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Abstract: Deep models are the state-of-the-art models for fingerprint preprocessing. However, these models have very high
number of parameters, usually in millions. As a result, redundancy is observed among the features learnt by deep learning based
fingerprint preprocessing models. A popular technique to help deep models learn distinct and informative features is channel
refinement. A recent study has illustrated the capability of channel refinement to improve generalization of fingerprint enhancement
models. Motivated by the above-mentioned study, this chapter delves into presenting a detailed study illustrating the usefulness of
channel refinement in reducing redundancy and imparting generalization ability to fingerprint enhancement models. Furthermore,
we extend this study to assess whether channel refinement generalizes on fingerprint ROI segmentation. Extensive experiments
on fourteen challenging publicly available fingerprint databases and a private database of fingerprints of the rural Indian population
are conducted to assess the potential of channel refinement on fingerprint preprocessing models.
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Fig. 1: Schematic diagram of an AFRS. This chapter discusses the
impact of channel refinement on deep learning based fingerprint
preprocessing models. For understanding, fingerprint preprocessing
blocks constituting of fingerprint ROI segmentation and fingerprint
enhancement are marked using the red box.

1 Introduction

The robustness of fingerprints has long established it as a tool
for facilitating person identification. Subsequently, Consequently,
fingerprints have emerged as one of the most widely used biomet-
rics modalities. These are used in a wide range of applications,
including law enforcement, border security and civilian applications.
An automated fingerprint recognition (AFRS) constitutes various
steps which can be broadly categorized as: fingerprint acquisition,
preprocessing, feature extraction and matching. A fingerprint pre-
processing model is a term used to jointly refer to fingerprint region
of interest (ROI) segmentation and fingerprint enhancement (see
Figure 1).

Fig. 2: Sample poor quality fingerprints used to study the impact of
channel refinement on fingerprint preprocessing models.

Fingerprint preprocessing initiates with the fingerprint ROI seg-
mentation step. This step separates the background and the fore-
ground fingerprint region in a given fingerprint image [1]. Formally,
the foreground fingerprint region can be described as the fingerprint
image region constituting of fingerprint ridges and valleys. On the
other hand, background region in a fingerprint image typically con-
stitutes unnecessary textured patterns such as overlapping text, or
noise observed to the presence of oil and dirt on sensor surface
or wearing of fingerprint sensing device. Subsequent to fingerprint
ROI segmentation, what follows is the fingerprint enhancement step.
This steps improves the quality of fingerprint images. In particular,
fingerprint enhancement refines the ridge structure of a fingerprint
image by improving ridge-valley contrast, removing noise observed
in background and predicting the ridge details in unclear regions [2].
Both the fingerprint preprocessing steps are crucial for appropriately
extracting features and achieve satisfactory comparison results. The
need for preprocessing models is even more profound for poor qual-
ity fingerprints with visibly low contrast and missing ridge details
(see Figure 2).
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Fig. 3: Left- correlation matrix demonstrating high redundancy
among features learnt by cutting-edge CNN based fingerprint pre-
processing model. Right- redundancy among features is significantly
reduced after incorporating proposed channel refinement.

Deep convolutional neural networks (CNNs) dominate modern
fingerprint preprocessing models for fingerprint recognition. These
networks have a very large number of layers and model parame-
ters. Although, an effective deep model is expected to learn distinct
and useful features, however, with such a high model capacity, it
is often observed that the learnt features have high correlation. A
cutting-edge method to lessen redundancy among channel weights
(features) learnt by CNNs is through channel refinement. Recently,
Joshi et al. [3] demonstrate that channel weights learnt by fingerprint
enhancement models have redundant information and propose chan-
nel refinement of fingerprint enhancement models and demonstrate
its effectiveness to reduce redundancy among channel weights (see
Figure 3).

Research Contributions

Following research contributions are made in this chapter:

• A recently conducted by Joshi et al. [3] demonstrates the abil-
ity of channel refinement to improve the generalization ability of
fingerprint enhancement models. This chapter delves into evalu-
ating whether channel refinement generalizes for fingerprint ROI
segmentation.
• The performance of channel refinement on several varying finger-
print preprocessing models is studied.
• Additionally, study is done on how channel refining applies to
various cutting-edge deep learning models.
• Visualization of feature correlation matrix is provided to under-
stand redundancy among features.
• Relevant ablation studies and comparisons with cutting-edge
techniques of channel attention are provided.
• Rigorous experimentation on fifteen fingerprint databases is con-
ducted to understand the generalization ability of channel refine-
ment.

2 Related Work

2.1 Fingerprint Enhancement

Several factors make fingerprint enhancement a highly challenging
problem. Some of these factors include presence of smudged ridge
patterns, poor contrast between ridges and valleys due to wet or dry

fingertips, presence of sensor noise, oil and dirt on sensing surface
or structured background noise due to overlapping text or finger-
print patterns. Several algorithms have been proposed to address
these challenges. However, the design of a generalizable fingerprint
enhancement algorithm is still an open challenge. We proceed to
describe the literature on fingerprint enhancement.

2.1.1 Classical Image Processing Techniques for Fingerprint
Enhancement: Filtering in spatial or Fourier domain constitutes
the most widely used classical image processing based fingerprint
enhancement methods. These methods utilize ridge information,
e.g., ridge continuity or ridge orientations to predict missing ridge
information in poor quality regions [4–11]. The contribution of Hong
et al. [4] is one of the introductory and seminal contributions in the
field. To approximate the frequency and orientation of the ridge, the
authors simulate a sinusoid wave in a direction perpendicular to the
ridge orientation. The enhanced fingerprint image is computed via
using Gabor filters that are set in accordance with the approximated
frequency and orientation. Yoon et al. [12] approximate fingerprint
ridge orientation using zero-pole method based on singular points
as well as fingerprint skin distortion and rotation model. Gottschlich
and Schönlieb [5] exploit anisotropic filtering to propose a locally
adaptive fingerprint enhancement algorithm. Filtering is applied with
respect to the ridge orientations in the local fingerprint region. Tur-
roni et al. [6] as well utilize context. The context in their approach is
approximated through local fingerprint quality, frequency and orien-
tation. The local context is used for adapting the filter accordingly.
The authors suggest iterative application of contextual filtering. Fil-
tering begins from regions with high fingerprint quality to the ones
with low fingerprint quality. Ramos et al. [7] propose adaptive Gabor
filtering that is tuned to the signal frequency. Wang et al. [8] over-
come the limited bandwidth challenge of Gabor filter by proposing
log-Gabor filters. For filtering, the authors utilize curvature, ridge
frequency and the orientation information. Similarly, Gottschlich [9]
exploit curvature information by proposing filtering using curved
Gabor filters. The contribution of Chikkerur et al. [10] is among
the first few approaches that that exploit frequency domain to study
fingerprints. The authors approximate ridge frequency and orienta-
tion using Short Time Fourier Transform (STFT). Ghafoor et al. [11]
propose fingerprint enhancement through filtering in both spatial and
frequency domains.

Hsieh et al. [13] propose utilizing both local and global con-
textual information. The authors execute wavelet decomposition to
extract global information. The enhanced fingerprint is generated
using wavelet reconstruction. Jirachaweng and Areekul [14] note the
limitations of Gabor filters in generating fingerprints with blocking
artifacts and poor ridge continuity around high curvature finger-
print regions. The authors exploit filtering on the Discrete Cosine
Transform (DCT) domain to address the limitations of Gabor filters.
We note that since the classical image processing based finger-
print enhancement methods directly exploit contextual information,
ridges in poor quality fingerprint regions with unreliable contextual
information are often incorrectly enhanced. Learning based finger-
print enhancement methods are proposed to address these limitations
of classical image processing based methods.

2.1.2 Learning Based Algorithms for Fingerprint Enhance-
ment: Several notable works in fingerprint enhancement utilize
learnable dictionaries to estimate fingerprint ridge orientations [15–
19]. Feng et al. [15] propose a dictionary based fingerprint enhance-
ment method that exploits compatibility between orientations in
neighbouring fingerprint image patches to estimate fingerprint ridge
orientations. Yang et al. [16] observe that only certain orienta-
tions exist in a specific fingerprint region. The authors exploit this
information by proposing location-specific dictionaries for quicker
dictionary look-ups and lower orientation estimation errors. Chen et
al. [17] observe that dictionary with larger patches are better suited
for poor quality fingerprint regions. Motivated by this observation,
the authors propose multi-scale dictionaries to account for vary-
ing amount of noise in different fingerprint regions. Liu et al. [18]
learn efficient dictionaries for fingerprint enhancement by sparse
coding the fingerprint ridge orientation dictionaries. Chaidee et al.
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[19] exploit information from both Gabor and curved filters. The
response of both these filters are combined to construct a frequency
domain dictionary which is subsequently to estimate orientations and
generate the enhanced image.

A standard practice for dictionary based fingerprint enhancement
approaches is that the orientation dictionaries are computed from
good quality fingerprint regions. Thus, dictionary based methods
often perform poorly on low quality fingerprint regions. This short-
coming of dictionary based approaches is addressed by orientation
prediction networks [20, 21]. Cao and Jain [20] formulate finger-
print ridge orientation approximation to be a classification task. The
authors propose a CNN to perform the orientation classification. Qu
et al. [21] pose orientation angle prediction as a regression problem
and exploit a deep model estimate the direction of the fingerprint
ridge. Driven by the accomplishments of deep models in orienta-
tion estimation, researchers argued to directly generate the enhanced
fingerprint as opposed to predicting orientation [2, 22–27].

Sahasrabudhe and Namboodiri [22] suggest enhancing fingerprint
using a deep belief network. Schuch et al. [23] exploit a decon-
volutional autoencoder (DeConvNet) for enhancing fingerprints.
Svoboda et al. [25] introduce domain knowledge into the fingerprint
enhancement domain by introducing an gradient and orientation
optimizing autoencoder model. Qian et al. [26] propose to enhance
fingerprint patches using DenseUnet based fingerprint enhancement
model. Li et al. [2] and Wong and Lai [27] demonstrate that multi-
tasking using an orientation correction task facilitates improved
fingerprint enhancement performance. Joshi et al. [28, 29] demon-
strate that generative adversarial network is an effective model
for fingerprint enhancement. Later, the authors demonstrate that
Monte Carlo Dropout [30] imparts interpretability to fingerprint
enhancement models while estimating data uncertainty facilitates
noise-aware fingerprint enhancement [31]. The most recent works in
fingerprint enhancement domain include cross-domain consistency
[32] and context-aware enhancement by solving jigsaw puzzles [33].
For a comprehensive survey on fingerprint enhancement methods,
the readers are referred to the survey by Schuch et al. [34]. To sum-
marize, we note that existing state-of-the-art fingerprint approaches
are autoencoder or generative adversarial network based approaches.
However, designing a generalizable fingerprint enhancement model
is still an open challenge in the domain.

2.2 Fingerprint ROI Segmentation

Similar intensities of foreground and background pixels around
fingerprint boundaries make Fingerprint ROI segmentation a chal-
lenging problem. Many algorithms are proposed to address the
challenges posed by fingerprint ROI segmentation. However, gener-
alization on disparate sensing technologies is an existing challenge.
We now describe the literature on fingerprint ROI segmentation
which can be broadly categorized as follows:

2.2.1 Classical Image Processing Techniques for Finger-
print ROI Segmentation: Hu et al. [35] and Hai et al. [36]
suggest frequency domain filtering to differentiate between fore-
ground and background. A fusion-based segmentation technique is
recommended by Hu et al. [35] that combines information from the
frequency domain and domain knowledge of orientations. At first,
they apply log-Gabor filtering on the fingerprint image followed by
adaptive thresholding to obtain the first segmentation mask. The sec-
ond mask is obtained using the orientation reliability metric defined
by the authors. Both these masks are fused followed by postpro-
cessing to obtain the segmented ROI. Thai et al. [36] argue that
the frequencies of ridge patterns observed in the foreground fin-
gerprint image region lie only in a specific band of the Fourier
spectrum. They suggest Fourier domain filtering using factorized
directional bandpass filter. The aforementioned technique attenu-
ates frequencies occurring due to artifacts and only preserve the
relevant frequencies pertaining to the true fingerprint region. The
reconstructed image is then followed by morphological operations
to obtain the segmented fingerprint image.

Some approaches use only morphological operations for fin-
gerprint ROI segmentation [37, 38]. To separate the noise and

fingerprint region, Thai and Gottsclich [37] suggest a three-part
decomposition approach. To create the segmented image, morpho-
logical techniques are applied to the binarized fingerprint image.
For the input fingerprint image, Fahmy and Thabet [38] compute
the range image. Subsequently, adaptive thresholding is used to
transform the range image into a binary image. To create the seg-
mented image, morphological techniques and contour smoothing
are used to the binary image. Another prominent direction explored
by researchers to approach fingerprint ROI segmentation is through
making use of ridge orientation information [39, 40]. Teixeira and
Leite [39] suggest a multi-scale pyramidal structuring element for
monotonic filtering of image extrema while a multi-scale direc-
tional operator is used to determine the orientation of each pixel.
The computed directional field is used to estimate the background.
The segmented image is obtained using after subtracting the esti-
mated background followed by postprocessing. Raimundo et al. [40]
point out that the ridges and valleys can be identified as pixels par-
allel and normal to the ridge orientation, respectively. Further, the
authors use orientation information to assess the quality of ridge and
valleys and compute directional images. Clustering on the direc-
tional image followed by postprocessing is performed to find the
segmented image. Different from the above-mentioned approaches,
Wu et al. [41] observe that the strength of Harris corner points in the
background is lower compared to the foreground. The high corner
strength possessed by ridge boundaries helps to distinguish between
foreground and background.

A significant limitation of traditional image processing based fin-
gerprint ROI segmentation approaches is that these approaches do
not perform well when the intensity of background pixels is simi-
lar to the intensity of foreground fingerprint pixels. Furthermore, the
segmentation performance of these approaches is heavily dependent
on the postprocessing step. Therefore, to improve the segmentation
performance, learning based approaches are proposed, which are
described next.

2.2.2 Learning Based Algorithms for Fingerprint ROI Seg-
mentation: Initial approaches to learning based ROI segmentation
algorithms propose to cluster image pixels to identify foreground
and background [42–45]. Yang et al. [42] calculate coherence, mean
and variance features from non-overlapping blocks of the fingerprint
image. These features are then clustered through K-means cluster-
ing. The clusters are then classified into foreground or background
using voting of neighbours. Morphological postprocessing is per-
formed to obtain the final segmented image. Ferreira et al. [43]
apply block-wise range filter to enhance the ridges of the fingerprint
image. The output range image that results is clustered and bina-
rized. Later, the ROI segmentation mask is attained by conducting
postprocessing. Lei and Lin et al. [44] propose to apply a range fil-
ter to enhance fingerprint ridge boundaries. The clusters created by
the range filter are then combined. To create the ROI mask, mor-
phological operations are used. Ferreira et al. [45] apply filtering
through the range, entropy and variance filters. Three different clus-
tering methods are evaluated. The decision is re-evaluated through
different classifiers. The final image is obtained after postprocessing
of the binarized image. However, a common shortcoming of clus-
tering based approaches is that these require prior knowledge of the
number of clusters and their performance is heavily dependent on
this parameter. This adversely affects the generalization ability of
clustering based approaches.

Some learning based methods work on a patch-level and classify
a given patch as foreground or background [1, 46–51]. Stojanović
et al. [1] propose to divide each image into patches and classify
each patch using off-the-shelf CNN model, AlexNet. Predictions
for each block are combined for achieving ROI mask. This mask
is smoother by postprocessing to obtain the segmented ROI mask.
Liu et al. [46] extract handcrafted texture and intensity features from
patches of a fingerprint image. The foreground or background label
for each patch is obtained using an Adaboost classifier. Later, post-
processing is applied to obtain a smooth ROI mask. Zhu et al. [47]
extract multi-sized overlapping patches and classify them using three
different neural networks. Predictions from the three networks are

IET Research Journals, pp. 1–20
© The Institution of Engineering and Technology 2015 3



combined to generate a prediction score for each patch. The predic-
tion scores are thresholded, followed by postprocessing to generate
the segmentation mask. Ezeobiejesi and Bhanu [48] propose a two-
phased method for ROI segmentation where in the first phase model
learns representative fingerprint features by training a hierarchy of
Restricted Boltzmann Machines (RBMs) to learn an identity map-
ping of image patches. In the second phase, the network is trained
to predict foreground or background class for each patch. Predic-
tions of all the patches are merged to obtain the ROI mask. Serafim
et al. [49] suggest classifying image patches through AlexNet and
apply smoothing and hole filling postprocessing techniques on the
combined predictions for achieving ROI mask. Sankaran et al. [50]
extract saliency, intensity, gradient, ridge and quality based features
for each patch and perform feature selection to find the most dis-
criminative features. Each patch is classified as either foreground or
background using a random forest classifier trained on the chosen
features. Khan and Wani [51] exploit CNN for classifying a patch
as background or foreground. Furthermore, they take a majority of
neighbours to decide whether a patch is misclassified and change the
label of a misclassified patch.

The patch based classification approaches for ROI segmentation
suffer from many limitations. The first being the high computational
time since the network has to make a prediction for each patch.
Second, the segmented ROI obtained through these approaches suf-
fer from block-effect around boundaries and needs postprocessing.
Joshi et al. [30, 31] demonstrate that recurrent Unet (RUnet) [52]
is a promising CNN architecture for fingerprint ROI segmentation.
However, designing a generalizable fingerprint ROI segmentation is
still an open challenge in fingerprint ROI segmentation domain.

2.3 Attention Mechanisms

The attention mechanism is a technique for directing the viewer’s
attention on an image’s most crucial components and ignoring
unimportant aspects. The attention mechanism of the human visual
system is used to examine [53, 54] and comprehend complicated
pictures effectively and efficiently. This has motivated researchers to
enhance computer vision systems’ functionality by adding attention
methods. A visual system’s attention mechanism can be conceptual-
ized as a dynamic process for selection that is implemented through
adaptively weighing features in line with the significance of the
input. We can classify existing attention methods into six categories:
channel attention, spatial attention, temporal attention, branch atten-
tion, channel & spatial attention, and spatial & temporal attention.
Channel attention [55–61] creates a channel-wide attention mask
and uses it to identify the most crucial channels. Spatial attention
[62–67] creates attention masks across spatial domains and employs
them to either directly predict or pick out important spatial loca-
tions. By creating an attention mask in real-time, temporal attention
[68, 69] chooses key frames. Branch attention [70–73] creates an
attention mask over all of the branches and uses it to identify the
most significant ones. In order to choose key characteristics, chan-
nel & spatial attention [74–78] either directly produce a joint 3-D
channel, width, and height attention mask, or individually forecast
channel and spatial attention masks. In order to focus attention on
informative locations, spatial & temporal [79–82] attention com-
putes temporal and spatial attention masks individually or generates
a joint spatiotemporal attention mask.

2.3.1 Channel Attention: In deep CNNs, distinct channels of
various feature maps typically signify distinct objects [83]. Chan-
nel attention is comparable to a mechanism of choosing an object to
decide what to focus on by adaptively recalibrating [84] the weight
of each channel. Hu et al. [55] introduced SENet and originally
put out the idea of channel attention. A squeeze-and-excitation (SE)
block, which is the core element of SENet, is utilised to gathering
global data, record associations between channels, and enhance rep-
resentational capacity. Squeeze modules and excitation modules are
the two components that make up SE blocks. Global average pool-
ing is used in the squeeze module to collect spatial data on a global
scale. Utilizing fully connected layers, the excitation module col-
lects channel-wise relationships and generates an attention vector.

The relevant component of the attention vector is multiplied to scale
each channel of the input feature [85].

In order to enhance the squeeze module, Gao et al. [56] sug-
gested utilizing a global second-order pooling block for representing
high-order statistics while accumulating global information. It is not
practical to employ a SE block post each convolution block because
of the computation complexity and a large number of parameters
in the fully connected layer in the excitation module. Additionally,
an implicit approach for modeling channel relationships is to use
fully connected layers. Yang et al. [57] suggested using gated chan-
nel transformation to efficiently capture information while explicitly
describing channel-wise interactions in order to solve the aforemen-
tioned issues. SENet decreases the number of channels to avoid
having a complex model. However, this approach fails to accurately
simulate the relationship between the weight vectors and the inputs,
which lowers the quality of the output. Wang et al. [58] suggested the
efficient channel attention block to get around this problem by deter-
mining the interaction between channels using a 1D convolution
rather than dimensionality reduction. The squeeze module can only
use global average pooling, which has representational limitations.
Qin et al. [86] exploit frequency domain information for applying
global average pooling operation so as to get a more potent represen-
tation capability. In order to describe the link between probabilities
of object categories and scene context, Zhang et al. [87] suggested
the semantic encoding loss pertaining to a context encoding mod-
ule. For semantic segmentation, this approach makes advantage of
contextual information present in a global scene.

2.3.2 Spatial Attention: One way to think of spatial attention
is as an adaptive mechanism for choosing which spatial region to
focus on. Particularly for big inputs, convolutional neural networks
require a significant computing cost. Mnih et al. [62] introduced the
recurrent attention model , which uses reinforcement learning [88]
and recurrent neural networks (RNNs) [89] to instruct the network
where to focus its attention for concentrating scarce computational
assets on critical areas. Ba et al. [63] suggested a deep recurrent net-
work, similar to [62], that can process an image glimpse for tasks
involving several objects. Here glimpse refers to an image croppings
at several different resolutions. To be specific, the suggested model
uses a glimpse as an input to update its hidden state, and at each
step predicts both the location of the subsequent glimpse and a new
object. The network’s computational efficiency is enhanced by the
fact that the glimpse is typically substantially smaller compared to
entire image. Xu et al. [64] suggested to exploit both soft and hard
attention to help an image caption generation model visualise where
and what it ought to concentrate. By enabling the user to discern
the model’s emphasis, the application of suggested attention model
enhances the interpretability of the procedure of creating image
captions. Additionally, it aids in enhancing the network’s capacity
for better representation. Hu et al. [65] developed GENet, which
draws inspiration from SENet, with the goal of offering a spatial
domain recalibration function for gathering long-range dependencies
present in spatial domain. Part gathering and excitation procedures
are combined in GENet. It combines input features over broad neigh-
bourhoods in the first stage and simulates the relationship between
various spatial locations. The second stage begins by utilising inter-
polation to create an attention map whose dimensions are similar to
the dimensions of feature that is provided as the input. The next step
is to scale the input feature map by multiplying each point by the
matching element in the attention map.

2.3.3 Temporal Attention: Video processing typically makes
use of temporal attention, which may be regarded of as a dynamic
means for choosing the time when the model must be attentive.
In research on video representation learning, temporal pooling and
RNNs has been frequently utilised to capture interaction among dif-
ferent frames. However, such techniques suffer from limited ability
to model temporal relationship. In order to get around these, Li
et al. [68] suggested to learn global-local temporal representation
to take advantage of many scales of temporal information present
in a video clip. The suggested attention model consisted of a a
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temporal self attention module that helps to capture temporal depen-
dencies on a global scale. Additionally, the model proposed to learn
temporal dependencies on a local scale through employing dilated
convolutions that span a variety of temporal ranges with progres-
sively increasing dilatation rates. Different outputs are concatenated
to merge multi-scale information. Liu et al. [69] introduced a tempo-
ral adaptive module to efficiently and adaptably capture complicated
temporal interactions. In order to collect context at a global scale,
however, in lesser time than [68], it utilised an adaptive kernel as
opposed to self-attention.

2.3.4 Branch Attention: When employed with a multi-branch
structure, branch attention may be regarded of as a dynamic means
for choosing the branch on which the module must focus. In order to
solve the issue of training very deep networks, Srivastava et al. [70]
suggested highway networks, which use adaptive gating techniques
to facilitate information flows across layers. Using straightforward
gradient descent techniques, very deep highway networks may be
immediately trained. This is made possible by the gating mecha-
nism and skip-connection structure. Information is routed through
layers due to the gating mechanism, which, in contrast to fixed skip-
connections, adapts to the input. According to studies conducted in
the field of neuroscience, in response to the input signal, visual corti-
cal neurons adaptively modify the dimensions pertaining to receptive
fields [90]. Li et al. [71] were motivated by this to propose the selec-
tive kernel (SK) convolution using the automatic selection method.
Three operations are used to implement SK convolution: split, fuse,
and select. The feature map is subjected to transformations with var-
ious kernel sizes during split to produce various sizes RFs. Then, to
compute the gate vector, element-wise summation is used to merge
information available from the different branches. By doing this, the
information flow from the various branches is regulated. The final
feature map is then created via combining all branch feature maps
under the guidance of the gate vector.

Convolution kernel uniformity is a fundamental presumption in
CNNs. In light of this, increasing a network’s depth or width is
typically the best approach to improve its ability to represent infor-
mation, but doing so comes with a high additional cost to computa-
tion. Yang et al. [72] suggested a multi-branch convolution referred
as CondConv for boosting the capability of convolutional neural
networks. Leveraging a computationally less expensive means for
branch attention, CondConv fully exploits the benefits of the multi-
branch structure. It offers an innovative way to effectively improve
networks’ capacity. The model’s width and depth are constrained by
lightweight CNNs’ incredibly low computational cost, thus lower-
ing the representational power of the networks. In order to solve the
aforementioned issue, dynamic convolution was suggested by Chen
et al. [73], that in addition to CondConv [72], boosts representational
power at a small additional computational cost without altering the
network’s width or depth.

2.3.5 Channel & Spatial Attention: The benefits of both chan-
nel and spatial attention are combined in channel & spatial attention.
It chooses important objects and regions in an adaptive manner.
Residual attention network [74] highlighted the significance of rel-
evant elements in both the dimensions: spatial and channel. Subse-
quently, the authors [74] established the channel spatial attention
domain. It uses numerous convolutions in a bottom-up framework
to build a 3D (channel, breadth, and height) attention map. Woo
et al. [75] suggested to serially stack channel and spatial attention
and referred it as a convolutional block attention module. The pro-
posed method improved both informative channels and important
regions. Decoupling channel and spatial attention enables increased
computational efficiency. Global pooling is then used to make use
of global spatial information. In addition to [75], Park et al. [76]
also put out the bottleneck attention module (BAM), which sought
to effectively increase networks’ representational capacity. The spa-
tial attention sub-receptive module’s field is expanded using dilated
convolution, and to reduce computational costs, a bottleneck struc-
ture is built in accordance with ResNet’s suggestions. The feature
map is subjected to global pooling by a SE block, which combines
global spatial data. However, it disregards the spatial information at

the pixel level, which is crucial for dense prediction problems. Roy
et al. [77] thus suggested spatial and channel SE blocks. In a man-
ner similar to BAM, spatial SE blocks are utilised in addition to SE
blocks for enabling concentration on salient input regions through
weights pertaining to spatial dimensions. Both convolution block
attention module [75] and BAM [76] individually estimated sepa-
rately in CBAM and BAM, neglecting the connections between these
two domains. Triplet attention, a straightforward but effective atten-
tion method to model cross-domain interaction, was first described
by Misra et al. [78].

2.3.6 Spatial & Temporal Attention: The benefits of both spa-
tial attention and temporal attention are combined in spatial &
temporal attention, which adaptively chooses both salient regions
and crucial frames. Each type of action in human action recognition
often only depends on a small number of distinct kinematic joints.
Multiple actions might also be carried out across time. These find-
ings led Song et al. [79] to propose a hybrid LSTM model [89] for
spatial & temporal attention. Suggested model helps to adaptively
identify keyframes and discriminative features. A spatial attention
sub-network that selects significant areas and a temporal attention
sub-network that selects critical frames are its key modules for learn-
ing attention weights. In order to choose important aspects globally
and adaptively in order to capture spatial and temporal information
that exists in video frames, Du et al. [80] introduced spatiotemporal
attention. The sequential application of spatial attention component
followed by a temporal attention component constitutes the frame-
work for spatiotemporal attention in [80]. Prior attention models to
re-identify individuals in videos merely gave each frame a weighted
attention value; they were unable to recognise joint spatial and tem-
poral relationships. Fu et al. [81] presented a novel spatiotemporal
attention method to address this problem, which rates attention in
every spatial location in various frames with the use of no addi-
tional parameters. In order to understand the spatial dependencies
inside a frame and the temporal links among different frames, Yang
et al. [82] introduced a spatiotemporal graph convolutional network.
The network is trained to learn discriminative features from a video.
Pairwise similarity is used to build a patch graph. Subsequently,
combines data using graph convolution.

To summarize, depending upon the nature of application, dif-
ferent kinds of attention mechanisms can be introduced in a deep
neural network. For a deep fingerprint preprocessing model, we
hypothesize that its huge model capacity makes it prone to poor
generalization. In order to ensure learning of distinct features that
generalize over different databases, for fingerprint preprocessing
models, we propose to exploit channel-level attention.

3 Proposed Method

This subject of this research is to study the significance of channel-
level dependencies in a deep learning based model fingerprint pre-
processing. We propose a method to effectively refine the features
learnt by a fingerprint preprocessing model such that redundancy
among features is reduced and improved generalization is obtained.
We now proceed to describe channel refinement unit (CRU) to refine
the features of fingerprint preprocessing models.

3.1 Channel Refinement Unit

A channel refinement unit (CRU) is designed to transform the fea-
tures such that redundancy among channels is reduced. For an input
feature X ∈ RL×H×C , CRU transforms it into Xnew ∈ RL×H×C

such that Xnew has lesser channel level redundancy and more infor-
mative features are learnt by the fingerprint preprocessing model
(see Figure 4). Convolution is a local operation due to its limited
receptive field. As a result, standard convolution operation cannot
successfully extract the global information from fingerprint images.
CRU exploits global information derived using the activation maps
to evaluate the significance of each channel towards fingerprint pro-
cessing. Therefore, as its very first step, CRU computes the global
representation corresponding to each channel of a given convolution
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Fig. 4: CRU transforms X to Xnew such that redundancy among channels is reduced and the fingerprint preprocessing model is enabled to
learn more informative features, leading to improved fingerprint preprocessing performance.

Fig. 5: Flowchart depicting introduction of CRU into an existing fingerprint preprocessing model. CRU transforms the features learnt by the
baseline fingerprint preprocessing model such that redundancy among channels is reduced. Thus, CRU helps to learn more informative features,
facilitating improved fingerprint preprocessing performance.

layer. To compute the global representation, CRU leverages a global
average pooling (gap) layer. This (gap) layer averages activations
across channels, to output a C dimensional vector, corresponding to
each input channel.

Next operation in CRU is aimed towards understanding the signif-
icance of each of the C channels. To achieve this, CRU executes C
depth wise convolution (dwc) (1×1). This provides an output vector
W=[w1, w2, ...wC ], where wi ∈ R. The operations that follow on
Vector W are batch normalization (bn) and sigmoid activation (σ).
These operations output a refinement vector (A) that represents how
much each channel must be refined to obtain the optimal fingerprint
preprocessing performance. A=[a1, a2, ...aC ] (ai ∈ R), this vec-
tor contains a refinement weight for each of the input channel. The
refined feature Xnew is obtained through conducting element wise
product between input feature X and the corresponding refinement
weight pertaining to its channels.

A = σ(bn(dwc(gap(X))))

Xnew = [x1 · a1, x2 · a2, ...xC · aC ]

Instead of X , after exploiting CRU the refined feature Xnew

is used for computation at the following layers to generate the
improved preprocessed fingerprints.

3.2 Introducing Channel Refinement Unit into a Fingerprint
Preprocessing Model

The incorporation of CRU does not need much change in the
network design of the backbone deep model for fingerprint prepro-
cessing. CRU is included after each convolution layer. As a result,
refined features after each convolution layer and these refined fea-
tures are forwarded to the next convolution layer for generating the
preprocessed fingerprint image at the output layer (see Figure 5). The
refined features have lesser redundancy and therefore capture distinct
and more informative characteristics from input fingerprints. Learn-
ing of more informative features facilitates improved fingerprint
preprocessing performance.

4 Experimental Setup

We rigorously assess the impact of channel refinement by intro-
ducing CRU into different fingerprint preprocessing models con-
ducting different fingerprint preprocessing tasks (fingerprint ROI
segmentation and fingerprint enhancement).

4.1 Databases

For evaluating this research, we use fourteen challenging and pub-
licly available fingerprints databases, and a challenging private
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Database Resolution Sensor Name Sensing Tech.
2000 DB1 300×300 S.D. Scanner Optical
2000 DB2 256×364 TouchChip Capacitive
2000 DB3 448×478 DF-90 Optical
2000 DB4 240×320 Synthetic Generator NA
2002 DB1 388×374 TouchView II Optical
2002 DB2 296×560 FX2000 Optical
2002 DB3 300×300 100 SC Capacitive
2002 DB4 288×384 Synthetic Generator NA
2004 DB1 640×480 V300 Optical
2004 DB2 328×364 U.are.U 4000 Optical
2004 DB3 300×480 FingerChip Thermal
2004 DB4 288×384 Synthetic Generator NA

Table 1 Details about FVC databases exploited to assess fingerprint ROI
segmentation performance.

dataset of poor quality fingerprints, resulting in a total of fifteen
databases for experimental evaluation of the proposed CRU.

4.1.1 Fingerprint Enhancement: as As suggested in the liter-
ature [28, 29, 91], fingerprint enhancement models are trained in a
supervised manner using synthetic data. For evaluating the finger-
print processing performance on the enhancement task, we use the
following databases:

1. Multisensor Optical and Latent Fingerprint Database (MOLF)
[92]: MOLF is the largest publicly available latent fingerprint
database. This databases constitutes 4400 poor quality latent fin-
gerprints acquired from 100 volunteers. The volunteers press their
fingertips on ceramic tiles. The latent fingerprints are captured via
exploiting the standard black powder dusting process.
2. Rural Indian Fingerprint Database [93]: This is a challenging
open access dataset of poor quality fingerprints. These fingerprints
are collected from rual Indian volunteers rigorously involved with
physical activity requiring extensive use of fingers, such as farming.
In total, this dataset has 1631 poor quality fingerprints obtained from
an optical sensor.
3. A private rural Indian fingerprint database [94] with samples from
aging and the subjects engaged with rigorous manual work. This
dataset has 1000 poor quality fingerprint samples obtained from an
optical sensor.

4.1.2 Fingerprint ROI Segmentation: To evaluate the finger-
print processing performance on the ROI segmentation task, we use
the Fingerprint Verification Challenge (FVC) databases. We eval-
uate the fingerprint ROI segmentation on different series of FVC
competitions, FVC2000, FVC2002 and FVC2004. The fingerprints
in these databases are acquired from different fingerprint sensing
technologies, i.e. optical, capacitive, thermal and even synthetic fin-
gerprints [95]. Each series has 4 databases, each with 80 training
samples and 800 testing samples. Therefore, in total, we train the
fingerprint ROI segmentation model on 960 images and evaluate the
fingerprint ROI segmentation performance on 9600 fingerprints. The
authors of [37] prepared the ground truth annotations of ROI. The
information about the FVC databases is presented in Table 1.

4.2 Assessment Criteria

We proceed to describe the different assessment criteria used to
judge the fingerprint preprocessing performance.

4.2.1 Fingerprint Enhancement: We exploit the following
metrics to evaluate the fingerprint enhancement performance:

1. Ridge Structure Preservation Ability: Ridge details in a finger-
print image entail the identity information. Therefore, it is crucial
that the fingerprint details are preserved while enhancing the fin-
gerprint images. To measure the fingerprint enhancement model’s
capacity to preserve ridge structure, we calculate common mea-
sures like SSIM [96], Jaccard similarity score [97], PSNR [98], and

Input FP-E-GAN CR-GAN

Fig. 6: Examples presenting latent fingerprints [93] enhanced by
CR-GAN and baseline FP-E-GAN.

Enhancement
Algorithm

Quality
Score

Raw Image 4.96
FP-E-GAN [28] 1.91
CR-GAN 1.77

Table 2 An analysis of the latent fingerprints’ [93] average quality scores
computed through NFIQ.

Dice score [99] between ground truth binarization and the enhanced
fingerprint.
2. Fingerprint Quality Assessment: A fingerprint enhancement
algorithm is meant to improve the quality of the input fingerprint
image. Using the publicly available tool nfiq [100], we compute fin-
gerprint quality scores for measuring the improvement in quality
of fingerprints. This tool assess a given input fingerprint on vari-
ous parameters such as ridge-valley clarity, number of minutiae and
ridge smoothness.
3. Fingerprint Matching Performance: We also quantify the
improved matching performance on enhanced images. Matching
performance on latent fingerprints is analyzed in identification mode
of fingerprint recognition. As a result, for latent fingerprints, the
matching performance is analyzed by calculating rank-50 accuracy
and plotting the corresponding cumulative matching curve (CMC).
On the other hand, the matching performance on the rural Indian fin-
gerprints is analyzed in verification mode of fingerprint recognition.
Subsequently, for rural Indian fingerprints, the matching perfor-
mance is analyzed by presenting the detection error trade-off (DET)
curve that corresponds to the average equal error rate (EER).

4.2.2 Fingerprint ROI Segmentation: We evaluate the finger-
print ROI segmentation performance by computing the standard
metrics for assessing segmentation performance: Dice score [99] and
Jaccard score [97].
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Fig. 7: Enhancement performance before (FP-E-GAN [28]) and after introduction of CRU (CR-GAN). (a) histogram presenting the distribution
of quality scores of fingerprints, CMC curves obtained using (b) Bozorth and (c) MCC.
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Fig. 8: Examples demonstrating improved ridge preservation ability after introduction of CRU.
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Fig. 9: State-of-the-art methods for fingerprint enhancement are compared on [92] using (a) histogram presenting the distribution of quality
scores of fingerprints, DET curves acquired from (b) Bozorth, and (c) MCC.
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Enhancement
Algorithm

Bozorth MCC

Raw Image 5.45 6.06
Svoboda et al. [25] NA 22.36
FP-E-GAN [28] 28.52 34.43
CR-GAN 29.30 35.25

Table 3 An analysis of the latent fingerprints’ [93] identification results
when compared against gallery of Lumidigm sensor.

Enhancement
Algorithm

Bozorth MCC

Raw Image 16.36 13.23
STFT [10] 18.13 14.52
Hong et al. [4] 11.01 11.46
DeConvNet [23] 10.93 10.86
FP-E-GAN [28] 7.30 5.96
CR-GAN 5.72 4.45

Table 4 An analysis of verification results obtained on [92] quantified by
average equal error rate.

5 Results: Fingerprint Enhancement

5.1 Enhancement of Latent Fingerprints

We begin the analysis of impact of introducing CRU into a fin-
gerprint enhancement model by assessing its performance on latent
fingerprints. Figure 6 depicts samples enhanced before (FP-E-GAN)
and after introducing CRU (CR-GAN). We find that introduction
of CRU enables improved enhancement performance quantified by
improved fingerprint quality scores and improved rank-50 accuracy
on both Bozorth and MCC fingerprint matching tools (see Table 2
and Table 3). The corresponding histogram comparing fingerprint
quality scores and CMC curves corresponding to both the match-
ing tools are presented in Figure 7. We also find that introducing
CRU enables improved ridge preservation ability to FP-E-GAN [28],
quantified by higher SSIM scores after introducing CRU (CR-GAN)
compared to FP-E-GAN (see Figure 8). Having successfully demon-
strated improved fingerprint enhancement of latent fingerprints, we
proceed with analysis of fingerprint enhancement performance on
rural Indian fingerprints.

5.2 Enhancement of Rural Indian Fingerprints

Subsequently, we assess the enhancement results obtained by CR-
GAN on two rural Indian fingerprint databases. We contrast the
enhancement results obtained by CR-GAN with the cutting-edge
models for fingerprint enhancement: STFT [10], DeConvNet [23],
FP-E-GAN [28], and Hong [4]. Table 4 and Table 5 reflect on the
improved performance of fingerprint matching as measured by aver-
age equal error rate (EER) and the corresponding DET curves are
presented Figure 9 (b) and Figure 9 (c). Regardless of the fingerprint
matching algorithm chosen, the average EER is much lower in both
rural fingerprint databases. This demonstrates how the suggested
CRU enhances FP-E-GAN’s performance [28]. As a result, on both
datasets, CR-GAN performs better than state-of-the-art. These find-
ings support the assertion that FP-E-GAN does indeed learn some
redundant channel weights during training, and that channel weight
refinement aids in enhancing FP-E-GAN’s performance. Then, we
contrast the CR-GAN fingerprint quality ratings with cutting-edge
algorithms for fingerprint enhancement. We display distribution of
NFIQ values through a histogram in Figure 9 (a), while Table
6 displays the average NFIQ score. The results demonstrate that
while matching performance is greatly increased, the quality of
enhanced fingerprints that CR-GAN produces is comparable to that
of FP-E-GAN.

The example restored fingerprint pictures in Figure 10 are created
using both the proposed CR-GAN and the most recent cutting-
edge algorithms for fingerprint enhancement. When compared to the
currently available fingerprint enhancement algorithms, CR-GAN

Enhancement
Algorithm

Bozorth MCC

DeconvNet [23] 28.75 26.80
FP-E-GAN [28] 17.06 15.85
CR-GAN 13.23 11.52

Table 5 An analysis of verification results obtained on the private fingerprint
database quantified by average equal error rate.

Enhancement
Algorithm

Quality
Score

Raw Image 2.94
STFT [10] 2.86
Hong et al. [4] 2.05
DeconvNet [23] 1.95
CR-GAN 1.42
FP-E-GAN [28] 1.31

Table 6 An analysis of the openly accessible rural Indian fingerprints’ [92]
average quality scores computed through NFIQ.

Network Generator Discriminator Total
FP-E-GAN [28] 11376129 2765505 14141634
CR-GAN 11383041 2768193 14151234
SE-GAN [55] 12072081 3165177 15237258

Table 7 Comparison of the CRU’s introduced model parameters with model
parameters introduced by SE-block [55].

Enhancement
Algorithm

Quality
Score

SE-GAN [55] 1.76
CR-GAN 1.42

Table 8 An analysis of average quality scores (computed through NFIQ)
achieved for proposed CRU and SE block.

Enhancement
Algorithm

Bozorth MCC

SE-GAN [55] 12.34 10.50
CR-GAN 5.72 4.45

Table 9 Comparison of verification results obtained after introducing CRU and
SE-block quantified by average equal error rate.

produces the most continuous ridge patterns for all of the sam-
ple inputs. The scenario of high pressure when taking a fingerprint
impression is shown in the first row. As a result, valleys are obscured
and very thick ridges are produced. The fingerprint image produced
by CR-GAN has the highest ridge-valley clarity and performs the
best at predicting ridges and valleys. The issue of low ridge clar-
ity caused by uneven pressure is seen in the second row. While
many of the most cutting-edge enhancement algorithms produce fic-
titious ridge features, CR-GAN properly predicts any ridge details
that are obscure in the input fingerprint image. In addition, in the
third and fourth rows, where there are creases, the ridge features that
are missing are more accurately predicted by CR-GAN than by other
techniques.

5.3 Contrasting CRU with Squeeze and Excitation Block

Now we contrast the suggested CRU’s performance to that of the
squeeze and excitation (SE) block [55], a cutting-edge channel
attention model. Inside CR-GAN’s design, the SE block is used to
substitute the suggested CRU, and the resulting model is named SE-
GAN. Table 7 shows a comparison of parameter counts, and we find
that CR-GAN has fewer parameters than SE-GAN. This observation
demonstrates that the SE-block introduces more parameters into the
architecture of a fingerprint preprocessing model than the suggested
CRU.
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Fig. 10: Examples presenting effective fingerprint enhancement obtained through CR-GAN and comparisons with cutting-edge algorithms.

Input SE-GAN CR-GAN

Fig. 11: Comparison of enhanced fingerprints generated from the fingerprint enhancement model with CRU (CR-GAN) and the fingerprint
enhancement model with SE block (SE-GAN).
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Fig. 12: (a) Histogram presenting the distribution of quality scores of fingerprints, DET curves produced using (b) Bozorth, and (c) MCC.
Comparisons between CR-GAN, FP-E-GAN, and SE-GAN are provided on [92].

* * *

Fig. 13: FP-E-GAN, SE-GAN, and CR-GAN channel weights correlation matrices (from left to right). The first, second, and third rows in all
three columns correspond to layers 3, 16, and 21, respectively of the corresponding fingerprint enhancement model.
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Enhancement
Algorithm

Quality
Score

DeconvNet [23] 1.95
CR-DeConvNet 1.78
Unet [101] 1.45
Att-Unet [102] 1.51
CR-Unet 1.45
CR-GAN 1.42

Table 10 An analysis of average quality scores (computed through NFIQ)
achieved by cutting-edge deep models.

Quality scores of the enhanced fingerprints generated by CR-
GAN and SE-GAN are compared in Table 8. The matching distri-
bution of NFIQ scores represented through a histogram is shown in
Figure 12 (a). Results reveal that when compared to CR-GAN, SE-
GAN generates inferior quality enhanced fingerprints. The average
EER is presented in Table 9 in order to compare matching per-
formance. In Figure 12 (b) and Figure 12 (c), the relevant DET
curves are provided. In comparison to SE-GAN, the verification
error for fingerprints enhanced using CR-GAN is much lower for
both Bozorth and MCC matchers. Due to the inferior verification
results of SE-GAN in comparison to the FP-E-GAN baseline, these
findings demonstrate that SE-block is inappropriate for fingerprint
enhancement. The performance of CR-GAN, on the other hand,
with the suggested CRU, surpasses that of SE-GAN and FP-E-GAN,
showing that it is a good candidate to introduce channel attention
into a preprocessing model enhancing fingerprints. These findings
further show that the CR-GAN’s enhanced performance cannot be
only explained by an increase in model capacity as a result of CR-
GAN’s higher parameter space than FP-E-GAN. SE-GAN performs
substantially worse than FP-E-GAN despite having larger parameter
space than CR-GAN. In Figure 13, we present the matrices of corre-
lations between different layers’ learnt channel weights. We study
matrices of correlation pertaining to different enhancement mod-
els: FP-E-GAN, SE-GAN, and CR-GAN, to examine the impact of
introduction of their respective channel attention on the features the
model learns in contrast to the features learnt by the backbone model
(low correlation values signify less redundant features).

In theory, a channel level attention mechanism is introduced to
lessen redundancy in the backbone network’s channel weights. In
contrast to the FP-E-GAN backbone, we discover that SE-GAN
exhibits stronger channel correlation rather than decreased correla-
tion among channel weights. This demonstrates how the SE-block
introduces redundant features. Conversely, the correlation values
for CR-GAN are the lowest. This shows that the suggested CRU
lowers feature redundancy and aids in learning robust features. CR-
GAN outperforms both FP-E-GAN and SE-GAN due to its learning
of more robust features than both these enhancement models. The
representative cases presenting the recovered fingerprint images pro-
duced using the proposed CR-GAN and SE-GAN are provided in
Figure 11. CR-GAN performs better than SE-GAN in every sit-
uation. CR-GAN outputs fingerprints with greater clarity between
ridges and valleys, smoother ridges, and less erroneous ridge details,
when contrasted to SE-GAN.

5.4 Application of CRU to Various Deep Models for
Fingerprint Enhancement

As of right now, we can see that the suggested CRU enhances the
reconstruction ability of a fingerprint enhancement model leverag-
ing a GAN framework at its core. We then examine the proposed
CRU’s generalizability for various network architecture options for
fingerprint enhancement. As the foundational network designs for
our experiment, we use Unet [101] and DeConvNet [23], a autoen-
coder model for enhancing low quality fingerprints. We create new
architectures on both of these designs named CR-Unet and CR-
DeConvNet by adding CRU after each convolution block, like done
for CR-GAN. To see if the suggested CRU improves the perfor-
mance of these networks, we contrast the verification error obtained
using CR-Unet with that of Unet and likewise of CR-DeConvNet to

Enhancement
Algorithm

Bozorth MCC

Unet [101] 11.35 10.58
DeConvNet [23] 10.93 10.86
Att-Unet [102] 9.50 9.08
FP-E-GAN [28] 7.30 5.96
CR-DeConvNet 6.53 5.45
CR-Unet 5.99 5.55
CR-GAN 5.72 4.45

Table 11 An analysis of verification results obtained by several cutting-edge
deep models on [92]. Performance is quantified by average equal error rate.

DeConvNet. Additionally, we contrast CR-Unet’s verification error
to that of the Attention Unet (Att-Unet), which is based on spatial
attention. Baseline Unet and Att-Unet implementation is taken from
the source provided in [3].

First, we evaluate the enhanced fingerprint images produced by
various models over fingerprint quality ratings. The histogram pre-
senting the distribution of quality scores of fingerprints is presented
in Figure 15 (a) while Table 10 reports the average NFIQ score. The
results back up the assertion that the proposed CRU enhances perfor-
mance. When reconstructing fingerprints, CR-DeConvNet outper-
forms DeConvNet, in terms of quality scores. Similar observation
holds for CR-Unet and Unet. Table 11 reports the average verifica-
tion error obtained by all cutting-edge deep models, while Figure 15
(b) and Figure 15 (c) illustrate the related DET curves. Average EER
is dramatically decreased for both fingerprint matchers. These find-
ings show how cutting-edge deep models trained to learn fingerprint
enhancement may learn redundant features. The suggested CRU
helps learn robust features by reducing feature redundancy. Subse-
quently, the enhancement performance of CR-DeConvNet turns out
significantly better than DeConvNet. Likewise results are reported
for CR-Unet and Unet. The claim that the suggested CRU general-
izes to several cutting-edge deep models is verified by all of these
results.

Additionally, we see that CR-Unet performs noticeably better
than Att-Unet [102]. While CR-Unet makes use of channel-level
attention, Att-Unet makes use of spatial attention. Because CR-
Unet surpasses Att-Unet both in terms of matching performance
and fingerprint quality score, we conclude that spatial attention is
less useful for fingerprint enhancement than channel attention. It is
also interesting to note that both the deep models: CR-DeConvNet
and CR-Unet, that were suggested in this subsection perform better
than FP-E-GAN. However, FP-E-GAN performs much better than
Unet and DeConvNet at baseline compared to those two networks.
The suggested CR-GAN hence performs better than CR-Unet and
CR-DeConvNet. We contrast the sample reconstructed fingerprints
produced by Unet, Att-Unet, and CR-Unet in Figure 14 (a). We
discover that CR-Unet’s produced fingerprints have superior clar-
ity between ridges and valleys and fewer false ridge characteristics
than those created by Unet and Att-Unet. When CR-DeConvNet and
DeConvNet are compared, similar findings are found (see Figure 14
(b)).

6 Contrasting CR-GAN with Cutting-edge
Fingerprint Enhancement Methods Leveraging
GAN Framework

This section contrasts the Cycle-GAN [103] and DU-GAN [31],
two cutting-edge generative adversarial network-based fingerprint
enhancement models, in terms of performance with the proposed
CR-GAN. Figure 16 (a) and Table 12 compare the average finger-
print quality scores obtained on enhanced fingerprints obtained by
Cycle-GAN, DU-GAN, and the proposed CR-GAN. In compari-
son to Cycle-GAN and DU-GAN, we discover that the fingerprint
quality of photos produced by CR-GAN is substantially higher. The
average EER derived by each model is shown in Figure 16 (b) and
(c) and Table 13. We discover that Cycle-GAN performs poorly
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Fig. 14: Examples showing the suggested CRU’s generalizability on (a) DeConvNet and (b) Unet designs, while contrasting with the suggested
CR-GAN.
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Fig. 15: Evaluation of the suggested CRU’s generalizability over cutting-edge deep architectures: (a) histogram presenting the distribution of
quality scores of fingerprints; DET curves generated using (b) Bozorth; (c) MCC.
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Fig. 16: On [92], the suggested CR-GAN is compared against recent fingerprint enhancement models that employ a GAN framework: Cycle-
GAN and DU-GAN: (a) Histogram presenting the distribution of quality scores of fingerprints; DET curves derived using (b) Bozorth (c) MCC.
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Fig. 17: Example scenarios that show the ridge preservation capabilities of the CR-GAN and its variations (analyzed during ablation) to keep
the ridge details intact.
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Fig. 18: DET curves utilizing (a) Bozorth and (b) MCC to illustrate the importance of the suggested channel refinement.
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Enhancement
Algorithm

Quality
Score

Cycle-GAN [103] 1.76
DU-GAN [31] 1.26
CR-GAN 1.42

Table 12 An analysis of average quality scores (computed through NFIQ)
achieved by several enhancement models leveraging GAN framework.

Enhancement
Algorithm

Bozorth MCC

Cycle-GAN [103] 29.52 27.96
DU-GAN [31] 7.13 5.13
CR-GAN 5.72 4.45

Table 13 An analysis of verification results obtained on [92] by several
models leveraging GAN framework for enhancement. Performance is
quantified by average equal error rate.

Refinement Bozorth MCC
Discriminator 7.68 5.81
Generator 6.79 4.73
Both 5.72 4.45

Table 14 An analysis of verification results obtained on [92] by GAN variants
curated by introducing the suggested CRU into its different sub-networks.

because it is unable to maintain ridge structure throughout improve-
ment. In contrast to the other two enhancement models leveraging
GAN framework, suggested CR-GAN achieves the most satisfactory
enhanced fingerprints, as evidenced by the lowest verification error
rate.

7 Impact of CRU on Fingerprint Enhancement

7.1 Ridge Structure Preservation

A poor input fingerprint may be accompanied by many types of noise
patterns. In order to measure the suggested CR-GAN’s capacity to
preserve ridges over a variety of noise patterns observed in real poor
quality fingerprints, we compute SSIM similarity scores between the
ground truth binarized image and the output corresponding to the
input. A high similarity score means the model keeps ridge details,
i.e., while enhancing them, the fingerprint picture input preserves the
type of fingerprint pattern, the direction of the ridges, and minutiae
details. Sample degraded fingerprints are shown in the first column
from the left in Figure 17 along with enhanced pictures produced
by CR-GAN (rightmost column). The related ground truth binarized
fingerprint images are shown in the second column. High similar-
ity scores between CR-GAN’s output and ground truth are attained,
proving that the suggested method preserves the input fingerprint’s
ridge structure while enhancing it.

7.2 Ablation Study

In order to more precisely measure the effects on the generator
and discriminator networks by incorporating the suggested CRU,
we analyze CR-GAN’s enhancement results on different variants
of CR-GAN. When using the suggested CRU, we investigate three
alternative variants: using just the generator, just the discriminator,
and using both the generator and the discriminator. Table 14 reports
the verification error rate for all three versions, and Figure 18(a)
and Figure 18 (b) illustrate the related DET curves. Figure 17 and
19 display sample reconstructions produced by each of the three
variations.

7.3 Successful Scenarios

Few samples on which the suggested CR-GAN achieves satisfactory
enhancement results are illustrated in Figure 20. The two left-most

Model Total
RUnet 3104178
CR-RUnet 3110586
SE-RUnet 3643599

Table 15 Comparison of the CRU’s introduced model parameters with model
parameters introduced by SE-block [55].

Database Jaccard Similarity (↑) Dice Score (↑)
RUnet CR-RUnet RUnet CR-RUnet

2000DB1 88.15 86.97 93.34 92.71
2000DB2 86.40 84.87 92.39 91.55
2000DB3 93.74 93.04 96.50 96.16
2000DB4 94.28 88.68 97.04 93.94
2002DB1 96.95 96.65 98.44 98.29
2002DB2 94.88 93.93 97.28 96.73
2002DB3 91.83 92.75 95.53 96.11
2002DB4 91.17 88.67 95.32 93.93
2004DB1 98.78 98.64 99.38 99.31
2004DB2 93.94 95.46 96.69 97.65
2004DB3 94.62 94.90 97.17 97.35
2004DB4 94.73 95.17 97.21 97.48

Table 16 Fingerprint ROI segmentation performance degrades after
incorporating CRU into RUnet architecture.

columns are latent fingerprints that are acquired using dusting with
a chemical powder which sometimes lead to non-uniform amount
of powder at different fingerprint regions. As a result, latent finger-
prints may possess unclear ridge structure. However, interestingly,
with decent ridge-valley clarity, CR-GAN successfully reconstructs
fingerprints for both the samples. The scenario of indistinct val-
leys caused by thick ridges arising due to moist finger or excessive
pressure is depicted in the third column. Once more, the suggested
CR-GAN properly predicts details about ridges and valleys and pro-
duces a fingerprint with significantly improved ridge information.
The lost ridge details owing to warts or creases is shown in the the
two rightmost columns. CR-GAN accurately approximates the oth-
erwise missing ridge features at fingerprint image pixels with creases
and cuts.

7.4 Challenging Scenarios

The effectiveness of CR-GAN on few difficult instances is shown
in Figure 21. CR-GAN produces erroneous ridge patterns close to
the distorted region, in the top row. The input fingerprint’s ridges in
the middle row, close to the area of excessive pressure, are either
invisible or very dark. Subsequently, CR-GAN produces ridges that
are not smooth or erroneous ridge features. Nonetheless, CR-GAN
consistently beats the backbone FP-E-GAN (in addition to several
cutting-edge models for fingerprint enhancement). This confirms the
idea that refining channel weights enhances model performance in
terms of both quality and subsequent match scores.

7.5 Fingerprint ROI Segmentation

Lastly, we study the generalization ability of the proposed CRU
on fingerprint preprocessing tasks by evaluating the fingerprint ROI
segmentation task. For this experiment, we take RUnet [52], a state-
of-art deep model for fingerprint preprocessing [30, 104–106] as the
backbone network. Subsequently, we introduce CRU into RUnet and
design CR-RUnet. Later, CR-RUnet is trained in a fully supervised
manner to learn to segment foreground and background fingerprint
regions. As any channel level attention model increases the model
parameters (see Table 15), which under limited availability of train-
ing data, can deteriorate the model performance. Table 16 compares
the fingerprint ROI segmentation performance with (CR-RUnet) and
without (RUnet) the introduction of CRU. We find that fingerprint
ROI segmentation ability of the model after introducing CRU is
competitive to RUnet, with RUnet performing better on the majority
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Input Discriminator Generator Both

Fig. 19: Examples from [92] showing the effect of introducing the suggested CRU into FP-E-GAN’s [28] different sub-networks.

Fig. 20: Examples of effective enhancement results obtained using the suggested CR-GAN.

Input STFT Hong DeConvNet FP-E-GAN CR-GAN

Fig. 21: Examples illustrating difficult instances and contrasting cutting-edge algorithms for fingerprint enhancement.
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Database Jaccard Similarity (↑) Dice Score (↑)
CR-RUnet SE-RUnet CR-RUnet SE-RUnet

2000DB1 86.97 49.66 92.71 34.82
2000DB2 84.87 61.69 91.55 49.08
2000DB3 93.04 86.81 96.16 78.47
2000DB4 88.68 86.65 93.94 78.44
2002DB1 96.65 94.66 98.29 90.41
2002DB2 93.93 69.22 96.73 57.73
2002DB3 92.75 60.07 96.11 43.91
2002DB4 88.67 66.23 93.93 51.38
2004DB1 98.64 96.72 99.31 93.94
2004DB2 95.46 84.85 97.65 75.94
2004DB3 94.90 84.93 97.35 76.95
2004DB4 95.17 61.58 97.48 46.79

Table 17 Fingerprint ROI segmentation performance degrades after
incorporating both CRU and SE block into RUnet architecture. However, CRU
performs significantly better than SE block.

of datasets. We hypothesize that better ROI segmentation perfor-
mance of RUnet in contrast to CRUnet is observed due to potential
overfitting by CRUnet as a result of more model parameters. How-
ever, as the increase in model parameters is not so significant, the
performance doesn’t drop significantly.

To validate the above-mentioned hypothesis, we perform an addi-
tional experiment. We compare CRU with the SE block. The fin-
gerprint ROI segmentation model designed after introducing the SE
block into RUnet is named SE-RUnet. Table 17 compares the fin-
gerprint ROI segmentation performance after the introduction of
CRU (CR-RUnet) and SE block (SE-RUnet). The fingerprint ROI
segmentation performance of SE-RUnet drops significantly com-
pared to CR-RUnet. These results signify that although the finger-
print ROI segmentation performance does not improve significantly
after introducing channel level attention, however, CRU signifi-
cantly outperforms the cutting-edge channel attention method SE
block. These findings support the assertion that the suggested CRU
is a better-suited channel-level attention mechanism for fingerprint
preprocessing compared to the state-of-the-art.

8 Conclusion

This research presents a channel refinement unit (CRU), a channel-
level attention mechanism for deep fingerprint preprocessing mod-
els. Extensive experimentation confirms that CRU generalizes on
different choices of deep architectures for fingerprint preprocess-
ing. Visualization of correlation matrix indicates that CRU reduces
correlation among features, explaining the improved generalization
ability. However, as CRU introduces additional parameters into the
fingerprint preprocessing models, CRU is better suited for applica-
tions with enough training data. In the future, several other applica-
tions in the domain, such as presentation attack detection, as well
as deep models for fingerprint feature extraction and matching, can
benefit from the proposed CRU.
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