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Abstract

Purpose Optic disc segmentation helps in non-invasive diagnosis of incurable
and blindness-causing diseases of the eye such as glaucoma, diabetic retinopathy
and optic disc drusen. Optic disc segmentation also plays a vital role in locating
anatomical structures like retinal blood vessels, macula, and optic cup. Contem-
porary systems are based on image processing/computer vision and/or machine
learning. These generally fail to handle the challenging pathologies under poor
lightning conditions and the presence of clinical exudates and other distractions.
Authors typically evaluate the performance of their algorithms on a few datasets,
thus limiting their generalization and extrapolation ability on new datasets.

Methods We propose a U-Net-based adversarial strategy to segment the optic
disc, based on the localization of the probable region using a U-Net-based regressor.
We perform extensive experimentation with challenging datasets, and inter-dataset
training, to validate the generalization capability of the proposed method.

Results The proposed method has been validated on seven publicly available reti-
nal datasets and a challenging private community camp dataset obtained from the
All India Institute of Medical Sciences (AIIMS), New Delhi. The generated results
show an average Dice coefficient, disc overlap, and sensitivity value of 97.31%,
93.78% and 97.72% respectively on eight datasets. Moreover, the work reaches
the benchmark performance for the Drishti-GS and Refugee datasets with a Dice
coefficient of 97.31% and 95.12% respectively.
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Conclusion The proposed method works efficiently on poor resolution images
with various retinal artifacts such as blurring, poor illumination, and other patholo-
gies such as peripapillary atrophy and disc hemorrhages.

Keywords Retinal Images · Image Processing · Deep Convolutional Neural
Network · Generative Adversarial Network · Image Segmentation

1 Introduction

Optic disc segmentation is one of the primary steps to screen for diseases such
as glaucoma, diabetic retinopathy, and age-related macular degeneration. Early
screening of such diseases is required to avoid any permanent loss of vision. Cur-
rent diagnostic procedures employ fundus (or retinal) imaging or optical coher-
ence tomography (OCT) to capture images and a specialized doctor to analyze
them (Trucco et al. 2019). Simple retinal imaging (as opposed to OCT) can pro-
vide cost-effective solutions for disease detection, particularly in developing nations
without easy access to good healthcare (Acharjya et al. 2019). Retinal images are
a two-dimensional picture of the eye, with three anatomical landmarks i.e., optic
disc with the optic cup in it, macula (with the fovea inside it), and retinal blood
vessel structure and the neuro-retinal rim (Fig. 1).

Robust optic disc detection holds the key to non-invasive low-cost detection
of potential blindness-causing diseases such as glaucoma. In a healthy individual,
the neuro-retinal rim widely follows the ISNT rule: the inferior being the thickest
section, followed by the superior, nasal, and finally, the temporal region. The
violation of the ISNT rule strictly implies the presence of glaucoma disease in the
retina. Moreover, a large CDR (ratio of the vertical cup to disc diameter) value
indicates the high risk of glaucoma (Dada and Coote 2010). However, optic disc
segmentation is a difficult problem. Fig. 2(a) and (b) depict a healthy optic nerve
head with a good intensity gradient at the optic disc margin. Fig. 2(c) and (d)
show common situation with ill-defined boundaries due to poor illumination and
peripapillary atrophy (uneven texture and color outside the optic disc margin).

1.1 Image Processing/Computer Vision-based Approaches

One can group the available literature into two classes of methods: those based
on image processing or computer vision, and those primarily based on machine
learning. In a healthy retinal image, the optic disc is circular in shape and has a
high edge gradient. Using this knowledge, (Aquino et al. 2010) suggest an edge
detector and thresholding-based method to find the probable optic disc boundary
candidates. A polar transform-based local thresholding (Zahoor and Fraz 2017)
with a series of image normalization pre-processing steps is another approach. A
set of works (Gao et al. 2019a), (Zou et al. 2019) propose an adaptive level set
contour extraction approach using saliency and thresholding techniques. (Gao
et al. 2019b) also incorporate prior shape information into a modified local image
fitting (LIF) model for abnormal retinal images. (Fraga et al. 2012) use a fuzzy
Hough transform to locate the bright circular regions and to find the disc edge
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(a) (b)

Fig. 1 Sample retinal images with marked landmarks. (a) The optic disc (with the
optic cup inside), macula and blood vessels: three major anatomical structures.
(b) An enlarged annotated version with the optic disc and optic cup

(a) (b)

(c) (d)

Fig. 2 (a), (b): Healthy optic discs with a sharp gradient at the disc-background
margin. (c), (d): Challenging cases with ill-defined disc boundaries due to non-
uniform lighting and the peripapillary atrophy condition

points. (Abdullah et al. 2016) also use the Hough transform and a grow-cut-based
algorithm in addition to some morphological operations to enhance the region of
interest. Another approach (Joshi et al. 2011) use local image information present
around each point of interest in multi-dimensional feature space (from color and
texture information) and an active contour model. (Cheng et al. 2013) use super-
pixel classification to segment the disc region. The method uses histograms and
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center-surround statistics to classify each pixel. Using the basic assumption of cir-
cularity and high edge gradient (Lu 2011) perform an image variation study along
multiple evenly-oriented radial lines, with the knowledge of optic disc center. (Gao
et al. 2019a) propose the use of multi-view information from shape and appearance
using a modified active contour model.

1.2 Machine Learning-based Methods

Deep neural networks are popular for various localization, segmentation, and clas-
sification problems. (Fu et al. 2018) use a transformed polar image for training a
deep M-Net architecture. The network feeds a series of multi-scale pyramid images
at each level in order to concatenate it with the down-sampled feature matrix of
a U-Net model. A deep learning-based approach (Qin et al. 2019) uses the In-
ception structure in the GoogleNet models. (Jiang et al. 2020) use Region-Based
Convolutional Neural Network (R-CNN, hereafter) architecture to locate a bound-
ing box around the optic disc and fit an ellipse to segment the true disc margin.
(Singh et al. 2018), (Jiang et al. 2019), (Liu et al. 2019) use generative adversarial
networks to segment the disc region.

In more recent work, (Pachade et al. 2021) use an adversarial strategy with a
rather complex architecture. This has a nested EfficientNet encoder. The decoder
includes pre-activated residual blocks and attention gates before and after concate-
nation operations. Our work achieves a much better performance (for instance, a
0.99% higher Dice coefficient on the representative Drishti-GS dataset), in spite
of a much simpler architecture. The approach in (Veena et al. 2022) leverages a
combination of deep learning (a U-Net model) and image processing techniques
(equalization, morphology, shape detection, and watershed segmentation) to lo-
cate the disc. However, this approach is limited in its generalization due to the
use of the Drishti-GS dataset alone. Performance on other datasets is not guar-
anteed, with differing characteristics due to inter-dataset variability. The authors
in (Pande Darma Suardika et al. 2022) use a R-CNN-based model for segmentation.
However, the evaluation is restricted to a solitary dataset (IDRiD), a limitation
similar to the previous reference, above.

A cascaded two-stage framework in (Wang et al. 2022) has a U-Net in the
first-stage to locate the optic disc. The second stage integrates multi-task frame-
work (estimating the mask, contours and distance maps) and adversarial learning.
A similar approach in (Luo et al. 2021) uses boundary and map prediction for
adversarial learning. The work in (Wang et al. 2022) involves large resource re-
quirements due to training a U-Net model twice, once for optic disc detection and
then for multiple tasks performed separately. Furthermore, the evaluation of the
work is limited to two public datasets alone. This may result in reduced gener-
alization when tested on other diverse datasets. The authors in (Fu et al. 2021)
propose a U-Net model-based method which utilizes a model-driven probability
bubble approach. This takes into account the positional relationship between ves-
sels and the optic disc. The single-dataset testing and the lack of clarity in the
training for localization, are limitations of the work.

Existing methods fail to handle challenging atrophy discs under poor lightning
conditions and lack generalization among large public optic disc datasets (Lowell
et al. 2004) (Lowell et al., 2004), (Aquino et al. 2010). In this paper, we propose
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an adversarial training to extract the optic disc pixels from the given RGB retinal
image. The deep adversarial network is based on a U-Net architecture as a gener-
ator to produce optic disc maps with the condition of input RGB retinal image.
In addition to this, a cascade of convolutional layers network is used as a discrim-
inator to classify an input image as real or machine generated. A combination of
segmentation and adversarial loss is employed to train the network with Adam
optimizer. The major contributions of the proposed work are as follows:

1. We propose a novel optic disc localization methodology using a fused grayscale
image generated from distance and intensity maps when trained on a U-Net
model. The optic disc center coordinates are located using a Laplacian of Gaus-
sian filter on a fused map. We use a Tukey’s biweight robust loss function to
handle the pathologies similar in appearance to the optic disc. This is more
robust to outliers than a mean square error.

2. We propose a fully automatic end-to-end generative adversarial network (GAN)
is proposed to segment the optic disc, with adversarial and segmentation losses.
The generator generates the disc map, and the discriminator classifies it from
the ground truth map. We validate the model on a wide range of datasets to
address its generalization and extrapolation capability.

3. The paper performs an exhaustive study on eight different datasets (seven
public and one challenging AIIMS community camp (private) dataset. The
AIIMS dataset is a community camp dataset collected by the All India Insti-
tute of Medical Sciences, New Delhi). This has various retinal artifacts such as
peri-papillary atrophy and disc hemorrhage. These also include various imag-
ing/camera artifacts such as non-uniform illumination, blurring and lens dust.

4. The proposed algorithm handles small- to large-sized disc images, irrespective
of their shape, size, and color, belonging to different datasets (across a variety of
cameras used to capture them.) The AIIMS community camp (private) dataset
has images captured under a wide variety of difficult imaging and lighting
conditions with cheap fundus cameras, and has a wide variety of pathologies.

The rest of the paper is organized as follows. Sec. 2 gives details of the pro-
posed method, in terms of the U-Net-based regressor for localization of the optic
disc (Sec. 2.1), the U-Net-based Generative adversarial network for optic disc seg-
mentation (Sec. 2.2), and the Post-processing (Sec. 2.3). Sec. 3 presents results of
extensive experiments with a large number of datasets. Sec. 4 concludes the paper.

2 Methods

Fig. 3 shows the three main parts of the proposed system. The optic disc segmen-
tation procedure has three main stages.

1. Pre-process the retinal images which include optic disc detection (or local-
ization) in order to extract the region of interest (a square-shaped cropped
area containing the optic disc), and augmentation of training samples to avoid
model over-fitting.

2. The second major stage of the proposed work is adversarial training that con-
sists of the discriminator and generator networks for disc segmentation, with
segmentation and adversarial losses.
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Fig. 3 The three stages in the proposed method: pre-processing and augmentation
(Sec. 2.1), Adversarial system (Sec. 2.2), and post-processing (Sec. 2.3). Solid lines
represent the training path and dashed ones, the testing path.

3. Post-processing to smooth and highlight the probable optic disc pixels present
at the margin.

Fig. 3 shows the complete block diagram. The following sections gives details in
the following sections.

2.1 Pre-processing: Optic Disc Location with a U-Net-based Regressor

To reduce the computational complexity of the optic disc segmentation task, it is
important to locate the disc region in the full retinal image. We propose a fused
Distance-Intensity (DI) map to model the distance and intensity variations with
respect to the center of the optic disc, to obliterate bright exudate pathologies. The
two-dimension fused map is generated with pixel-wise multiplication of normalized
distance D(x, y)NGT and intensity I(x, y)N map images.

DIGT (x, y) = D(x, y)NGT × I(x, y)N (1)

D(x, y)NGT =

(
1 − D(x, y)

max(x,y)D(x, y)

)γ
(2)

Here, the distance map D(x, y)GT can be calculated by finding the Euclidean
distance of each pixel (x, y) from optic disc center (xod, yod).

I(x, y)N =

(
I(x, y)

max(x,y) I(x, y)

)β
(3)

γ and β are distance and intensity map decay parameters, respectively. An Eu-
clidean Distance Error (EDE)-based empirical method estimates γ = 7 and β = 7
for the challenging AIIMS dataset (with a large number of pathologies, poor il-
lumination and motion blur), as it gives the minimum EDE with an acceptable
spread.

Further the fused distance-intensity map is considered as a ground-truth for
training a U-Net model using a set of retinal images to predict the grayscale DI
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Fig. 4 A block diagram of the proposed GAN architecture (Sec. 2.2).

map image. The loss function used for back-propagation is Tukey’s biweight loss,
which is more robust to outliers than mean square error.

The predicted image is used to obtain the optic disc center coordinates using a
Laplacian-of-Gaussian (LOG) operator over the entire image. The filter acts as a
blob detector (Singh et al. 2018) to detect the brightest optic disc center coordinate
from the grayscale predicted image. This work has been verified on a wide range
of community-based retinal images consisting of pathologies or imaging artifacts
such as non-uniform illumination, noise, motion artifacts, and blurring.

Further, the optic disc localized coordinates are used to crop a square-shaped
region of interest and their corresponding optic disc binary masks from the RGB
image and ground-truth mask respectively, as shown in Fig. 3. To feed the deep
model with images of fixed dimensional input sizes, the size of cropped images
from all datasets is kept at 512 × 512 pixels, as it empirically gives the best ac-
curacy without affecting the computation complexity. These cropped images are
augmented with re-scaling and standard color normalization operations. In or-
der to avoid over-fitting the augmentation involves vertical flipping, zooming, and
normalizing to zero mean operations.

2.2 A U-Net-based Generative Adversarial Network for Optic Disc

Segmentation

Fig. 4 outlines the GAN-based proposed method. Considering the output of pre-
processing stage (i.e., 512× 512 dimension RGB image) as the training samples, a
generative adversarial network (GAN) has been employed to generate the grayscale
disc maps. Fig. 5 gives a layer-wise description of the U-Net-based generator, and
the discriminator. In this work, the optic disc extraction is posed as a conditional
image generation problem where the binary disc map is conditioned by the region
of interest-specific RGB sub-images. The transformation (or mapping) has to be
learned in such a way that the optic disc and background (containing peri-papillary
atrophy or healthy retina) regions can be distinguished in the feature space without
any mis-assignment.

The presented model consists of two main networks: an optic disc binary map
generation network (GenR) and a generated binary map Discriminator network
(DisB). The detailed structure of these networks is shown in Fig. 5, where gen-
erator network is motivated by U-Net and discriminator follows a series of convo-
lution layer architecture. Further, the reconstruction and adversarial losses have
been calculated for back-propagation using above networks.
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(a) (b)

Fig. 5 The basic GAN structure (Sec. 2.2), with the (a) U-Net-based generator,
and (b) the discriminator.

2.2.1 GAN Loss function

The proposed model incorporates two losses for disc segmentation i.e., adversarial
(Ladv) and segmentation (Lseg) loss. Assume i be the input RGB cropped retinal
image and d be the binary ground-truth disc map corresponding to it. Moreover,
Pr(i) is the predicted gray-scale disc map for image i generated by the segmenta-
tion (or generator, D) network and S(i, d) represent the discriminator network (S)
output. Both generator (D) and discriminator (S) try to minimize the adversarial
loss. The goal of the generator (D) is to generate disc maps(Pr(i)) that looks as
real as the ground-truth disc maps (d). On the other hand, the discriminator S
network trains to correctly classify the maps as fake (generated) or real(ground-
truth) (Goodfellow et al. 2014). To meet these goals, the generator and discrimi-
nator networks need to learn the most discriminating features that can certainly
classify between a fake and real disc map. The objective function (or Loss, Ladv)
can be defined as follows:

Ladv(Pr,GT ) = Ei,d∼Pdata(i,d)[log(S(i, d))]+

Ex∼Pdata(i)[log(1 − S(i,D(i)))]
(4)

The aim is to maximize the discriminator output S(i, d) when true disc map d

is fed as an input, while minimizing the output S(i,D(i)) when generated map
Pr(i) acts as an input. In other terms, the segmentation network is penalized
in case the generated disc map is classified as fake by the discriminator, thus the
generator fights against the adversarial network. On the contrary, the discriminator
is penalized when it classifies the generated disc map as real.

In addition to this, segmentation (Lseg) loss ensures that the generator network
is penalized in case, the generated disc map(Pr(i)) deviates from the corresponding
ground-truth disc image(d). For disc segmentation, the goal is to focus on the
region-of-interest i.e., optic disc region rather than the background. We proposed
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a Dice coefficient-based function for segmentation loss calculations.

Lseg(Pr) = LDice(d, Pr)

= Ei,d ∼ Pdata(i)

[
1

eDice(d,Pr(i))

]
(5)

where the Dice coefficient Dice can be calculated as:

Dice(d, Pr(i)) = 2

∑n
x dxPr(i)x∑n

x=1 d
2
x +

∑n
x=1 Pr(i)

2
x

(6)

Here n total number of pixels in the image, and x denotes each pixel location, dx
is the ground-truth disc map value at each x and Pr(i) is the predicted disc map
respectively. The final objective function is

Pr∗ = arg min
Pr

max
S

αLadv(Pr, S) + Lseg(Pr) (7)

α represents the adversarial to segmentation network ratio. It specifies the trade-
off between reconstruction loss (mismatch between ground-truth and predicted)
and for the output to look as real as the input.

2.3 Post-processing (Optic Disc Margin Smoothing)

In the post-processing stage of disc segmentation, the output of the segmenta-
tion network is passed through a series of morphological operations i.e., opening,
filtering small objects, and smoothing. The opening operation with a disc shape
structuring element is employed to remove the unwanted objects lying around
the optic disc boundary. Moreover, to enhance the margin pixels between disc-
background and suppress noise, a filtering step is applied. An extra ellipse fitting
step is applied with the centroid of segmented region as center of ellipse. The
maximum and minimum Euclidean distance between object boundary and cen-
troid acts as the major and minor axis radius respectively. It gives a defined shape
for optic disc boundary and results in an increase in overall performance. An Otsu
thresholding (Otsu 1979) gives the final binary disc.

3 Results

3.1 Datasets

For our experiments, we use seven publicly available datasets namely Drishti-
GS (Sivaswamy et al. 2014), DRIONS, DRIVE, Refugee, RIM (Maninis and Pont-
Tuset 2010), RIGA-Magrabi, and RIGA-BinRushed (Almazroa et al. 2018). We
also use the challenging AIIMS community camp (private) dataset. This dataset
has retinal images collected and ground-truthed by the Ophthalmology Depart-
ment, All India Institute of Medical Sciences (AIIMS), New Delhi. Table 1 gives
a detailed description of these datasets. Experienced ophthalmologists from AI-
IMS have labeled the optic disc ground truth segmentation. For experimentation
purposes dataset has been divided into a 65% training, 5% validation and 30%
testing ratio, except Drishti-GS and Refugee which are split into 50:50 ratio, as
other algorithms have validated the results on this de facto standard split.



10 Ambika Sharma et al.

Table 1 Details of Retinal Image Datasets used in the Work

S.No
Dataset Train,

Test
images

Image Dimen-
sion

Camera specification

1 DRIONS 77, 33 600 × 400 Color analogical fundus camera, digi-
tized with HP-PhotoSmart-S20 high-
resolution scanner

2 DRIVE 28, 12 768 × 584 Canon CR5 non-mydriatic 3CCD
camera with a 45◦ field of view

3 Drishti-GS 50, 51 2896 × 1944 Dilated eye, 30◦ field of view

4 Refugee 400, 400 1634 × 1634 Canon CR-2 device

2124 × 2056 Zeiss Visucam 500 fundus camera

5 RIM-ONE
v3

127, 37 2144 × 1424 Zeiss FF450+camera at 50◦ field of
view

RIM-ONE
v2

364, 91 Not available Nidek AFC-210 with a body of
a Canon EOS 5D Mark II, 21.1
megapixels

6 RIGA-
Magrabi

66, 28 2743 × 1936 Non-mydriatic 3CCD camera (Top-
Con TRC NW6) at 45◦ field of view

7 RIGA-
BinRushed

136, 58 2376 × 3168 Non-mydriatic 3CCD camera (Top-
Con TRC NW6) at 45◦ field of view

8 AIIMS (pri-
vate)

255, 108 1536 × 1584 Miscellaneous low-resolution cameras
with cheap and robust hand-held
ophthalmoscopes

3.2 Evaluation Measures for Optic Disc Segmentation

ROC parameters are a standard method to encapsulate statistical performance
measures. True positives (TP) indicate the total number of disc pixels that are
correctly predicted by the algorithm. True negatives (TN) are the number of pixels
correctly predicted as background pixels. False positives (FP) are the number of
disc region pixels which are wrongly predicted as background. False negative (FN)
are background pixels incorrectly predicted as belonging to the optic disc. The
three commonly used performance measures for a segmentation problem are the
Dice coefficient (F1 score) (Eq. 8), the Jaccard coefficient (Intersection-over-Union
(IOU), or the optic disc percentage overlap) (Eq. 9), and the Sensitivity (Recall)
(Eq. 10).

Dice Coefficient (F1 score) = 2 × (TP )

2 × TP + FN + FP
(8)

Intersection over Union (Jaccard coefficient, Disc Overlap) =
(TP )

TP + FN + FP
(9)

Sensitivity (Recall) =
(TP )

TP + FN
(10)

Sensitivity is often preferred in medical segmentation problems over another re-
lated parameter, Specificity (the relative ratio of TN to all negatives). Sensitivity
is often considered more significant since it gives a direct estimate of false negatives
(which are crucial in medical diagnosis). To this end, Tables 2, 3, 4, 5 all mention
the Dice coefficient, the optic disc overlap percentage, and the sensitivity values.
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Tables 6 and 7 present confusion matrices corresponding to the Dice coefficient
and the optic disc overlap.

3.3 System Implementation Details

To build the training dataset, each input RGB retinal image, and its correspond-
ing binary map is cropped and resized with the center of the square-shaped region
as coordinates of the optic disc. A 512 × 512 pixel size region-of-interest is se-
lected, as the average optic disc size is 1.80 − 1.95mm vertically, so the specific
dimension incorporates the complete optic disc region including the background
area around it. Any down-scaling more than this does not help with improvement
in performance parameters (Dice coefficient) and also degrades the visualization
quality of results. On the other hand, an up-scale size of 512 × 512 results in un-
necessarily increased computations without offering many advantages in terms of
performance. The above-mentioned steps are performed for each dataset except
RIM-ONE which already contains cropped images with 85% area occupied by op-
tic disc (as shown in the second column of Fig 2). Thus, no cropping operation is
required and one only needs to resize the RIM-ONE dataset images to 512 × 512.
Further, image augmentation such as rotation by 30◦, flipping, and cropping is
performed to prevent the model from over-fitting.

The implementation has been done on a single GPU. An Adam optimizer with
a learning rate of 0.0001 is used and step decay is performed after 30 epochs with
0.1 decay. Moreover, a batch size between 8 to 16 is employed depending upon the
dataset used for training. We run the adversarial and segmentation network alter-
natively for 50 epochs, while at the testing time only segmentation is performed.
In the final post-processing procedure, image closing morphological operation is
done with disc shape structuring element of radius 10. It not only removes small
unwanted objects but also smoothes out the edges of the predicted disc map. More-
over, ellipse fitting has been shown to increase the Dice coefficient value by a small
margin of 0.4% and 0.6% respectively for Drishti-GS and Refugee datasets.

3.4 Experimental Determination of GAN parameters α and Discriminator

Losses

Eqn. 7 (Sec. 2.2.1) has parameter α, which captures the relative trade-off between
segmentation and adversarial losses. Table 2 shows that a value of α = 10 strikes
a good balance between the three common measures of segmentation performance
i.e., the Dice coefficient, the disc overlap and the sensitivity. To fine-tune all the
learning parameters we initiated the procedure by experimenting with the repre-
sentative Drishti-GS dataset consisting of 50 training and 51 testing images. Fig. 6
shows the three parameter values corresponding to these losses. A pixel-based loss
function gives the best Dice coefficient and optic disc overlap, with an acceptable
sensitivity.
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Table 2 GAN parameter α = 10 (Eqn. 7: the trade-off between adversarial and
segmentation losses, Sec. 2.2.1) strikes a good balance between performance pa-
rameters sensitivity, optic disc overlap and Dice coefficient values for the repre-
sentative Drishti-GS dataset. (Details in Sec. 3.4)

S.No α Sensitivity
(%age)

Disc Overlap
(%age)

Dice coeffi-
cient (%age)

1 0 97.2685 92.24 95.94

2 5 97.0329 92.50 96.07

3 10 97.72 93.78 97.31

4 15 98.62 90.3261 94.84

5 20 96.47 92.44 96.07

Fig. 6 A pixel-based discriminator loss function (Sec. 2.2.1) gives the best Dice
coefficient and optic disc overlap, with an acceptable sensitivity (Sec. 3.4).

3.5 Inter-Dataset Performance of the Proposed Method

Table 3 shows all three performance parameters used for evaluating the efficacy
of the proposed work. The average Dice coefficient, disc overlap, and sensitivity
obtained are 92.93%, 91.01%, 94.83% respectively. Fig. 7 shows some represen-
tative test images. Here red- and blue-colored markings show the ground truth
and predicted optic disc boundaries, respectively. Fig. 7(a) shows 5 representative
examples of atrophy-affected discs where the textural properties of the region just
outside the disc boundary vary from the background. For the 5 representative
examples of Fig. 7(b), each disc boundary is diffused into the background, thus
making the segmentation process tough. In spite of this, the proposed algorithm
is able to segment the disc precisely. Next, the third row (Fig. 7(c)) shows oval-
shaped discs from the DRIONS dataset with different color illuminations. Fig. 7(d)
shows some miscellaneous challenging examples, where the disc boundary is not
even clearly visible to an observer and non-uniform illumination persists in the
image. The proposed method is able to segment the optic disc margin even in such
difficult cases with clinical artifacts. as improper illumination, segmenting optic
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Table 3 The proposed adversarial optic disc segmentation method gives consis-
tently good results across eight different datasets: sensitivity, optic disc overlap
and the Dice coefficient

S.No Dataset Sensitivity
(%age)

Disc Over-
lap (%age)

Dice co-
efficient
(%age)

1 Drishti-GS (Liu et al. 2019) 97.72 93.78 97.31

2 RIM (Sharma et al. 2019) 94.23 85.72 91.88

3 Refugee (Jiang et al. 2019) 93.45 89.41 95.12

4 DRIVE (Wang et al. 2019) 86.63 98.94 86.63

5 AIIMS [private] 94.27 85.93 91.91

6 DRIONS 97.22 85.95 92.34

7 RIGA-BinRushed 93.86 89.695 94.51

8 RIGA-Magrabi 96.25 90.83 95.17

All datasets 97.72 93.78 97.31

disc becomes a challenging task.
The generalizability of the proposed generative adversarial network has been

described with eight different datasets. To better investigate the dataset variability
problem along with the performance of the proposed approach, for each dataset
the prediction capability is analyzed in independent local and external general-
ization scenarios. In the first part of the experimentation, a split of 70:30 ratio
for each dataset is done for training and test the corresponding sets. The learning
model is trained over each local dataset (train and testing data belongs to the same
dataset) with tuned parameters. Further, in the second step of experimentation,
the trained model corresponding to each dataset is validated across other remain-
ing datasets. In the inter-dataset (train and testing data belongs to the different
datasets) setup the split ratio is kept the same for each dataset. The motivation
for such experimentation is to compare both setups (local and inter-dataset) and
thus to perform better for any data irrespective of which the dataset is extracted.

3.6 Comparative Performance with The State-of-the-art across Datasets

In addition to inter-dataset performance (Sec. 3.5), we compare our approach with
the state-of-the-art across various reported performance measures across popular
datasets. Table 4 shows a comparison for the popular for the Drishti-GS dataset.
The first method by (Liu et al. 2019) uses the full retinal image of dimension
512 × 512 as the region of interest for disc extraction. It is based on the GAN
model with a patch-based discriminator for classifying a 64×64 sized patch into a
disc or the background region. Next, an image processing technique of constructing
atlases of optic disc region to find the best match to the tested optic disc image is
suggested in (Sharma et al. 2019) with obtained average sensitivity and overlap of
97.38% and 93.44% respectively. Moreover, some deep learning approaches (Jiang
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(a)

(b)

(c)

(d)

Fig. 7 Some representative results across challenging inputs: (a) peri-papillary
atrophy, (b) diffuse disc boundary, (c) oval disc with varying texture, and (d)
pathologies and other artifacts. (The predicted optic disc boundary is in blue.)

et al. 2019), (Wang et al. 2019) also rely on patch-based generative adversarial
networks which result in Dice coefficient values of 97.0% and 96.5% respectively.
Finally, a multi-resolution approach using a deep convolutional network results
in a Dice coefficient of 97.13%. In comparison, our proposed network achieves the
benchmark performance when compared with state-of-art methods and obtains an
average sensitivity, overlap, and Dice coefficient of 97.72%, 93.78%, and 97.31%
respectively on all datasets. In another experimentation where the training samples
from all datasets are used together for training and tested on the remaining images
results in much lower performance with average parameters of 89.86%, 77.44%, and
85.63% respectively.

Table 5 shows a similar comparison for the Refugee dataset, across all three
performance parameters. It is clear from the results that the proposed generative
network outperforms all the state-of-art algorithms with obtained average Dice
coefficient and overlap of 95.12% and 89.39% respectively, and an acceptably large
value of the sensitivity.

3.7 Generalization Capability of the Proposed Method

A Dice coefficient-based confusion matrix is a good measure of performance in
segmentation tasks (Bertels et al. 2019). In order to visualize the generalization
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Table 4 A comparison of performance parameters (sensitivity, overlap and the
Dice coefficient) with state-of-the-art methods, for the Drishti-GS dataset

S.No Detection method Sensitivity
(%age)

Disc Over-
lap (%age)

Dice co-
efficient
(%age)

1 Liu et al. (Liu et al.
2019)

93.8 96.7

2 Atlas
method (Sharma
et al. 2019)

97.38 93.44 96.0

3 Jiang et al. (Jiang
et al. 2019)

- - 97.0

4 Wang et al. (Wang
et al. 2019)

- - 96.5

5 Multi-
resolution (Mohan
et al. 2019)

- - 97.13

6 M-Net (Fu et al.
2018)

- 85.88 96.58

7 Proposed Approach 97.72 93.78 97.31

Table 5 A comparison of performance parameters (sensitivity, overlap and the
Dice coefficient) with state-of-the-art methods, for the Refugee dataset

S.No Detection method Sensitivity
(%age)

Disc Over-
lap (%age)

Dice co-
efficient
(%age)

1 U-Net (Ronneberger
et al. 2015)

83.12 93.08

2 M-Net (Fu et al.
2018)

- 84.02 93.59

3 Multi-Task et
al. (Chen et al.
2016)

- 84.36 94.01

4 Wang et al. (Wang
et al. 2019)

- - 94.60

5 ET-Net (Zhang et al.
2019)

- 86.7 95.2

6 Proposed Approach 93.4461 89.40 95.12

capability of the proposed network, we first show a Dice coefficient-based confu-
sion matrix proposed for eight different datasets (Table 6). Each row and column
represent the training and testing datasets respectively. The Dice coefficient value
resulting from the train-test combination is shown in each cell. In general, one
expects the same dataset used in training and testing to give the best Dice coeffi-
cients, on an average. The AIIMS, DRIVE, DRIONS and RIGA-Magrabi datasets
are exceptions. The AIIMS private dataset seems to perform better when trained
on RIGA-BinRushed rather than on its own dataset. The reason for such perfor-
mance is observed that the AIIMS-private dataset is limited in size and contains a
large variety of images. Further, it shows high similarity with the RIGA-BinRushed
dataset in terms of disc size, location, and color. In the case of the other three, the
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Table 6 Dice coefficient-based confusion matrix of 8 different datasets (Sec. 3.7).

Testing Datasets

AIIMS RIGA-
BR

DRIONS Drishti-
GS

DRIVE Refugee RIGA-
Mgr

RIM-
ONE

T
ra

in
in

g
D

a
ta

se
ts

AIIMS 0.880 0.870 0.710 0.740 0.790 0.887 0.811 0.596

RIGA-BR 0.920 0.960 0.890 0.920 0.780 0.930 0.930 0.660

DRIONS 0.910 0.920 0.940 0.930 0.840 0.900 0.860 0.720

Drishti-GS 0.870 0.930 0.945 0.973 0.843 0.806 0.950 0.850

DRIVE 0.840 0.880 0.680 0.730 0.800 0.880 0.820 0.370

Refugee 0.870 0.940 0.920 0.920 0.870 0.950 0.920 0.690

RIGA-Mgr 0.896 0.896 0.930 0.940 0.800 0.770 0.940 0.859

RIM-ONE 0.820 0.850 0.920 0.950 0.780 0.760 0.834 0.920

Table 7 Optic disc overlap-based confusion Matrix of 8 different datasets. (Sec. 3.7)

Testing Datasets

AIIMS RIGA-
BR

DRIONS Drishti-
GS

DRIVE Refugee RIGA-
Mgr

RIM-
ONE

T
ra

in
in

g
D

a
ta

se
ts

AIIMS 78.18 77.94 54.67 59.72 65.65 80.28 69.45 42.83

RIGA-BR 85.93 91.47 79.939 84.76 68.91 86.37 87.88 50.98

DRIONS 84.43 85.92 88.47 86.67 73.90 82.32 77.40 58.15

Drishti-GS 77.34 87.10 89.70 93.78 74.01 69.45 90.83 75.39

DRIVE 72.82 79.71 52.43 58.41 72.49 78.78 70.85 23.99

Refugee 79.66 89.64 84.94 86.30 89.40 88.42 85.47 54.41

RIGA-Mgr 81.76 82.08 87.61 89.44 67.74 63.94 89.76 76.32

RIM-ONE 70.62 75.95 85.95 89.99 66.89 63.69 73.23 85.71

difference from the performance on the original dataset is not very significant. Ta-
ble 7 presents a similar exercise for the optic disc overlap-based confusion matrix
for all eight datasets. As with the Dice coefficient, one has a similar explanation for
why the AIIMS dataset gives the best performance when trained on the RIGA-BR
dataset (and DRIVE, on the Refugee dataset). The discrepancy for the DRIONS
and Riga-Magrabi is not very significant.

An interesting exercise in generalization across datasets orders them in decreas-
ing order of size (Refugee, RIM-ONE, AIIMS, RIGA-BR, Drishti-GS, DRIONS,
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RIGA-Magrabi and DRIVE). Let us consider the Dice coefficients in Table 6 as
an example. The Refugee dataset gives the highest test score (0.95) for its own
training set. We put Refugee in a new collection of reduced number of datasets.
RIM-ONE has a similar behaviour: we add this to the reduced collection. The
next largest dataset AIIMS gives its best performance when trained on RIGA-BR.
We add RIGA-BR to our reduced collection. RIGA-BR gives its best performance
when trained on its own training dataset. This is already in the reduced collection.
Drishti-GS shows a similar behaviour on its own training dataset: this is added
to the reduced collection. The next in line are the DRIONS and RIGA-Magrabi
datasets, which give best results with training on Drishti-GS, which is already in
the reduced collection. The last is DRIVE, which gives its best performance with
the Refugee dataset, which is already in the reduced collection. Thus, reduced col-
lection of 4 training datasets with a sufficient number of training samples, helps
the GAN-based system generalize well over a wider range of datasets (8 in this
example).

4 Conclusions

Optic disc segmentation is a vital step for diagnosing diseases such as peri-papillary
atrophy and hemorrhages present near the disc. Blindness-causing conditions such
as glaucoma benefit from non-invasive techniques such as computation of the cup-
to-disc ratio. We propose a unified U-Net-based optic disc region locator, and a
U-Net-based generative adversarial network for the optic disc segmentation. We
have evaluated the proposed method on as many as seven public dataset, and one
challenging (private) AIIMS community camp dataset. The novel experimentation
performed by the proposed algorithm is in terms of inter-dataset train and testing.
It has been observed that with the combination of four training datasets, the
proposed method is able to obtain maximum average Dice coefficient, disc overlap,
and sensitivity of 97.31%, 93.78%, and 97.72% respectively on eight datasets taken
together. In addition to this, for the Drishti-GS and Refugee datasets (on which
other methods typically report results), the proposed work achieves a state-of-art
performance with Dice coefficient values of 97.31% and 95.12%, respectively.
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