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Abstract—A convolutional layer of a traditional convolutional
neural network (CNN) does not ensure the extraction of comple-
mentary bands of the input data. Thus a significant amount of re-
dundancy is observed among different convolutional filters. Here,
we propose a novel architecture design framework called ‘Multi-
band CNN’ to efficiently utilize model parameters in a CNN. The
framework generates four filters from a single filter by varying
their frequency responses, extracting four complementary bands
of the input data without increasing the parameter count. This
leads to higher parameter utilization and results in a compact
network with reduction in trainable parameter count but with
close to the same accuracy as the base model. We perform
experiments using residual networks (ResNet-32, ResNet-56, and
ResNet-110) on datasets like CIFAR-10 and CIFAR-100. Our
results show improved classification accuracy for CIFAR-10 when
introducing a multi-band layer in the first convolutional layer,
while there is no significant drop in accuracy for CIFAR-100. The
performance is better when replacing the first convolutional layer
instead of the last one, indicating that low-level features generated
by sub-band filtering are more beneficial to the network than
high-level features provided by filter banks at the final layer. The
proposed Multi-band CNN framework offers a potential solution
for reducing the number of filters required to train and the
computational complexity of generating feature maps in CNNs,
while maintaining or even improving classification accuracy.

Index Terms—Convolutional Neural Network (CNN), Filter
Bank, Model Compression, Filter Pruning, Deep Learning

I. INTRODUCTION

Convolutional neural networks (CNNs) have emerged as the
primary tool for solving various computer vision applications,
including multi-class classification, semantic segmentation,
image captioning, and other challenging tasks [1], [2], [3].
Over the years, the depth and width of deep neural networks
have increased to achieve better representations. However,
this increase in complexity leads to a significant rise in
computations and parameter count, making it challenging to
deploy these models on resource-constrained devices such as
mobile phones and embedded systems. To address this issue,
researchers have proposed several model compression methods
and efficient training mechanisms, such as parameter quanti-
zation, tensor decomposition, knowledge distillation, compact

network synthesis, and pruning network parameters. These ap-
proaches aim to produce compact models without significantly
degrading performance by reducing the computational cost and
redundancy in deep neural networks.

Although there are several methods that compress a CNN,
but our objective in this paper is how can we ensure that
different convolutional filters capture complimentary bands
information from the input image. In traditional convolutional
layer, existing architecture design never assures this or the
production of diverse features using these filters. Here, we
propose a novel architecture design framework called ‘Multi-
band CNN’ (MCNN) for efficiently utilizing model param-
eters. The framework generates four filters from a single
filter by varying their frequency responses to extract four
complementary bands of the input data, without increasing the
network’s parameter count. This leads to higher utilization of
the network’s parameters and results in a compact network
with reduced parameter count but with close to the same
accuracy as the base model.

Previously, few attempts [4] have been made to incorpo-
rate the classical multi-band filtering scheme with the neural
network to represent the input-output mapping of the dataset
more accurately. However, the objective of these methods is
to provide the neural network with low-level features as input
instead of passing the raw data to the network directly. The
learning capacity of the network increases by incorporating
this manually chosen feature extractor in the first layer. How-
ever, our objective is different from the existing approaches.
Our approach provides the flexibility to train network filters
of all layers instead of manually fixing the filters of the first
layer. We know that the training time of the base model
increases with the number of filters present in the model.
So, while capturing complementary bands information, our
objective is here to ensure that the number of filters that
need to be trained reduces, and yet we achieve a similar
classification performance. Current CNN models [5], [6], [7]
do not guarantee that different filters within a layer will extract
complementary information from the input. So, we attempt to



solve this problem by designing a novel architecture named
‘Multi-band CNN (M-CNN).’

MCNN reduces the filter count of a network by a factor
of four, and generates four filters from a single filter. This
indicates reduction in the trainable paramereters by a factor
of four in a convolutional layer where multi-band filtering
is incorporated. This compact and efficient network provides
similar accuracy as the base model. Using M-CNN, we notice
improvement in accuracy for standard datasets like CIFAR-
10. The results are consistent with several residual networks
like ResNet-32, ResNet-56, and ResNet-110 for CIFAR-10
classification. We observe no drop in accuracy using M-CNN
for CIFAR-100 classification using ResNet-56.

The main contributions of this paper are as follows:
• We propose a method to generate four filters from a single

filter in a convolutional neural network from complemen-
tary band information.

• We show that the proposed architecture design framework
can be used to generate a compact network with reduced
parameter count but with close to the same accuracy as
the base model.

II. RELATED WORKS

The depth and width of the deep neural networks have in-
creased over the years so that the neural networks can achieve
better representations. With more complicated tasks, a greater
number of parameters are required to capture the patterns
within data. The depth of the neural network is increased
over time to achieve better performance but at the cost of
a significant increase in computations [8]. The number of
parameters and floating point operations (FLOPs) increase as
the number of hidden layers grows for a CNN [9]. The number
of filters present in a network determines the model size. While
dealing with deep architectures, storing millions of parameters
and performing billions of floating point operations during
inference have become common on workstations and server
grade systems [3]. However, the requirement of memory for
the storage of the network parameters in handheld devices, and
computational resources for performing convolutions thereof
cannot be fulfilled due to resource limitations in mobile
devices or any other embedded systems when the depth and
width of CNN are too high [10].

To deal with this, researchers have proposed several model
compression methods and efficient training mechanisms which
can produce a compact model without degrading the per-
formance significantly. These solutions include (a) parameter
quantization [11], [12], [13], [14], (b) tensor decomposition
[15], [16], [17], [18], (c) knowledge distillation [19], [20],
[21], [22], (d) compact network synthesis [23], [24], [25],
[26], (e) pruning network parameters [27], [28], [29], [30],
etc. Out of all these solutions, pruning network parameters
reduces the computational cost of deep neural networks (DNN)
by first identifying and then deleting the redundant parameters
in such a manner that the learning effectiveness is maintained
compared to the unpruned (base) model. It is observed that
a significant amount of redundancy exists among different

convolution kernels and even in a single kernel for deep neural
networks [31]. Unlike network synthesis methods, pruning
offers the flexibility to the user to choose a standard base
model (like VGG [5], ResNet [6] etc.), and thereafter it
automatically generates a compact model from the base model
by trimming the redundant parameters.

Pruned models can achieve the same classification perfor-
mance, despite the latter having fewer filters. Filter pruning
creates a compact and efficient model by removing unim-
portant filters from the base model, while network synthesis
methods, such as Nest [23], Neurogenesis [24], SCANN [26],
design compact architectures from scratch based on gradient
profiles and neuron activations. The vanishing gradient prob-
lem hinders training for very deep plain networks, but deeper
multi-branch networks can overcome this issue with skip
connections. The development of neural network synthesis for
multi-branch networks like ResNet is still in its early stages.
Different approaches have been taken to make the CNN more
compact and efficient. However, existing methods does not
ensure extraction of complementary bands information while
training the network. We solve this problem by novel archi-
tecture design in which model filters to capture unique image
features. We apply this method to deep residual networks, and
redundancy in filters capturing similar features is removed with
our proposed MCNN.

III. MATHEMATICAL ANALYSIS

First, we discuss our motivation for this work. We then
describe the proposed method and thereafter the frequency
response of filters of MCNN in detail.

A. Motivation

We introduce a sub-band filtering scheme, ensuring filters
in a layer capture complementary bands by design.Unlike
previous attempts integrating classical multi-band filtering
schemes with neural networks, our approach allows training
filters of all layers instead of manually fixing the first layer’s
filters. This aims to reduce the number of filters required to
be trained while maintaining the classification performance.
Current CNN models do not guarantee that filters within a
layer extract complementary information, which we address
using MCNN.

Let’s say we have a 3×3 matrix h1(r, s) which is a filter. We
represent the filter coefficients as a 2D matrix. For the sake of
this analysis, we assume that the filter has all elements equal
to 1, without loss of generality. So, the filter matrix is given
by:

h1 = hr,s =

1 1 1
1 1 1
1 1 1


Here, h1(r, s) is a low pass filter. We can generate four

filters from this filter by multiplying it with four different
multipliers (1, (−1)r, (−1)s, (−1)r+s). Let h2(r, s), h3(r, s),
and h4(r, s) be three other filters generated from h1(r, s). We
can generate these filters by multiplying h(r, s) with three



Fig. 1. Block diagram of a Multi-band CNN. Here, conventional convolutional layer is replaced by multi-band convolutional layer for the first layer.

different multipliers (ignoring the trivial multiplication of 1
for h1(r, s)) .

h2 = (−1)rhr,s =

1 −1 1
1 −1 1
1 −1 1


h2 is a vertical edge detector.

h3 = (−1)shr,s =

 1 1 1
−1 −1 −1
1 1 1


h3 is a horizontal edge detector.

h4 = (−1)r+shr,s =

 1 −1 1
−1 1 −1
1 −1 1


h4 is a diagonal edge detector.

B. Proposed Method

In M-CNN, We produce four filters from a single filter
by altering their frequency responses in order to extract four
complimentary bands of the input data. By maintaining the
original filter and adding three distinct masks to it, a single
filter may produce a total of four filters. Three filters that are
generated are referred to as “derived” filters, while we refer to
the filter as the “base” filter from which they are developed.
We multiply a single filter with four different deterministic
multipliers to capture the complementary bands of the input.
Fig. 1 depicts the block diagram of M-CNN, in which the first
layer is a multi-band convolutional layer. Multi-band convolu-
tional layer is different from the existing convolutional layer.
This work explores the impact of substituting a conventional
convolutional layer with a multi-band layer. So, Multi-band

CNN approach can generate a vertical edge detector (filter
h2), a horizontal edge detector (filter h3), and a diagonal edge
detector (filter h4) from a single filter h1. These are three
useful masks for diverse feature exatraction from a single
image. The impact of multi-band CNN is such that even when
the base filter smoothens the original image, then also the
derived filters can extract different types of edges (horizontal,
vertical and diagonal) from the image using the same base
filter. This is because the derived filters are generated from
the original filter by altering their frequency responses.

All filters participate in the training for conventional con-
volutional layers during CNN training. However for a multi-
band layer, only the base filters are learned, and the derived
filters are obtained directly from the base filters. In a multi-
band layer, all derived filters have the same absolute value as
the base filter, but their ‘sign’ varies depending on the spatial
position of the filter coefficient. The combination of a base
filter and derived filters constitutes a filter bank.

C. Frequency Response of Filters

Modification in the impulse response of derived filters
with reference to base filter leads to the modification in the
frequency response of derived filters. If h(r, s) is the impulse
response and H(u, v) is the frequency response of the base
filter, then the impulse response and frequency response of the
filters belong to the filter bank are shown below,

h1(r, s) = h(r, s) ⇐⇒
H1(u, v) = H(u, v) (1)

h2(r, s) = (−1)r × h(r, s) ⇐⇒
H2(u, v) = H(u− π, v) (2)



Fig. 2. Frequency response of a filter bank. The frequencies for which a filter has non-zero response, is highlighted in gray. If the frequency response of
base filter is (a) H1(u, v) then the response of derived filters will be (b) H2(u, v), (c) H3(u, v), (d) H4(u, v).

h3(r, s) = (−1)s × h(r, s) ⇐⇒
H3(u, v) = H(u, v − π) (3)

h4(r, s) = (−1)r+s × h(r, s) ⇐⇒
H4(u, v) = H(u− π, v − π) (4)

Fig. 2 shows the frequency bands where the filters have a
non-zero response. Interestingly, all four filters of a filter bank
have been generated from a single filter. Yet, they are capable
of capturing different frequency bands of the input signal as
shown in Fig. 2.

IV. EXPERIMENTAL RESULTS

In this section, we observe the impact on the performance
of the model while replacing a conventional convolutional
layer with a multi-band convolutional layer. The effect of
introducing a multi-band layer is observed here for the first and
last convolutional layer of a network. Over the years, residual
networks have been found to be more effective, and they also
perform better than plain networks. So we utilize only residual
networks for these experiments. We perform experiments with
different datasets (CIFAR-10, CIFAR-100) and with different
architectures (ResNet-32, ResNet-110).

We find that for the CIFAR-10 classification task [Table
I], incorporating a ‘multi-band’ layer in the first convolu-
tional layer improves the classification accuracy by 0.31% for

TABLE I
PERFORMANCE COMPARISON BETWEEN M-CNN AND CNN. MCNN-F

AND MCNN-L ARE USED WHEN THE FIRST AND FINAL CONVOLUTIONAL
LAYERS ARE REPLACED WITH A MULTI-BAND LAYER, RESPECTIVELY.

MCNN-F MCNN-L

Dataset Arch Baseline Final Acc Final Acc
acc (%) acc (%) drop (%) acc (%) drop (%)

CIFAR10 ResNet32 92.85 93.16 -0.31 93.11 -0.26
ResNet56 93.52 93.85 -0.33 93.7 -0.18
ResNet110 93.94 93.96 -0.02 93.66 0.28

CIFAR100 ResNet56 71.79 71.7 0.09 71.34 0.45

Fig. 3. Performance comparison between M-CNN and CNN. MCNN-F and
MCNN-L are used when the first and final convolutional layers are replaced
with a multi-band layer, respectively.

ResNet-32, 0.33% for ResNet-56 and 0.02% for ResNet-110
as shown in Fig. 3. When we replace the last convolutional
layer with a multi-band layer, we observe 0.26% and 0.18%
improvement in the test accuracy over baseline for ResNet-
32 and ResNet-56, respectively. However, a drop of 0.28% in
classification accuracy is observed compared to the baseline
for ResNet-110. For experiments with CIFAR-100, we observe
a minute drop of 0.09% and 0.45% compared to baseline while
replacing the first or last convolutional layer respectively when
ResNet-56 is used as the base model.



TABLE II
NUMBER OF TRAINABLE FILTERS IN THE FIRST AND FINAL

CONVOLUTIONAL LAYERS OF RESNET-32 AND RESNET-56, AND
RESNET-110.

Arch Base Model MCNN-F MCNN-L

First
layer

Last
Layer

First
layer

Last
Layer

First
layer

Last
Layer

ResNet32 16 64 4 64 16 16
ResNet56 16 64 4 64 16 16
ResNet110 16 64 4 64 16 16

All these experiments show that the performance of the
models is better when replacing the first convolutional layer
instead of replacing the last convolutional layer with a multi-
band layer [Table II]. It indicates that low-level features
generated by sub-band filtering are more beneficial to the
network than high-level features provided by filter banks
at the final layer. In summary, our experiments reveal that
replacing the first convolutional layer with a multi-band
layer yields better performance compared to replacing the
last convolutional layer. This suggests that low-level features
generated by sub-band filtering play a more crucial role in the
network’s performance than the high-level features provided
by filter banks at the final layer. The observed improvements
in classification accuracy for CIFAR-10 and minimal drops
in CIFAR-100 demonstrate the potential of the multi-band
layer in enhancing the network’s effectiveness. These findings
highlight the importance of efficiently capturing low-level
features in CNNs and pave the way for further exploration
of multi-band layers in different network architectures and
applications.

V. CONCLUSION

In conclusion, the proposed Multi-band CNN framework
presents an innovative and efficient approach to address the
challenges of increased parameter count and computational
complexity in convolutional neural networks, particularly for
resource-constrained devices. By generating four filters from a
single filter and extracting four complementary bands of input
data without increasing the parameter count, M-CNN leads
to higher utilization of the network’s parameters and results
in a compact network with reduced parameter count while
maintaining or even improving classification accuracy.

Our experiments on benchmark datasets like CIFAR-10
and CIFAR-100 using residual networks such as ResNet-32,
ResNet-56, and ResNet-110 demonstrate the effectiveness of
the M-CNN framework. For CIFAR-10, M-CNN reduces the
number of filters required to train by a factor of four for
the first layer, improving classification accuracy consistently
across different residual network architectures. Furthermore,
we observe no significant drop in accuracy using M-CNN
for the CIFAR-100 classification task using ResNet-56. The
introduction of the filter bank in the M-CNN framework
reduces the number of filters needed to be trained by a factor
of four. Moreover, an efficient implementation of convolution
for all filters within a filter bank can potentially reduce the

number of required multiplications and additions, accelerating
the generation of feature maps. This is possible because all
the filters of a filter bank have the same coefficients and differ
only in their ‘sign’, unlike conventional convolutional layers
where the coefficients of every filter can be entirely different
from each other.

Future work can explore efficient implementations of con-
volution for all filters within a filter bank and investigate the
impact of the multi-band layer on other network architectures
and datasets. Additionally, the extension of the current work
to incorporate MCNN framework in advanced multi-branch
networks, such as MobileNet, can further enhance the appli-
cability and performance in various computer vision tasks and
especially for resource-constrained environments.
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