and ending
with a peak learning rate of 0.4, a momentum of 0.9 and
weight decay of 5×10−4, the SGD Nesterov optimizer and
mixed precision. In our studies, we employ either a step
scheduler (dividing the learning rate by 10 at the 30th, 60th,
and 90th epochs) or a cosine decay scheduler [10]. We find
α = 0.25 and α = 0.05 to be good choices for ResNet-18
and ResNet-50, though larger values such as α = 0.3 also
have good performance as well. The experimental results
are shown in Table 1, and we mention the value of the PGT
hyperparmeter (α) in each experiment.1.

In our experiments with Squeeze-and-Excitation variant
of ResNet-50 i.e. SE-ResNet-50[7], we observe significant
improvements; a 0.97% boost in training accuracy and a
0.734% increase in test accuracy. In our experiments with
ResNet-50, we find an increase of 0.5% and 0.656% per-
formance enhancement over the cosine scheduler baseline
for training and testing respectively. The corresponding im-
provement over the step scheduler baseline for ResNet-50 is
0.57% (training) and 0.524% (testing). ResNet-101 sees a
higher improvement in training fit, 0.81% to be exact, while
the improvement over the test set is 0.362%. Smaller net-
works such as SE-ResNet-18 and ResNet-18 sees accuracy
boosts which are smaller but nevertheless positive. With
consistent improvements in training accuracies across all
cases, we conclude PGT helps networks learn better repre-
sentations and arrive at better optimas during convergence.

1Reproducible code, training recipes, checkpoints and training logs are
provided at: https://github.com/skalien/power-grad-transform

4

(a) Plot of training and test
accuracies (ResNet-18)

(b) Plot of training and test
accuracies (ResNet-50)

(c) Plot of test accuracies
vs. time/iterations (ResNet-50)

Figure 3: Log-log plots of training and test accuracies and comparison with baseline of batch-normalized variants: (a)
ResNet-18 (α = 0.25), (b) ResNet-50 (α = 0.3). (c) Training speed comparison between PGT (60 epochs) and baseline (100
epochs). They both converge to the same test accuracy (76.5%) on ImageNet-1K. PGT’s accelerated training saves 40% of
the epoch budget.

Table 1: Results and comparison table for networks trained
on ImageNet-1K. Best training and test accuracies are high-
lighted in red and blue respectively. Accuracy differences
are highlighted in yellow.

Model Scheduler Method PGT Train Train Test Test
(α) Acc.(%) Diff(%) Acc.(%) Diff(%)

SE-ResNet-50 Cosine
Baseline - 81.5 +0.97 77.218 +0.734

PGT 0.3 82.47 77.952

ResNet-50 Cosine
Baseline - 79.18 +0.5 76.56 +0.656

PGT 0.05 79.68 77.216

ResNet-50 Step
Baseline - 78.99 +0.57 75.97 +0.524

PGT 0.05 79.56 76.494

ResNet-101 Cosine
Baseline - 82.29 +0.81 77.896 +0.362

PGT 0.3 83.1 78.258

SE-ResNet-18 Cosine
Baseline - 71.42 +0.18 71.09 +0.346

PGT 0.25 71.6 71.436

ResNet-18 Step
Baseline - 69.95 +0.35 69.704 +0.14

PGT 0.25 70.3 69.844

ResNet-18 Cosine
Baseline - 70.38 +0.15 70.208 +0.09

PGT 0.25 70.53 70.298

Per epoch training and test accuracy plots of ResNet-18 and
ResNet-50 (both with and without PGT) are shown in Fig.
3(a,b). Practioners can also choose to accelerate training
and save as much as 40% of the epoch budget [Fig. 3(c)].

4.1. Empirical studies on networks without Batch
Normalization

We examine issues that occur in non-normalized net-
works (networks without BN layers). We use ResNet-18
[5] as the foundation model trained on ImageNet-1K [13].
Deeper networks such as ResNet-34 and ResNet-50 are im-
possible to train without Batch Normalization courtesy of
the increased depth and so we solely focus on ResNet-18.
We designate different layers with their corresponding layer

Figure 4: Zeroing out of feature maps in the second layer
non-normalized ResNet-18.

indices. Throughout the training process, we monitor vari-
ations in the the per-filter L2-norm of each layer’s weights.
In Fig. 5(a), some filters of layer 11 achieve a norm of zero
during training. We refer to this event as ‘Zeroing Out’ (Fig.
4), and it occurs when one of the channels (or filters) of a
weight tensor gets fully filled with zeros and such filters do
not contribute at all to determine the input-output relation-
ship of a dataset, as the feature tensor it produces is also
filled with zeros for the corresponding filter. When a filter
once zeroes out, it does not recover with further training, as
all gradients that it receives in future iterations are all zeros.

Fig. 5(b) is the plot of the final conv layer’s filters (layer
19) and the features output of final global average pooling
(GAP) layer respectively. We observe a number of filters
and features in the final layer completely zeroing out. The
feature vector after the GAP layer [Fig. 5(c)] directly inter-

5

(a) Layer 11
baseline

(b) Layer 19
baseline

(c) GAP
features
baseline

(d) Layer 11
PGT

(e) Layer 19
PGT

(f) GAP
features

PGT

Figure 5: Norm vs iter. plots demonstrating layer characteristics (the zero out phenomena) and the efficacy of PGT over
baseline. Each colour represents a different filter or feature vector of a particular layer of a non-BN variant of ResNet-18.

faces with the fully connected layer. Therefore any zeroed
out features leads to permanent information loss, as it does
not contribute to the learning of decision boundaries in the
fully connected layer. Also, zeroed out weights tensors lead
to zeroed out gradients hence stopping training for all sub-
sequent iterations leading to a collapse in training for the
affected layers. With large batch sizes, it is possible that an
entire layer zeroes out as shown in the figure below. Gra-
dient modification methods such as PGT can alleviate the
zeroing out phenomena as we observe that the number of
zeroed out filters has considerably reduced [Fig. 5(d, e)].
The final feature tensor [Fig. 5(f)] with PGT enabled, does
not contain any zeroed out regions indicating that informa-
tion loss is mitigated as the features pass on from the feature
extracting layers to the fully connected layer.

In Table 2 we find that the baseline performance for high
batch sizes (1024) is drastically inferior to baselines for
other batch sizes. PGT helps regain some of the lost perfor-
mance by 0.682% (65.498% vs. 64.816%). At a batch size
of 512, invoking PGT improves the training accuracy base-
line by 1.48% and the test accuracy baseline by 0.684%,
while at a batch size of 256, the improvement in training
and test accuracies are 1.11% and 1.018% respectively. In
comparison, the test accuracy improvements obtained by
GC and AGC at batch size of 256 is much less at 0.27% and
0.5%, respectively. On the training accuracy front, since
we get a significant boost (1.48% at batch size of 512 and
1.11% at batch size of 256), it leads us to infer that when
PowerGrad Transform is used, the network fits the train-

Table 2: Results for non-normalized ResNet-18 on
ImageNet-1K. Best training and test accuracies are high-
lighted in red and blue respectively. Top differences in train-
ing and test accuracies are marked in yellow.

Batch Size Method PGT Train Train Test Test
(α) Acc.(%) Diff(%) Acc.(%) Diff(%)

1024 Baseline - 66.27 - 64.816 -
1024 PGT 0.92 66.62 +0.35 65.498 +0.682

512 Baseline - 68.02 - 66.552 -
512 PGT 0.25 69.5 +1.48 67.236 +0.684

256 Baseline - 68.86 - 66.796 -
256 GC - 69.04 +0.18 67.064 +0.268
256 AGC - 69.06 +0.2 67.298 +0.502
256 PGT 0.25 69.97 +1.11 67.814 +1.018

256 Baseline - 68.86 - 66.796 -
256 GC+PGT 0.25 68.67 -0.19 67.088 +0.292
256 AGC+PGT 0.25 70.92 +2.06 68.856 +2.06

ing dataset more tightly and the convergence optima is sig-
nificantly superior. Combining GC with PGT is not very
significant. When AGC and PGT are combined, we see a
tremendous increase in test accuracy of over 2.06% over
the baseline.

4.2. Effect on Loss, Logits and other metrics

As seen in Fig. 6(a), the logit norm increases as α falls
from 1 to 0. We also see that the final value of the loss rises
as α drops, and that the logit norm and the final value of

6

(a)
Logit vs. α

(b)
Cross-entropy loss vs. α

(c)
Logit-Loss correlation

Figure 6: Plots of various statistical measures: (a) Variations in the logit norm vs. α. The logit norm is calculated per
image over the test set of ImageNet-1K (at the linear layer of the ResNet-18 architecture) and then averaged. (b) Variations
in the final loss values obtained for different α settings. (c) Correlation between loss and logits. Regression line equation:
(0.01074x+ 0.25816).

the loss are linearly correlated Fig. 6(c). What is surpris-
ing is that: it is possible to achieve higher accuracies even
though the loss values are larger during convergence. In
our studies with ResNet-50, for instance, if PGT is not in-
voked, the corresponding test accuracy is 76.56% [Table 1]
with a cross-entropy loss value of 0.852. However, if PGT
is activated with α = 0.05, the corresponding test accuracy
is 77.216% [Table 1] with a loss value of 2.360. This is
markedly different from the coupled gradient descent based
training procedures. PGT enables the network to arrive at
such optima where the loss values are high, but both training
and test perfomance is better. From these plots of logits and
losses we find that with the inclusion of PGT in the training
process, the model can have access to such regions of the
loss landscape that is otherwise inaccessible to traditional
gradient based training procedures.

5. Ablation Study

We conduct ablation studies to investigate the effects of
PowerGrad Transform for different values of the hyperpa-
rameter (α), where we use the ResNet-50 architecture and
combine our proposed method with different schedulers,
regularization techniques and different values of α. We re-
port our findings in Table 3. First we examine the effect of
PGT on the step scheduler baseline in order to later com-
pare it to the cosine scheduler baseline. Row-1) We begin
with the step scheduler baseline (75.97%). Row-2) PGT
improves upon the step scheduler baseline (test set) by a
substantial margin with 0.524% (76.494% as opposed to
75.97%). Row-3) Introducing the cosine scheduler yields
a 0.59% improvement (76.56% vs. 75.97%) over the step
scheduler. Row-4) After introducing label smoothing, the
test accuracy relative to the cosine scheduler baseline in-
creases by only 0.138% (from 76.56% to 76.698%). Row-

Table 3: Ablation study for ResNet-50 on ImageNet-1K.

#Row Scheduler Label PGT Train Test Gap(%)Smoothing (α) Acc.(%) Acc.(%)

1. Step ✗ ✗ 78.99 75.97 3.02
2. Step ✗ 0.3 79.56 76.494 3.066

3. Cosine ✗ ✗ 79.18 76.56 2.62
4. Cosine 0.1 ✗ 78.81 76.698 2.112

5. Cosine ✗ 0.3 79.43 76.886 2.544
6. Cosine 0.1 0.3 78.47 76.968 1.502

7. Cosine ✗ 0.05 79.68 77.216 2.464
8. Cosine 0.1 0.05 77.69 76.39 1.3

5) However, introducing PGT with α = 0.3 alone (without
label smoothing) improves the cosine scheduler baseline by
0.326% (76.886% vs. 76.56%). Row-6) Combining PGT
(α = 0.3) with label smoothing improves the performance
on the test set further by 0.408% (from 76.56% to 76.968%)
and reduces the generalization gap (from 2.54% to 1.5%).
However, the impact of combining PGT with label smooth-
ing can vary depending on the value of the hyperparam-
eter (α). Row-7) With a PGT hyperparameter value of
α = 0.05, we notice the greatest performance improvement,
1.246% over the step scheduler test baseline and 0.656%
over the cosine scheduler test baseline. Row-8) Adding la-
bel smoothing to PGT (α = 0.05) hurts performance even
though it reduces the generalization gap.

6. Conclusion

PowerGrad Transform enables a significantly better fit to
the dataset as measured by training and test accuracy met-
rics. With PGT, gradient behavior is enhanced and weights
attain better values in normalized networks and degenerate
states are avoided in non-BN networks. We provide theoret-

7

ical analyses of the transformation. With different network
topologies and datasets, we are able to show the potential of
PGT and explore its impacts from an empirical standpoint.
PGT helps the network to improve its learning capabilities
by locating a more optimum convergence point and simul-
taneously speeds up training.

References

[1] Andrew Brock, Soham De, Samuel L Smith, and
Karen Simonyan. High-performance large-scale im-
age recognition without normalization. arXiv preprint
arXiv:2102.06171, 2021.

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Li Fei-Fei. Imagenet: A large-scale hierarchi-
cal image database. In 2009 IEEE conference on com-
puter vision and pattern recognition, pages 248–255.
Ieee, 2009.

[3] Tommaso Furlanello, Zachary Lipton, Michael
Tschannen, Laurent Itti, and Anima Anandkumar.
Born again neural networks. In International Confer-
ence on Machine Learning, pages 1607–1616. PMLR,
2018.

[4] Shiming Ge, Zhao Luo, Chunhui Zhang, Yingying
Hua, and Dacheng Tao. Distilling channels for ef-
ficient deep tracking. IEEE Transactions on Image
Processing, 29:2610–2621, 2019.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[6] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[7] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-
excitation networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 7132–7141, 2018.

[8] Yann LeCun, D Touresky, G Hinton, and T Sejnowski.
A theoretical framework for back-propagation. In Pro-
ceedings of the 1988 connectionist models summer
school, volume 1, pages 21–28, 1988.

[9] Timothy P Lillicrap, Adam Santoro, Luke Marris,
Colin J Akerman, and Geoffrey Hinton. Backpropa-
gation and the brain. Nature Reviews Neuroscience,
21(6):335–346, 2020.

[10] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic
gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

[11] Razvan Pascanu, Tomas Mikolov, and Yoshua Ben-
gio. Understanding the exploding gradient problem.
CoRR, abs/1211.5063, 2(417):1, 2012.

[12] Razvan Pascanu, Tomas Mikolov, and Yoshua Ben-
gio. On the difficulty of training recurrent neural net-
works. In International conference on machine learn-
ing, pages 1310–1318. PMLR, 2013.

[13] Olga Russakovsky, Jia Deng, Hao Su, Jonathan
Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein,
et al. Imagenet large scale visual recognition chal-
lenge. International journal of computer vision,
115(3):211–252, 2015.

[14] Samuel Smith, Erich Elsen, and Soham De. On the
generalization benefit of noise in stochastic gradient
descent. In International Conference on Machine
Learning, pages 9058–9067. PMLR, 2020.

[15] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. Rethinking the in-
ception architecture for computer vision. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016.

[16] Jiangchao Yao, Jiajie Wang, Ivor W Tsang, Ya Zhang,
Jun Sun, Chengqi Zhang, and Rui Zhang. Deep learn-
ing from noisy image labels with quality embedding.
IEEE Transactions on Image Processing, 28(4):1909–
1922, 2018.

[17] Sukmin Yun, Jongjin Park, Kimin Lee, and Jin-
woo Shin. Regularizing class-wise predictions via
self-knowledge distillation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 13876–13885, 2020.

[18] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jad-
babaie. Why gradient clipping accelerates training: A
theoretical justification for adaptivity. arXiv preprint
arXiv:1905.11881, 2019.

[19] Ying Zhang, Tao Xiang, Timothy M Hospedales, and
Huchuan Lu. Deep mutual learning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4320–4328, 2018.

8

	. Introduction
	. Related Works
	. PowerGrad Transform
	. Properties of the PowerGrad transformation

	. Experiments
	. Empirical studies on networks without Batch Normalization
	. Effect on Loss, Logits and other metrics

	. Ablation Study
	. Conclusion

