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ABSTRACT

We study how the topology of feature embedding space changes as it passes
through the layers of a well-trained deep neural network (DNN) through Betti
numbers. Motivated by existing studies using simplicial complexes on shallow
fully connected networks (FCN), we present an extended analysis using Cubical
homology instead, with a variety of popular deep architectures and real image
datasets. We demonstrate that as depth increases, a topologically complicated
dataset is transformed into a simple one, resulting in Betti numbers attaining
their lowest possible value. The rate of decay in topological complexity (as a
metric) helps quantify the impact of architectural choices on the generalization
ability. Interestingly from a representation learning perspective, we highlight
several invariances such as topological invariance of (1) an architecture on similar
datasets; (2) embedding space of a dataset for architectures of variable depth; (3)
embedding space to input resolution/size, and (4) data sub-sampling. In order to
further demonstrate the link between expressivity & the generalization capability
of a network, we consider the task of ranking pre-trained models for downstream
classification task (transfer learning). Compared to existing approaches, the
proposed metric has a better correlation to the actually achievable accuracy via
fine-tuning the pre-trained model.

© 2024 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, deep learning has attracted a lot of atten-
tion in various learning tasks, as they offer great repre-
sentational power as a result of non-linear transformation
based layered architectures [1, 2]. A deep neural network’s
(DNN’s) architectural components consist of affine-linear
maps and nonlinearities, a combination of which is often
termed as “black boxes” that lack explainability. While
many properties such as expressivity, generalization er-
ror, sample/model complexity, and loss landscape of the
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whole network have been studied extensively in various
mathematical settings [3], the study of the evolution of
feature embedding space has received little attention. Most
existing studies linking expressivity and generalization in
DNNs [3, 4, 5] emphasize the effect of depth on the learning
dynamics in terms of Jacobian or Hessian of the network.
However, such studies don’t answer the question of which
model is the most compatible for a dataset and task so
as to provide practitioners valuable insights for empirical
deep learning.

In this work, we aim to analyze the layer-by-layer em-
bedding space of a DNN and leverage them to understand
their learning characteristic empirically. Specifically, we
use Algebraic topology [6] to capture high-order dependen-
cies of embedding space in a data-dependent setting with
popular pre-trained networks. Recently, topological tools
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Fig. 1. Persistence diagrams of embedding space of (from the left) Conv2d, BatchNorm2d, ReLU, MaxPool2d, and
denseblock1, of DenseNet-169 for the images of the STL-10 dataset, respectively. Hi in the persistence diagram is the
ith−homology and homology is the algebraic object that defines the topology of a given space, here RGB image. Note
how topological features at the block level are more interpretable compared to ones at individual layers like ReLU and
MaxPool2d.

such as Persistent Homology [6], and K-mapper [7] have
been widely explored to study DNNs, though restricted to
shallow networks or low dimensional problems. We study
the expressivity of a DNN in terms of extracted Betti num-
bers from the persistence diagram of the embedding space.
Persistence homology maps complex data to persistence
diagrams, a simple persistence-based feature vectorization
that visualizes a concise summary of topological features
in data. For statistical analysis, the persistence diagram
needs to be equipped with a function that maps to this
vector space like Betti numbers which is a quantification
of the multiplicity of the homology. For a point cloud,
Betti numbers represent a count of the topology features
that appears in the subcomplex during filtration. The com-
putational complexity involved in conventional algebraic
topology tools is very high [4], and hence we present our
analysis using Cubical homology [8] based on the method of
cubical filtration that has been shown to be more efficient in
extracting topological features of higher dimensional data
like images. As an illustration, Fig. 1 shows the persistent
diagrams corresponding to two example images from the
STL-10 dataset of the embedding space of a DenseNet-169
model (pre-trained on ImageNet). One can attribute the
similarities in the persistent diagrams to the network’s
learning characteristics (feature extraction) from images
while the dissimilarities to the image-specific attributes.
Thus this provides a model-agnostic way of characterizing
the embedding space via the quantification of persistent di-
agrams using Betti numbers. Experiments with a variety of
popular deep architectures and real image datasets demon-
strate that as depth increases, a topologically complicated
dataset is transformed into a simple one, resulting in Betti
numbers attaining their lowest possible value. Thus, we
exploit the rate of decay in topological complexity Ω [9, 10]
(as a metric), an alternative to the popular Euler charac-
teristic, to quantify the impact of architectural choices on
the generalization ability. While doing so, we highlight
and establish several interesting invariances such as the
topological invariance of:

-an architecture on similar datasets.
-embedding of a dataset for an architecture of variable depth.
-embedding space to input resolution/size.
-embedding space to data sub-sampling.
We extend the work of Naitzat et al. (2020) [10] to multi-
class higher dimensional problem settings. We leverage
our analysis to establish a link between expressivity and
the generalization capability of a network by considering
the task of ranking pre-trained models for downstream
supervised classification aka transfer learning. As explained
earlier, we use the rate of decay of Betti numbers across
layers as a metric via curve fitting and demonstrated an
inversely proportional relationship between the slope and
the actually achievable accuracy of a fine-tuned pre-trained
network.

2. Related work

Carlsson et al. (2008) [11] and follow-up works from
the group demonstrated how topological features serve as
a potential measure of generalization in DNNs. However,
their study was mainly restricted to visualization of the
weight space of shallow networks (in terms of manifolds
with well-known topology e.g., Klein bottle) trained on
toy datasets such as MNIST using the Mapper algorithm
[7]. Similarly, Rieck et al (2019) [12] used topology to
track the evolution of DNN weights during training and
proposed an early stopping criterion. In contrast, a series
of works have attempted to study how DNNs transform
a complex dataset to a topologically simpler one using
Betti numbers. Bianchini et al. (2014) [13] proposed a
theoretical measure to evaluate the complexity of DNN
function space. Guss et al. (2018) [4] uses the Betti number
as a measure of data complexity to characterize neural
networks by the depth required to resolve the complexity.
Hamada et al. (2018) [14] presented a data-driven test to
establish if the transformed dataset is topologically simple.
It doesn’t provide a quantification, rather just confirms if
0th order Betti number is greater than 1. Naitzat et al.
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(2020) [10] explored persistent homology of the dataset as
it passes through layers of a DNN. However, the study is
restricted to shallow feed-forward networks and simulated
dataset (binary labels) to prove the argument since the
Betti number of a dataset are unknown in practice. Akai
et al. (2021) [15] extended the work of [10] to study the
stability of DNN mapping and the impact of outliers, but
their analysis doesn’t hold in high dimensional settings.

In contrast, work in this paper focuses on the represen-
tational power of a network with respect to a task (and
dataset) at hand. We demonstrate the generalizability
of a model through the evolution of the topological com-
plexity of layer-by-layer embedding space. Compared to
existing studies, the computational complexity around scal-
ing a topological method to higher dimensional multi-class
problems is tackled using recent advancements in Cubical
homology. Finally, experiments in this work are done using
a variety of popular architectures and real-world datasets.

3. Topological Preliminaries

In this section, we describe the relevant topological
definitions based on the mathematical setting in [16].

Fig. 2. Illustration of (a) simplicial complex and (b) cu-
bical complex. The spheres represent the vertex i.e., a
0-dimensional simplex. Similarly, 1-simplex is an edge, 2-
simplex is a triangle, and 3-simplex is a tetrahedron.

3.1. Persistence homology

Given a space X defined in terms of a point cloud ∈ Rd

with N points , the topological features can be computed
using persistence homology. It requires the space to be
represented using a simplicial complex i.e., constructing
open sets around each data point using their intersection
properties. This simplicial complex defines properties such
as the number of connected components, holes, and voids
it contains. Using a grid of scale values, a sequence of sim-
plicial complexes is obtained to get information about the
most persistent features that likely represent true under-
lying features of the shape of data. In order to work with
image datasets (voxel data), recently cubical complexes
have been shown to be efficient due to their robustness
in higher dimensional problems [17]. These are equivalent
to simplicial complexes with basic components such as
squares, cubes, and higher dimensional analogs (see Fig.
2). The topological information is often summarized as
a persistence diagram (see Fig. 1); a collection of points
(x, y) ∈ R2 representing a topological feature born at scale
x and persisting until scale y. Points at infinity i.e. homol-
ogy that never dies, are represented via an infinity bar in
the diagram. Note: βi is the Hi that exists at a threshold
value.

3.2. Quantification of Topology using Betti numbers

Using a persistent diagram, a topology can be quantified
in terms of readily commutable Betti numbers βk(X) that
are the simplest invariants representing the shape of a
manifold. For X ∈ Rd, there are at most d non-zero
Betti numbers. Typically, due to computational complexity
constraints, the first three i.e., 0th Betti number β0(X),
β1(X) and β2(X) that counts the connected components,
holes, and voids are used. Readers are encouraged to refer
to Section 2 from Naitzat et al. (2020) [10] for more details
and examples. Here, the Betti curve is a function that
maps the persistence diagram to an integer value over a
range of threshold values η. Then βk are computed for an
appropriate value of η. We consider the embedding space
of an image as the geometric object of interest, which is
molded through homeomorphic or non-homeomorphic maps
based on the task at hand. For instance, segmentation of
an image would require a homeomorphic map in order to
preserve the topology [18] while classification requires a
non-homeomorphic map to collapse the space of images
(each class) to a single point [10]. This work mainly focuses
on the classification task and hence uses the Betti numbers,
which is a unique signature for an object (here an image).
Following [8] we use the voxel embedding space of an image
x to compute βk(x) which are combined to obtain a measure
as:

Ω =
1

N

N∑
i=1

ωi (1)

ωi = β0(xi) + β1(xi) + . . .+ βd(xi); xi ∈ X

Here, ω is the topological complexity of the embedding
space of an image and Ω is the expected topological com-
plexity of the embedding space for a dataset. Note that
eq(1) is a different measure than the one used in classical
topology appearing in Morse theory [19] and adapted in
[9, 10]. Later we empirically demonstrate that this measure
is robust to data sampling as well as input resolution to a
reasonable extent.

4. Experimental Setup

In this section, we provide details of the experimen-
tal protocol and software setup we used to carry out our
experiments. We also delineate the different neural net-
work architectures and datasets used in our study. All the
experiments can be reproduced using the implementation
available on GitHub1.

4.1. Datasets

All the main experiments are done using a test set
of three datasets (unless stated otherwise): STL-10 [20],
CIFAR-10 [21] and Aircraft [22]. The STL-10 dataset

1https://github.com/Cross-Caps/DNNTopology

https://github.com/Cross-Caps/DNNTopology
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consists of 500 training and 800 test images of 96× 96 res-
olution dispersed across 10 classes. The CIFAR-10 dataset
consists of 50000 training and 10000 test images spread
across 10 classes, with each image having a resolution of
32 × 32. Both STL-10 and CIFAR-10 pertain to the use
cases where the target number of classes is small. Hence,
we have also the test set of the Aircraft dataset consisting
of 10200 images divided into 102 classes.

4.2. Neural Network Architectures

1. VGG [23] is a sequential feedforward neural network
with a uniform collection of convolutional layers fol-
lowed by ReLU (Rectified Linear Unit) nonlinearity.

2. ResNet (or Residual Networks) [24] is a class of net-
works that features a skip connection that controls
how much information flows to the next layer.

3. DenseNet [25] have transition layers that connect the
dense blocks which spreads their weight function all
over the neural network and allows feature reuse.

4. MobileNetV2 [26] is a lightweight neural network that
uses depthwise separable convolutions. The residual
blocks have a wide → narrow → wide approach.

In total, we have experimented with 9 networks namely:
VGG-16, ResNet-18, ResNet-50, ResNet-101, ResNet-152,
MobileNetV2, DenseNet-121, DenseNet-169 and DenseNet-
201. These models obtained from PyTorch model zoo are
pre-trained on ImageNet dataset [27]. They use an input
image size of 256× 256, center cropped to 224× 224, and
coupled with standard data augmentations.

4.3. Computation of Betti numbers

This work uses Cubical Ripser [8], built over the popular
package Ripser [28], utilizing weighted cubical complexes
to compute Betti numbers. The threshold value η is chosen
such that the first three Betti numbers (at layer-1) are
non-zero for all the images in the dataset. In the case
of feedforward architectures like VGG, the measure Ω is
computed at each layer, while for complex architectures
like ResNets/DenseNets, it is computed at each block af-
ter residual connection, considering the output volume
data/tensor of shape (w × h× c) where w is the width, h
is the height, and c is the number of channels.

5. Topology of DNN Embedding Space using Cu-
bical Complexes

As the inputs undergo layer-by-layer transformations in
a DNN, a well-trained network should observe a decay in
Betti numbers [10]. This is because with depth, a topologi-
cally complicated dataset is transformed into a simple one,
resulting in Betti numbers attaining their lowest possible
value. However, since as a DNN is expected to only focus
and extract relevant information; a natural question arises:
if the topology induced by a pre-trained DNN is invariant to
datasets? To establish this for similar datasets consider Fig.
3 where one can clearly observe the near invariance of the
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Fig. 3. Betti curve for β0, β1 and β2 of the first layer embed-
ding space of (a) ResNet-152 and (b) MobileNetV2 model,
respectively.

Betti curve (up to a scale) computed for the ResNet-152
model on different image datasets. This further illustrates
the stability of the topological signature extracted by Betti
numbers as a function of the chosen threshold.
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Fig. 4. Topological complexity of embedding space in Mo-
bileNetV2 model for STL-10 dataset.

Next, we explore the evolution of topological complexity
of layer-by-layer embedding space via the proposed measure
Ω. Fig. 4 shows the measure Ω as a function of the
number of layers/blocks of a network. As expected due
to non-homeomorphic maps (functions that don’t preserve
topology), we observe a decay in the value of Ω with depth.
One can categorize the layers/blocks into three distinct
groups of blocks: 1) the initial ones which act as low-
level feature extractors, 2) the middle ones with high-
level features, and 3) the penultimate ones, which can be
attributed to near identity maps where Ω doesn’t vary
much. A notable observation is that Ω is not sensitive
to the change in the value of threshold η up to a scale
that leads to robust interpretations about the learning
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Fig. 5. Each figure show Ω values for datasets CIFAR-10,STL-
10 and Aircraft. Each represents a different pattern and has
the Betti numbers reduced across the layers.
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Fig. 6. Topological complexity of embedding space in ResNet
model of variable depth for STL-10 dataset.

characteristics of a DNN. One can also observe the impact of
architectural choices; for instance, the number of channels
directly impacts the value of Ω, and hence the decay in Ω
is not monotonic. As illustrated in Fig. 5 this behavior is
consistent across datasets and network architectures. In
particular, for the DenseNet model, we have also considered
the transient block (with a pooling layer) in between two
dense blocks separately. Observe how transient block (a
contraction map) impacts and drastically reduces the value
of Ω. Hence, one should be careful while analyzing and
interpreting Ω across layers, blocks, or layers within a block,
as the decay in value might not always be monotonic.

5.1. Impact of depth on topological complexity of the em-
bedding space of an architecture

In the previous section, we establish the characterization
of Betti numbers over depth for different architectures.
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Fig. 7. Topological complexity of embedding space in Mo-
bileNetV2 model for STL-10 dataset at different input resize
value.

However, in many tasks, the same architecture with variable
depth is often compared for performance gains. In Fig. 6 we
demonstrate the behaviour of Ω for a pre-trained ResNet
model of different depths. It can be observed that for
a deeper architecture the number of blocks responsible
for learning discriminative feature approach a limit (e.g.,
approx 15 for ResNet15 vs 10 for ResNet50). Also, the
number of blocks for which Ω is near constant increases with
depth. This limiting is interesting from a representation
learning perspective, as it shows that the amount of depth
required for a downstream task is limited by the modeling
capability of architecture and not its capacity. This is in
line with existing studies that show that while theoretically
deeper architectures are more expressive but for a given
dataset not all layers contribute equally [29]. We observed
similar characteristics in other architectures too, which
establishes this important invariance.

5.2. Impact of input resolution on the computation of topo-
logical complexity

In computer vision, pre-trained networks are often
trained on inputs with a different resolution than the
downstream task. For instance, transfer learning from
the pre-trained network on the ImageNet dataset (with an
image size of 256 × 256) to the STL-10 dataset (with an
image size of 96×96). Hence, inputs are resized, such as by
bilinear interpolation before feeding them to a pre-trained
network. This makes working with topological tools on
datasets with larger image sizes computationally expensive.
We believe this might be the reason for earlier studies to
restrict experimentation to either synthetic data or toy
datasets like MNIST. Even though in the case of cubical
homology, this cost increases exponentially with input size,
it is near linear in the number of channels [8]. Due to the
very nature of cubical filtration in computing homology, we
argue that the behaviour of Ω should be approx invariant
to the input resolution. To demonstrate this, we computed
the topological complexity of embedding space with inputs
of variable size, and the results are reported in Fig. 7.
It can be observed that Ω is near invariant to input size
up to a scale factor. This experiment suggests that for
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pre-trained networks on ImageNet, input size in the range
of 150 to 180 provides a good trade-off between computa-
tional complexity and explainability/interpretation of the
learning dynamics of a network.

5.3. Impact of sample complexity on the computation of
topological complexity

Similar to the input size, the categorization of embed-
ding space using Betti numbers depends on the sample
complexity [4]. In order words, more the data points bet-
ter the estimate of topological complexity. However, the
computational complexity can be prohibitive for large-scale
datasets. Hence, in this experiment, we explore the impact
of sample complexity on the computation of the topological
complexity measure. For simplicity, we consider a balanced
random subset of each class, although better sampling
methods can also be explored. Results in Figure 8 demon-
strate that the trajectory of Ω with depth is near invariant
to sample size. This has an important implication, as the
experiments with different input & sample size suggest that
a good trade-off can be achieved between computational
complexity and quality of qualitative/quantitative results
for DNN explainability using topology.
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Fig. 8. Topological complexity of embedding space in ResNet-
18 model for Aircraft dataset with test set size ranging from
600 to 3300.

Table 1. Comparison of Pearson correlation coefficient (ρ)
of LEEP and the proposed TTP measure. Correlations
are computed with respect to test accuracies in various
experimental settings

Experimental Setup ρ

Source Target Model LEEP TTP

ImageNet

STL-10

ResNet-18 .86 .94

ResNet-50 .72 .70

ResNet-152 .76 .87

DenseNet-169 .68 .93

Aircraft

ResNet-18 .92 .87

ResNet-50 .82 .89

DenseNet-169 .68 .81

DenseNet-201 .78 .92

CIFAR-10

ResNet-50 .91 .89

ResNet-101 .73 .87

MobileNetV2 .69 .64

DenseNet-169 .87 .95

Caltech-101
ResNet-50 .67 .72

DenseNet-169 .58 .65

6. Case Study: Model Ranking for Transfer Learn-
ing

In this experiment, we establish a link between the
topological complexity of a network and its generalization
capability. To this aim, we consider the model ranking
problem where given a target dataset and a large pool of
pre-trained models, the goal is to rank the models in terms
of the ease of knowledge transfer from the source model
to the target dataset. This saves the computation cost
involved with manually fine-tuning pre-trained models to
select an optimal one. Existing studies in this space can
be broadly classified into two categories with ones that
compute: 1) a distribution over label space to find source
and target label compatibility e.g., NCE [30], LEEP [31],
Neural checkpoint [32]; and 2) a distribution over feature
space to find last layer embedding and target label compat-
ibility e.g., LogME [33], Model-Linearization [34]. We show
that one can also use the trajectory or the rate of decay
of the proposed measure Ω to evaluate the transferability
of representations learned by pre-trained classifiers. We
denote this topological transferability measure (TTP) by
θ, computed as the instantaneous slope of the polynomial
P fitted to Ω values across the layers/blocks of the neural
network i.e.,

θ = slope(P )|b, (2)

where, b is the midpoint on the curve P . The aim here is
not to propose a state-of-the-art transferability measure
but to demonstrate the power of topological tools for model
interpretability. However, note that, unlike most existing
measures, θ can also be applied when the source and target
tasks have different label semantics or are heterogeneous.

We perform transfer learning experiments with the
datasets and models described in Section 4, where only
the penultimate classification layers of the models were
fine-tuned to establish the baselines. In Fig. 9 we show the
negative correlation (inverse relationship) between the mea-
sure θ and the maximum achievable accuracy if a network
is actually fine-tuned on the dataset. Table 1 shows the
correlation coefficients of the state-of-the-art LEEP mea-
sure in comparison with the proposed measure. It can be
observed that the proposed measure performs comparably
to LEEP for shallow to medium-depth models. However,
the proposed measure consistently performs better in the
case of very deep architectures. This is because the pro-
posed measure considers the network as a whole, while
LEEP only considers the last layer. Embedding from the
penultimate layer has less discrimination ability than some
intermediate layers due to the input size and complexity
of the target dataset; hence, the initial layer with frozen
weights is often used as a feature extractor in the transfer
learning framework.

7. Conclusion

This work attempts to demonstrate the potential of
topological tools in quantifying the complexity of embed-
ding space in a DNN. In particular, we propose a measure
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Fig. 9. Correlation between fine-tuned accuracy (Y-axis) and TTP measure (θ) (X-axis) for model ranking on 3 datasets
with 9 pre-trained models.

based on Betti numbers to quantify the topological com-
plexity. Experiments with a variety of architectures unravel
interesting invariance which provides important cues for
characterizing the learning behavior in DNNs. Further, we
established a link between the expressivity & the general-
ization capability of a network by considering a case study
on ranking pre-trained models for quantifying the ease of
transfer learning from a source to a target dataset.
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