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Abstract. Latent fingerprints are the fingerprints which are left unintentionally on a sur-
face, while touching it. These are of great interest for the forensics experts for criminal
identification. Latent fingerprints usually possess high non-linear distortion. Furthermore,
these may be overlapping with background text or other fingerprints. These fingerprints can
be extracted from different surfaces leading to the varying background. The presence of struc-
tured and unstructured background noise adversely affects minutiae (ridge bifurcation/ridge
ending) extraction in latent fingerprints which in turn leads to poor matching performance.
A latent fingerprint enhancement algorithm removes the background noise and predicts the
missing ridge information. It also improves the ridge clarity which helps to improve minutiae
extraction and thereby improving matching performance. Traditionally, latent fingerprints
are enhanced by approximating the orientation field and then applying contextual filter-
ing using the approximated orientations. However, recently the attention has been shifted
towards developing models which can directly denoise the fingerprints and reconstruct the
missing ridge structure without explicitly estimating the orientation field.

Inspired by the success of Generative Adversarial Network (GAN) in image processing appli-
cations, we propose a GAN based latent fingerprint enhancement model. However, one of the
key issues with GANs is that they are difficult to train. Through this work, we contribute our
efforts towards sharing details on successfully training a generative adversarial network. The
proposed latent fingerprint enhancement model preserves ridge structure including minutiae.
We discuss the role of training data i.e. various noise models which should be considered for
modeling a latent fingerprint, during training a GAN. In addition to this, we discuss the
significance of choice of loss function and the role of hyper parameters such as batch size,
weight of each loss term and no. of epochs for training the GAN. We evaluate the proposed
enhancement model on publicly available latent databases: Indraprastha Institute of Infor-
mation Technology Delhi Multi-sensor Optical and Latent Fingerprint (IIITD-MOLF) and
Indraprastha Institute of Information Technology Delhi Multi-surface Latent Fingerprint
(IIITD-MSLF).

Keywords: Latent Fingerprints, Denoising, Generative Adversarial Network, Enhancement.

1 Introduction

Latent fingerprints are the impressions of the ridges on the fingertips which are unintentionally
deposited on the surface of an object when the subject touches it. These fingerprints are lifted by
forensic experts using specialised techniques like dusting or chemical processing. Latent fingerprints
have unclear ridge structure, partial ridge information and uneven contrast between ridges and
valleys. They also possess structured noise due to overlapping text, lines, stains and sometimes
overlapping fingerprints in the background. Fig. 3.1(a) showcases sample latent fingerprint images
from IIITD-MSLF database [1].

Latent fingerprints picked up from the crime scene are matched with fingerprints in the law-
agency’s fingerprint database, to find crime suspects. Standard fingerprint matching systems are
designed for good quality fingerprints. However, due to the poor quality of latents, standard fin-
gerprint feature (minutiae) extractors which perform well on plain and rolled fingerprints often
fail on latent fingerprint [2]. Fig. 3.1(b) showcases that many times, true minutiae are missed
due to smudged and blurred ridges and many spurious minutiae are extracted due to background
noise. As a result, the matching accuracy achieved by the standard fingerprint matchers on latent
fingerprints is far from satisfactory to be used for latent fingerprint matching.



(a)

(b)

Fig. 3.1: (a) Sample latent fingerprints from IIITD-MSLF database depicting background noise, degraded
fingerprint ridges, background with textures and multiple fingerprints overlapping with each other (b)
Fingerprints exhibiting the improvement of minutiae detection on enhanced images generated by proposed
algorithm. Left column exhibits the original fingerprints, middle column showcases the minutiae detected
(shown by blue dots) on original fingerprints using NBIS tool [5]. Right column shows improved minutiae
detection post enhancement.

Due to this, latent fingerprints are manually matched by the latent fingerprint examiners which
pose a huge burden on them. Further, studies have reported inconsistency across evaluations of
latent fingerprint examiners [3] [4]. This poses a serious need to automate the process of latent
fingerprint matching which can facilitate fast and accurate matching performance over the whole
fingerprint database and not just a small subset of suspects.

One of the key techniques to improve the latent fingerprint matching performance is an en-
hancement module. An enhancement algorithm improves the contrast between ridges and valleys,
removes background noise and predicts the missing ridge information and thus facilitates correct
minutiae extraction, in turn improving the matching performance. Fig. 3.2 depicts the overall
framework of latent fingerprint matching.

In this chapter, we provide details on training generative adversarial network (GAN) which
removes the background noise and improves ridge clarity while preserving the ridge structure



Fig. 3.2: Latent fingerprint matching framework.

including minutiae. Several studies have pointed out the difficulties in training a GAN based model.
We discuss the role of loss function, various hyper-parameters and training data in successfully
training a GAN for latent fingerprint enhancement.

2 Related Work

The early literature on latent fingerprint enhancement focuses on accurate estimation of orientation
field of ridges in latent fingerprints. The estimated orientations are then fed to the Gabor filter
to enhance latent fingerprints. Given below are the approaches of latent fingerprint enhancement
which approximate orientation field and utilize it to enhance latent fingerprints:

Yoon et al. [6] propose an orientation estimation algorithm that requires manually marked
ROI (Region of Interest) and singular points. At first, orientation skeleton image is derived from
Verifinger [7] (the state-of-art commercial fingerprint matching tool). From these orientations, re-
liable and unreliable blocks are found out. Reliable blocks have orientations coherent with the
neighbouring blocks. For the unreliable blocks, the re-estimation of orientations is performed by
interpolations of orientations from the reliable blocks. Using the interpolated orientations, finger-
print rotation and skin distortion model is estimated. Further, computation of orientations from
singular points is done using zero-pole technique. Finally, orientation is estimated using orientation
obtained through zero-pole method and estimated distortion model. Gabor filtering is applied on
the estimated orientation to obtain the enhanced image.

Yoon et al. [8] estimate orientation field estimation assuming that the manually marked ROI
and singular points are available for the input latent fingerprint image. Initial orientation field
is computed by STFT (Short Time Fourier Transform) enhancement algorithm. However, the
performance of STFT can be easily affected by the unstructured background noise. They employ a
two-level approach in which firstly they merge compatible orientation elements in a neighbourhood
into an orientation group. Next, they generate top-ten best global orientation using R-RANSAC
(Randomized Random sample consensus). Gabor filters with all the ten orientations are employed
to obtain ten enhanced latent fingerprint images. Matching is done with all the ten images and
maximum match score serves as the final output match score of the latent.

Feng et al. [9] argue that the orientation estimation is analogous to spelling correction in a
sentence. They propose to create a dictionary of orientation patches estimated from good quality
fingerprint patches. Creating dictionary helps to eliminate non-word errors i.e. predicting such
orientations which cannot exist in real-life. They further discuss that just as contextual information
can help in spelling correction, similarly orientation of neighbouring patches should be utilized for



the estimation of orientation of a given patch. To begin with, they compute an initial estimate of
orientation field using STFT. They, then, compare the initial estimate with each dictionary element
and identify potential candidates. They use compatibility between neighbouring patches to find
the optimal candidate. Orientation information of all orientation patches is then summarized to
obtain the final orientation field.

Yang et al. [10] utilize spatial locality information present in fingerprints to improve the quality
of the estimate. Authors claim that only specific orientations occur at a given location, e.g. the
orientations at the middle of fingerprints will be different than the orientations at the top of
fingerprints. In order to exploit this information, they introduce localized dictionaries i.e. create a
dictionary for every location in a fingerprint. Due to this, each dictionary contains only a limited
number of orientations leading to faster dictionary look-ups. Moreover, this technique leads to even
fewer non-word errors.

Chen et al. [11] observe that the average size of noise is not same in all latent fingerprints.
Rather, it varies across different qualities of latent fingerprints. For a poor quality image, one can
obtain better results by using a dictionary with bigger patch size and vice-versa. So, a dictionary
created for only a particular size of orientation patches will not work for all latent fingerprints.
The authors solve this problem by creating multi-scale dictionaries i.e. dictionaries of different
patch sizes. They use compatibility between neighbours across different scales to find the optimal
orientation patch for a given estimate.

Cao and Jain [12] discuss the limitations of dictionary-based methods. They further argue that
there is a need for methods which can learn the orientation field from poor quality latent finger-
prints. They formulate estimation of orientation field from a fingerprint image as a classification
problem. They address this problem using a CNN based classification model. The real challenge in
using a deep architecture is to have a large amount of latent fingerprints for training the network.
For this purpose, they propose a model to simulate texture noise as present in latent fingerprints.
Several structured and unstructured noise patterns are injected into good quality fingerprints for
synthesizing latent fingerprints. K-means clustering is performed on orientation patches of good
quality images to select 128 representative orientation patch classes. They extract 1000 orientation
patches for each orientation class and trained the network with corresponding simulated latent.
After training the model for each patch in input latent fingerprint, an orientation class is predicted
by the model.

Liu et al. [13] pose the estimation of orientations as a denoising problem and propose sparse
coding for denoising of orientation patches. Authors create multi-scale dictionaries from good
quality fingerprints. After computing the initial estimate, they, then, reconstruct the orientation
using dictionary of smallest size with sparse coding. The quality of an orientation patch is then
estimated based on compatibility with neighbours. If the quality is below a certain threshold,
then the orientation patch is reconstructed using a dictionary of bigger patches. This process is
continued until the quality of reconstructed orientation patch is satisfactory.

Chaidee et al. [14] propose sparse coded dictionary learning in frequency domain which fuses
responses from Gabor and curved filters. In the offline stage, dictionary is constructed from the
frequency response. In the online stage, spectral response is computed which is then encoded by
spectral encoder. The sparse representation of the spectral code is computed and then decoded
by spectral decoder to reconstruct the fourier spectrum. A weighted sum of the reconstructed
image is obtained from both the filters is computed to obtain the final enhanced image. Recently,
the attention has been shifted to straight away generate enhanced fingerprint without explicitly
approximating orientation field. We now describe such latent fingerprint enhancement algorithms:

Qu et al. [15] propose a deep regression neural network which outputs orientation angle val-
ues. The input latent fingerprint image is first pre-processed using total variation decomposition
and Log-Gabor filtering. The pre-processed latent is then given as an input to the network and
orientation is estimated. Boosting is performed to further improve the prediction accuracy.

Li et al. [16] propose a multi-task learning based enhancement algorithm which works on the
patch level. Input latent fingerprint image is pre-processed using Total Variation Decomposition
and the texture component is used as an input for the proposed model. Proposed solution is based
on encoder-decoder architecture trained with a multi-task learning loss. One branch enhances the
latent fingerprint and the other branch predicts orientation for the input image. This algorithm



requires orientation field information as a part of training data to train the network to generate
the enhanced fingerprint image. Thus, this algorithm is beyond the scope of this chapter.

Svoboda et al. [17] suggest an end-to-end convolutional auto-encoder architecture which im-
plicitly minimizes orientation and gradient loss between the target enhanced fingerprint and the
fingerprint produced by their model. The objective function is designed such that it only mini-
mizes l2-loss and it cannot address perceptual information. A brief summary of limitation of the
state-of-the-art is provided at Table 3.1.

To summarize, the traditional state-of-the-art latent fingerprint enhancement algorithms focus
on accurate orientation estimation for latent fingerprints and exploit only Gabor filters to enhance
latent fingerprints. Recent state-of-art techniques, on the other hand, propose learning-based end-
to-end latent fingerprint enhancement models which directly generate enhanced fingerprints with-
out only relying on Gabor filters. The weights of the kernels in convolutional neural networks are
rather learnt for the problem in hand. However, none of the above mentioned latent fingerprint
enhancement models exploit the perceptual information in the fingerprints.

Algorithm Proposed Approach Limitation Reference
Classical

Image
Processing

and
hand-crafted

models

Orientation estimation using
zero-pole method and distor-
tion model

Requires manually marked ROI and sin-
gular points

[6]

R-RANSAC is used to find
top-ten global orientations.
All the ten enhanced images
are used for matching

Requires manually marked ROI and sin-
gular points. Matching with ten enhanced
images is an overhead

[8]

Dictionary
Learning

Dictionary learning based
orientation estimation

Incorrect estimation around singular
points, high computation time

[9]

Localized dictionary learning
based orientation estimation

Algorithm first performs pose estimation
and then orientation estimation leading to
high computational complexity

[10]

Multi-scale dictionary learn-
ing based orientation estima-
tion

Global multi-scale dictionaries are used
due to which local apriori fingerprint in-
formation is not utilized

[11]

Spectral dictionary Requires manually marked core points [14]
Sparse coded dictionary
learning based orientation
estimation

Global multi-scale sparse coded dictionar-
ies are used due to which local apriori fin-
gerprint information is not utilized

[13]

Deep
Learning

Convolutional neural net-
work based classification for
orientation estimation

Number of orientation patch classes is
very limited, due to which the orientation
estimation may not be accurate

[12]

Deep regression neural net-
work for orientation estima-
tion

Requires pre-processing before orientation
estimation. Moreover, algorithm is not
evaluated on any of the publicly available
latent fingerprint databases

[15]

Multi-task learning based
autoencoder

The autoencoder is designed for pre-
processed latent fingerprints

[16]

Convolutional auto-encoder
that minimizes orientation
and gradient loss

Fails to preserve minutiae in case of poor
quality input images

[17]

Table 3.1: Table summarizing the literature on latent fingerprint enhancement.

Generative adversarial networks (GANs) generate sharper images compared to auto-encoders
which generate blurred images. As a result, GANs are better suited for generating fingerprint images
as they can generate sharp images with clear ridge structure and good ridge-valley contrast. This
inturn facilitates improved minutiae extraction and matching performance.

The information on training GAN for latent fingerprint enhancement provided in this chap-
ter is based on the latent fingerprint enhancement algorithm proposed by Joshi et al. [18]. The



enhancement model proposed by the authors is trained not only with the reconstruction loss to
preserve the ridge structure, but it also limits spurious pattern generation by employing a classifi-
cation network trained with an adversarial loss to classify the reconstructed image as real or fake.
Furthermore, the proposed GAN model is trained on synthetic latent fingerprint images due to
which the training is not affected by the limited availability of publicly available latent fingerprint
images.

Fig. 3.3: Proposed model for enhancement of Latent fingerprints. The back propagation of losses while
training Enhancer network and Discriminator network is shown by dotted lines.

3 Proposed Algorithm

3.1 Problem Formulation and Objective Function

We propose a conditional generative adversarial networks [19] [20] based latent fingerprint enhance-
ment algorithm. Given a latent fingerprint, the proposed algorithm generates a fingerprint image
with clear ridge structure and removes structured and non-structured background noise present in
a latent fingerprint. The motivation behind using a conditional GAN is that the generator has to
not only generate a “real-looking” binarized fingerprint image but it should also generate a finger-
print which has similar ridge structure as the input latent fingerprint image. Thus, we formulate
latent fingerprint enhancement as a conditional GAN based image-to-image translation problem
[21].

The proposed model has two networks: a latent fingerprint enhancer network and an enhanced
fingerprint discriminator (See Fig. 3.3). For a given latent fingerprint image x, enhancer network
generates a binarized enhanced image EnhL(x)). The enhancer network learns the transformation
from a latent fingerprint to a binarized enhanced image, while preserving the overall ridge struc-
ture and ridge features including minutiae, without compromising the identity information in the
fingerprint. The discriminator network classifies a given enhanced image as real or fake. Fig. 3.3
depicts the proposed model for latent fingerprint enhancement. The loss function optimized by the
proposed model is described below:

(1) Adversarial Loss:

Ladv = E(x,y)∼p(x,y)[log(DisE(x, y))] + Ex∼px(x)[log(1−DisE(x, EnhL(x)))]



Fig. 3.4: Architecture of Enhancer (EnhL) and Discriminator (DisE)

Enhancer network is trained such that the adversarial loss is minimized. On the other hand,
discriminator network is trained to maximize the adversarial loss. A penalty is imposed on the
enhancer network if the image generated by the enhancer network (EnhL(x))), is deemed fake
by the discriminator. Due to this loss, enhancer network learns the necessary transformation
and associated features required to generate an enhanced fingerprint from a given latent fin-
gerprint image.
Discriminator network is penalized if it misclassifies an enhanced fingerprint image generated
by the enhancer network as a real fingerprint. As a result, discriminator learns the discriminat-
ing features for differentiating the enhanced images produced by the enhancer from the ground
truth binarized images.
Note that the discriminator is conditioned by the input latent fingerprint image so that the
discriminator network doesn’t just classify an enhanced image as real or fake but the discrimi-
nator can also classify whether the enhanced fingerprint image has the ridge structure similar
to the input latent fingerprint image.

(2) Enhanced Fingerprint Reconstruction Loss:

Lrec = ||y − EnhL(x))||1

The task of generating a binarized enhanced image corresponding to an input latent fingerprint
image is an ill-posed problem with only adversarial loss. We include fingerprint reconstruction
loss into the objective function. This loss only penalizes the enhancer network. It guides the
enhancer network to generate enhanced fingerprint similar to the ground-truth binarized fin-
gerprint image. The reconstruction loss facilitates the enhancer network to learn to preserve
low-frequency details in the enhanced image. l1 norm is used in the loss function to encourage
the enhancer to produce sharp images. l2 norm is not used as it generates blurred images.

(3) Overall Loss: The final objective function is given as:

minαmaxβ [E(x,y)∼p(x,y)[logDisE(x, y)] + Ex∼px(x)[log(1−DisE(x, EnhL(x)))

+λ||y − EnhL(x))||1]]

where α and β denote the parameters of enhancer and discriminator respectively. λ is the weight
parameter for the reconstruction loss.



Reconstruction loss helps to preserve the low frequency details in the fingerprint image. How-
ever, fingerprints are oriented textured patterns which have a lot of high frequency details. To
ensure that the proposed model is able to capture high frequency details, we use a patch GAN
based model which classifies each 8×8 patch as real or fake. Furthermore, reconstruction loss is a
pixel based loss which assumes that each output pixel is independent of its neighbouring pixels.
Patch GAN on the other hand, considers the joint distribution of the pixels in a patch which
introduces a texture loss which inturn forces the enhancer network to preserve fine ridge details
including minutiae and thus helps to preserve the identity information in the fingerprint image.

3.2 Training Data Preparation

The proposed model is a supervised generative model which is trained to output an enhanced image
given an input latent fingerprint image. Being a supervised model, it requires paired training data
of latent fingerprints and their corresponding enhanced binarized images. However, there are no
publicly available latent fingerprints datasets which have latent fingerprints and their corresponding
enhanced images. Additionally, lack of large latent fingerprint database further complicates the
training of a deep neural network based latent fingerprint enhancement model. Thus, we need to
generate synthetic latent fingerprints which have similar noise characteristics as observed in real
latent fingerprints (See Fig. 3.5) for training the proposed enhancement model.

The proposed model is trained on 9042 synthetic latent fingerprint images and 2423 fingerprint
images from National Institute of Standards and Technology Special Database 4 (NIST SD4) and
their corresponding binarized fingerprints. Due to training on synthetic latent fingerprints, the
training of the proposed model is not affected by the limited availability of the latent fingerprint
database. We now give details on preparing the training data for the proposed model.

(1) Datasets for preparing the training data
(i) Anguli: Anguli [22] is an open-source implementation of state-of-the-art synthetic finger-

print generator SFinGe [23], which simulates synthetic live fingerprints with similar features
as real-live fingerprints. It can generate multiple impressions of a fingerprint with varying
level of noise.

(ii) NIST SD4: NIST SD4 [24] is a publicly available fingerprint database which has 2000
rolled fingerprints. These are inked fingerprints with uniformly distributed fingerprint pat-
tern type, namely left loop, right loop, arch, tented arch and whorl. Due to the uniform
distribution of pattern type, the training dataset covers varieties of ridge patterns. Further,
as these fingerprints are inked prints, they have similar characteristics of non-uniform ink
similar to latent fingerprints which have non-uniform powder content in many patches. We
use NIST SD4 fingerprints with NIST Finger Image Quality 2 (NFIQ2) [25] quality score
greater than or equal to 70. (NFIQ2 is an open-source state-of-the-art fingerprint quality
assessment algorithm which gives a quality score in the range 1-100 to each fingerprint
image where 1 denotes the worst quality and 100 denotes the best quality.) Although it
is helpful to include poor quality inked prints as the training data, however, the ground
truth binarization achieved through NBIS on poor quality fingerprints is poor which can
adversely affect the performance of model. So, we only use good quality NIST SD4 finger-
prints for training the model.

(2) Generation of Synthetic Latent Fingerprints
Latent fingerprints due to their acquisition conditions are often blurred, have structured noise
such as lines, overlapping text and sometimes overlapping fingerprints. We add the following
noise into good quality fingerprints generated by Anguli to create a representative synthetic
latent fingerprints dataset for training the proposed model:

(i) Line-like noise: It has been observed that line-like noise due to their similarity with finger-
print ridges often lead to failure of standard fingerprint matching algorithms. To simulate
line-like noise, we blend fingerprint images with straight lines having different orientations
and different width.



Fig. 3.5: Sample images showcasing the training dataset. The eleven fingerprints (from top-left) have the
same binarized ground-truth image (bottom-right image). Varying textures and backgrounds are used for
training the algorithm for simulating conditions of acquisition of latent fingerprint.



(ii) Blurring: Sometimes smudging of fingerprint ridges leads to missing minutiae. We ob-
serve that latent fingerprint often have non-uniform smudge patterns. To make the model
invariant towards different levels of smudging, we add different level of gaussian noise on
randomly selected fingerprint patches. The different patch size used are 10×10 and 40×40.
The blur radius=2 is used for gaussian noise.

(iii) Overlapping text and fingerprints: Latent fingerprints have complex background noise
which can have overlapping text and sometimes overlapping fingerprints. To simulate those
scenarios, we blend fingerprint images with text images of varying fonts and styles. We also
blend fingerprint images with partial fingerprint images to address challenges of overlap-
ping fingerprints.

(iv) Different Surfaces: Latent fingerprints can be collected from different surfaces. Surfaces
can be plane/curved, porous/non-porous, shiny or can have uniform background. It has
been reported that the surfaces which have high reflectance generate occluded ridge pat-
terns [1]. Further, the area and the quality of latent fingerprint left on a surface varies
depending on the pressure exerted by the finger, surface characteristics and adherence of
the finger’s natural secretions on that surface. Some surfaces have poor adherence property
due to which the latent fingerprint deposited on such surface is often partial. To train the
proposed model to be invariant towards various intra-class variations introduced due to
various surfaces, we blend fingerprint image with varying textures such as wood surface,
cardboard surface, plastic and glass-surface.

(3) Ground-truth Binarization
Ground-truth binarized image to train the proposed model is obtained using NIST Biometric
Image Software (NBIS). A fingerprint image is binarized by NBIS based on the ridge flow
direction. The image is divided into 7×9 grids, if there is a ridge pattern in a grid, the grid
is rotated so that the grid is parallel to the ridge flow direction. For the pixel of interest, the
neighbourhood grey values which also lie in the rotated grid are analyzed to label a pixel as
black or white.

3.3 Network Architecture and Training Details

(1) Enhancer Network: Enhancer network has an encoder-decoder (autoencoder) architecture.
Convolutional layers(Conv1, Conv2, Conv3) in the network extract features at different scales
from the input latent fingerprint image capturing coarse to fine level details (See Fig. 3.4).
ResNet blocks help to circumvent the problem of vanishing gradient while training a deep
network. Decoder layers(Deconv1, Deconv2 and Conv4) transform the features extracted from
the latent fingerprint to an enhanced binarized fingerprint image.

(2) Discriminator Network: The input latent fingerprint and binarized image are concatenated
along the input channel dimension so that the discriminator can classify whether the binarized
image corresponds to the input latent fingerprint image. Discriminator has a typical archi-
tecture as used in image classification. The convolutional layers in the discriminator(Conv5,
Conv6, Conv7, Conv8 and Conv9) extract features at different scales capturing at different
levels which helps the discriminator to classify an input fingerprint image as real or fake.

The details of the network architecture are given in Table 3.2. Adam optimizer is used to
optimise the objective function. The following hyper-parameters are used: learning rate=0.02,
β1=0.5, β2=0.999, λ=10 and batch size=2. The model is trained on 2 GPUs each with 12 GB
RAM.

4 Performance Evaluation

4.1 Databases and tools used

The proposed model is evaluated on two publicly available latent fingerprint databases:



Block Layers Kernels Size Stride Padding

Conv1 Convolutional Layer + Batch
Normalization + ReLu

64 7 1 3

Conv2 Convolutional Layer + Batch
Normalization + ReLu + Con-
volutional Layer + Batch Nor-
malization

128 3 2 1

Conv3 Convolutional Layer + Batch
Normalization + ReLu + Con-
volutional Layer + Batch Nor-
malization

256 3 2 1

ResNet Block Convolutional Layer + Batch
Normalization + ReLu + Conv
Layer + Batch Normalization

256 3 2 1

Deconv1 Convolutional Layer + Batch
Normalization Layer + ReLu +
Convolutional Layer + Batch
Normalization

128 3 2 1

Deconv2 Convolutional Layer + Batch
Normalization + ReLu + Conv
Layer + Batch Normalization

64 3 2 1

Conv4 Convolutional Layer + Tanh 1 7 1 3

Conv5 Convolutional Layer +
LeakyReLu

64 4 2 1

Conv6 Convolutional Layer + Batch
Normalization + LeakyReLu

128 4 2 1

Conv7 Convolutional Layer + Batch
Normalization + LeakyReLu

256 4 2 1

Conv8 Convolutional Layer + Batch
Normalization + LeakyReLu

512 4 1 1

Conv9 Convolutional Layer 1 4 1 1

Table 3.2: Architecture of EnhL and DisE .



(1) IIITD-MOLF Database [26]: IIITD-MOLF is the biggest latent fingerprint database which
is available in the public domain. It has latent fingerprints and live fingerprints acquired through
different optical sensors. These fingerprints are collected from 100 subjects. This database has
4400 latent fingerprints and 4000 live fingerprints corresponding to each sensor.

(2) IIITD-MSLF Database [1]: IIITD-MSLF database has latent fingerprints extracted from
8 different surfaces like transparent glass, compact disc, ceramic mug, hardbound cover etc. It
has 551 latent fingerprints of 51 subjects.

The standard latent fingerprint database provided by NIST, NIST-SD27 has now been removed
from the public domain due to which we cannot evaluate the proposed model on NIST-SD27
database. The proposed model is designed for the standard sized 500 dpi fingerprint image whose
spatial dimensions are 512×512 pixels. The latent fingerprints are pre-processed and zero-padded
to have a fixed size of 512×512. Table 3.3 provides the list of publicly available tools used in this
work.

Tool Purpose Usage

MINDTCT module of NBIS Minutiae extraction During testing, to extract minutiae
from enhanced image and gallery im-
ages

NFIQ module of NBIS Evaluates fingerprint image
quality

During testing, to evaluate quality of
enhanced fingerprints

BOZORTH module of NBIS To match fingerprints During testing, to perform fingerprint
matching on minutiae extracted by
MINDTCT

MCC fingerprint matcher To match fingerprints During testing, to perform fingerprint
matching on minutiae extracted by
MINDTCT

NFIQ2 Evaluates fingerprint image
quality

To evaluate quality of NIST SD4 im-
ages and keep good quality images for
training the model

Binarization module of NBIS Binarize the fingerprint im-
age

To generate the ground-truth binariza-
tion of training images

Table 3.3: Table summarizing the publicly available tools used.

4.2 Evaluation Criteria

Every fingerprint enhancement algorithm is designed to increase the clarity of ridges and valleys
while preserving the ridge details to improve minutiae extraction and thereby improving fingerprint
matching performance. We evaluate the proposed enhancement algorithm using the metrics given
below:

(1) Fingerprint Quality Analysis: Quality of a fingerprint image is determined as the ability
of a fingerprint matcher to correctly match the image. Poor quality fingerprints often result
in poor matching performance. We evaluate the fingerprint quality of latent fingerprints be-
fore and after enhancement using NIST Finger Image Quality (NFIQ) module of NBIS. NFIQ
calculates quality of a fingerprint image using features such as: clarity of ridges and valleys,
number of minutiae, size of the fingerprint image etc. NFIQ scores a fingerprint image between
1 and 5 where 1 signifies the best fingerprint image quality and 5 means the worst quality. We
compare the histogram of quality scrores obtained by NFIQ before and after enhancement. An-
other publicly available tool to evaluate the quality of fingerprint images is NFIQ2 [25] which
returns a score between 1-100. NFIQ2 is a more robust fingerprint quality assessment metric
than NFIQ. However, NFIQ2 fails to process raw latent fingerprint images of IIITD-MOLF
database. As a result, we only compare fingerprint quality score obtained using NFIQ.



(2) Ridge Structure Preservation: The most crucial factor for any fingerprint enhancement is
that it should retain the ridge structure while improving clarity of ridges and valleys. To show-
case ridge structure preservation (including minutiae) by the proposed model, we synthetically
generate some test cases by adding noises and backgrounds on good quality fingerprints. We
showcase the similarity between ground-truth binarization and the enhanced fingerprint image
generated by the proposed algorithm using the following two measures:

(i) We calculate Structural Similarity Index Metric (SSIM) [27] between the ground-
truth binarized image and the enhanced fingerprint. SSIM is a metric which computes
similarity between image a and image b based on the contrast, luminance and structure.

SSIM(a, b) =
(2µaµb + C1)(2σab + C2)

(µ2
a + µ2

b + C1)(σ2
a + σ2

b + C2)

where µa, µb are the mean, σa, σb are the standard deviation and σab is the covariance
between image a and image b.

(ii) We also calculate match score (using Bozorth) between ground-truth binarized image
and the enhanced image generated by the proposed model. High match scores demonstrate
that the proposed algorithm preserves minutiae while enhancing the input latent finger-
print image.

(3) Matching Performance: The ultimate success of a fingerprint enhancement algorithm is
when it is able to improve the fingerprint matching performance. We extract minutiae using
MINDTCT module of NBIS and use Bozorth and Minutia Cylinder Code (MCC) [28], [29], [30]
fingerprint matchers to evaluate fingerprint matching performance. We compare matching per-
formance before and after enhancement using Rank-50 accuracy. Rank-k accuracy is defined as:

Rank-k accuracy= no. of probe fingerprint for which the matching fingerprint in gallery achieved
top-k scores×100/total no. of probe fingerprints

We also plot Cumulative Matching Curve (CMC curve), which is a Rank-k accuracy plot
over varying values of k. CMC curve is a standard summarization technique to quantify the
matching performance of a closed-set identification system. We compare CMC curve before
and after enhancement in Fig. 3.11.

5 Results and Analysis

(1) Fingerprint Quality Analysis: Fig. 3.7 represents the histogram of NFIQ scores before and
after enhancement. The average NFIQ score has improved from 4.96 to 1.91 after enhance-
ment (smaller score means better quality) on IIITD-MOLF and 4.48 to 2.64 on IIIT-D MSLF
database (See Table 3.9 (a)) which validates the improved clarity of ridges and valleys (thereby
improving the quality score) in the enhanced fingerprints generated by the proposed model.

(2) Ridge Structure Preservation: In Fig. 3.8, we present some sample test cases with their
ground-truth binarization and the output of the proposed algorithm. High match score and
high SSIM value between the ground-truth binarized image and the output of the proposed
method illustrate that the proposed algorithm preserves the ridge information of input latent
fingerprint images including fingerprint class, orientation of ridges and minutiae, while enhanc-
ing them.

(3) Matching Latent Fingerprints to Multi-Sensor Fingerprints: In Fig. 3.10, we show
CMC curves for matching performance achieved by Bozorth and MCC matcher on the en-
hanced image generated by the proposed model across two different galleries. We also compare
the Rank-50 accuracy of the proposed model with the recently proposed latent fingerprint algo-
rithm [17] (See Table 3.9 (b)). The magnitude of improvement obtained over raw images using
the proposed algorithm is much more than the previous work (Rank-50 accuracy of 34.43% on
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Fig. 3.7: Evaluation of quality of fingerprint images using the NFIQ module of NBIS [5] for latent fingerprint
images from (a) IIITD-MOLF and (b) IIITD-MSLF database.

DB1 and 30.50% on DB2 gallery using the proposed algorithm compared to 22.36% on DB1
and 19.50% on DB2 gallery by the previous work [17]). This demonstrates that the proposed
algorithm performs better than [17] in improving ridge-valley contrast, removing background
noise while preserving ridge details due to which improved feature extraction and thereby, im-
proved matching performance is obtained.

(4) Matching Multi-Surface Latent Fingerprints to gallery of live-scan fingerprints: The
rank-50 accuracy before and after enhancement on IIITD-MSLF database using Bozorth are
11.43% and 12.80% respectively. The CMC curve is shown in Fig. 3.11. The accuracy obtained
on IIITD-MSLF database is lesser compared to the accuracy achieved on IIITD-MOLF. This is
due to the complex background present in IIITD-MSLF database images. We observe that the
intensity values of foreground and the background fingerprint regions have similar distribution
in many images. This leads to spurious pattern generation by the proposed algorithm, which
adversely affects the matching performance.

(5) Significance of Latent Fingerprint Reconstruction Loss: To demonstrate the signifi-
cance of the reconstruction loss in the objective function, we train the proposed model with
only adversarial loss (λ=0). We observe that the model becomes unstable and doesn’t converge.
In Fig. 3.12, we show the sample results obtained with only reconstruction loss. Therefore, we
conclude that the reconstruction loss is essential to stabilize the proposed model.

(6) Role of Hyper-parameters: During the various experiments conducted in this chapter, we
find that the that MCC is a better fingerprint matcher for latent fingerprints (See Table 3.4,
Table 3.5, Table 3.6 and Table 3.7). We conclude our observations based on the results ob-
tained using MCC matcher. By default, the hyper-parameters used are λ=10, batch size=2
and number of epochs=200.

(i) Weight Hyper-parameter (λ): We observe that the Rank-50 achieved by the proposed
model increases as the weight of enhanced fingerprint reconstruction loss is increased from
1 to 5 (As depicted in Table 3.7, Fig. 3.14(a), Fig. 3.14(b), Fig. 3.15(a) and Fig. 3.15(b)).
However, on increasing the weight further, the performance starts degrading. Best Rank-50
accuracy of 34.43% across DB1 and 30.50% across DB2 gallery are achieved for λ=5. The
quality of the other hand, improves while λ is increased from 1 to 10. On increasing λ
further, the quality starts degrading (See Table 3.11 (b) and Fig. 3.16(a)). This suggests
that the model is sensitive to the choice of weight parameters and a careful combination
of adversarial loss and reconstruction loss is required to efficiently train the proposed model.
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Fig. 3.8: Left side shows the enhanced fingerprint generated from the synthetic latent fingerprint, corre-
sponding to the ground truth binarized image (shown in the middle). Right side shows the SSIM value and
the matching score (obtained using Bozorth) for each enhanced image corresponding to the ground truth
image.

(ii) Number of epochs: As shown in Table 3.4, Fig. 3.14(c), Fig. 3.14(d), Fig. 3.15(c) and
Fig. 3.15(d), the rank-50 accuracy, initially improves with number of epochs till 60 epochs,
after which it fluctuates and is approximately the same till 200 epochs. The performance
of the model starts degrading after 200 epochs due to over-fitting. NFIQ score on the other
hand, is improved initiallty till 150 epochs and then it fluctuates and no clear trend is
found (See Table 3.11 (a)).

(iii) Batch size: We compare the rank-50 accuracy achieved by the model at batch size=2, 4
and 8 (See Table 3.6, Fig. 3.14(e), Fig. 3.14(f), Fig. 3.15(e) and Fig. 3.15(f)). As the batch
size is increased, the number of parameter updates per epoch reduces which leads to faster
training of the model. Batch size=2 turns out to be the best value of hyper-parameter
batch size. The best performance at batch size=2 is attributed to more parameter updates
and thus better training.

Better quality score is obtained for batch size=8 than batch size=2 and batch size=4, as
can be seen in Table 3.11 (c) and Fig. 3.16(c). This is a counter-intuitive result as the
enhanced fingerprint generated at batch size=8 has large missing regions compared to the
fingerprints generated at batch size=2. Many of the images generated at batch size=2 have
poor ridge smoothness compared to the image generated at batch size=8 which have very
small reconstructed fingerprint area but better smoothness (See Fig. 3.13). Due to this,
NFIQ gives a better score to images generated at batch size=8 than the images generated
at batch size=2. Thus, we conclude that the anomaly in the quality score is due to the
limitation of NFIQ. In reality, the quality of fingerprints generated at batch size=2 and
batch size=4 is better than the quality of fingerprints generated at batch size=8 which is
evident through the much higher Rank-50 accuracy achieved for batch size=2 and batch
size=4 than batch size=8.



(a) (b)

Fig. 3.10: CMC curve for proposed algorithm’s matching performance for the IIITD-MOLF DB1 gallery
and DB2 gallery at λ=5, using (a) Bozorth (b) MCC.

Fig. 3.11: CMC curve representing matching performance on IIITD-MSLF database, before and after en-
hancement by the proposed algorithm using Bozorth.

Fig. 3.12: Sample enhanced images obtained by the model when trained without latent fingerprint recon-
struction loss.

(7) Effect of training the model with real NIST SD4 images: The rank-50 accuracy achieved
by the images generated by the proposed model trained on both synthetic latent fingerprints



Fig. 3.13: Failure cases of NFIQ (lower score means better quality).

and real fingerprints from NIST SD4 is better compared to the model trained on only syn-
thetic latent fingerprints, as shown in Fig. 3.17, Fig. 3.14(g), Fig. 3.14(h), Fig. 3.15(g) and
Fig. 3.15(h)). Similar trend is seen in the NFIQ quality scores of the enhanced fingerprints
obtained using the proposed model (See Table 3.11 (d) and Fig. 3.16(d)). The real fingerprints
have practical cases of non-linear distortion and non-uniform ridge width which are also ob-
served in latent fingerprints. Thus, the real inked fingerprints like those of NIST SD4 database
help the model to learn to be invariant to such distortions.

Epoch DB1(Bozorth) DB2(Bozorth) DB1(MCC) DB2(MCC)

30 24.80 23.02 28.16 25.98
60 28.11 25.05 33.61 29.36
90 28.61 25.05 33.14 29.43
120 28.63 26.75 33.55 30.14
150 24.66 24.05 29.23 26.93
180 28.77 26.70 33.34 29.93
200 27.25 25.64 32.02 29.32
210 25.93 24.50 30.50 28.30
240 25.34 23.84 30.16 27.05
270 24.75 23.84 29.34 26.59

Table 3.4: Rank-50 accuracy obtained over different epochs on IIITD-MOLF latent fingerprints.



Training Data DB1(Bozorth) DB2(Bozorth) DB1(MCC) DB2(MCC)

Without SD4 27.70 26.30 30.43 29.2045
With SD4 27.25 25.64 32.02 29.32

Table 3.5: Rank-50 accuracy obtained on IIITD-MOLF latent fingerprints with and without adding SD4
images in training data.

Batch Size DB1(Bozorth) DB2(Bozorth) DB1(MCC) DB2(MCC)

2 27.25 25.64 32.02 29.32
4 27.93 26.61 30.45 26.659
8 18.03 17.28 15.41 15.41

Table 3.6: Rank-50 accuracy obtained IIITD-MOLF latent fingerprints for different batch size.

λ DB1(Bozorth) DB2(Bozorth) DB1(MCC) DB2(MCC)

1 24.00 22.0 28.09 23.70
3 28.11 24.89 31.70 28.11
5 28.52 27.11 34.43 30.50
10 27.25 25.64 32.02 29.32
15 26.60 25.27 31.89 25.39
20 25.66 23.43 29.34 27.55

Table 3.7: Rank-50 accuracy obtained on IIITD-MOLF latent fingerprints over different values of λ.

Dataset Enhancement
Algorithm

NFIQ
Score

IIITD-MOLF Raw Image 4.96
IIITD-MOLF Raw Image 1.91
IIITD-MSLF Proposed 4.48
IIITD-MSLF Proposed 2.64

(a)

Enhancement
Algorithm

Rank-50
Accuracy
(DB1)

Rank-50
Accuracy
(DB2)

Raw Image 5.45 5.18
Svoboda et al. [17] 22.36 19.50
Proposed 34.43 30.50

(b)

Table 3.9: (a) Average NFIQ scores before and after enhancement by the proposed model on IIITD-MOLF
and IIITD-MSLF databases. (b) Rank-50 obtained on IIITD-MSLF database before and after enhancement
by the proposed model.

Epoch NFIQ Score

30 2.07
60 2.03
90 2.00
120 1.86
150 1.82
180 1.84
200 1.83
210 1.83
240 1.81
270 1.83

(a)

λ NFIQ Score

1 2.06
3 1.99
5 1.91
10 1.83
15 1.87
20 1.91

(b)

Batch
Size

NFIQ
Score

2 1.83
4 1.83
8 1.18

(c)

Training
Data

NFIQ
Score

Without SD4 2.33
With SD4 1.83

(d)

Table 3.11: Average NFIQ scores of the enhanced fingerprints obtained for IIITD-MOLF database using
the proposed algorithm over (a)different epochs (b) different values of λ (c) with and without adding SD4
images in training data (d) different values of batch size.



6 Challenges Observed

While conducting different experiments, it has been found that the proposed algorithm improves
matching performance. However, we observe some cases where the proposed algorithm does not
generate good results. Analysis of these cases is given in the following points:

(1) We find that many of the input latent fingerprint images have low ridge information. However,
even for such images, the proposed algorithm enhances those regions of the latent fingerprint
image which have some ridge information (See left-most column of Fig. 3.20). We understand
that it will be difficult for any enhancement algorithm to enhance such cases while preserving
the minutiae details.

(2) While matching latent fingerprint images, ROI is manually marked by forensic experts and
the enhancement is performed only on ROI. However, the proposed algorithm automatically
segments the foreground and background and then enhances the foreground fingerprint. Due
to this, it sometimes misinterprets the background as foreground (See last three columns from
right in Fig. 3.20) when the intensity distributions of background and foreground fingerprint
are similar.

(3) We found that the NFIQ is not a robust fingerprint quality assessment metric (See Fig. 3.13).
NFIQ2 is a more effective metric than NFIQ, however, it fails to process latent fingerprints.
Thus, there is a need to introduce a more robust latent fingerprint quality assessment tool in
the public domain to facilitate improved research in latent fingerprint matching.

(4) The proposed model is observed to be highly sensitive to the choice of hyper-parameters and
does not perform well if the training hyper-parameters are not carefully chosen.

(5) The loss function is carefully designed for enhancement of latent fingerprints. Any change in
the loss function can lead to unstable training of the model (as observed while training the
model without enhanced reconstruction loss, as shown in Fig. 3.12).

7 Conclusion

Motivated by the successful applications of GANs in various image processing applications, we
formulate latent fingerprint enhancement like an image-to-image translation problem. The proposed
model is trained using an enhancer and a discriminator network in an adversarial fashion. The
model is trained using both synthetic and real fingerprints due to which it is robust to distortions
observed in latent fingerprints. Moreover, the proposed model does not need a real latent fingerprint
database to train the network. Two latent fingerprints databases available in the public domain are
used for evaluating the proposed enhancement model. A detailed analysis of performance of model
over hyper-parameters such as lambda, number of epochs, batch size is done. We also give insights
on the role of real inked prints while training the model and the significance of reconstruction loss
in the objective function.

We analyse the failure cases and some cases have been encountered when the ridge information is
insufficient and the proposed algorithm generates spurious features. To address these limitations,
the possibility of recoverability needs to be explored such that the algorithm can decide which
portions of fingerprints can be reconstructed and which ones cannot. Training with a larger database
with more variations in texture and background can help to achieve even better performance on
IIITD-MSLF database. The proposed algorithm can also be utilized in challenging scenarios like
latent to latent fingerprint matching.
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Fig. 3.14: CMC curve for matching the the proposed algorithm using Bozorth on the IIITD-MOLF DB1
and DB2 galleries across different training settings.



Fig. 3.15: CMC curve for matching the the proposed algorithm using MCC on the IIITD-MOLF DB1 and
DB2 galleries across different training settings.



Fig. 3.16: NFIQ score distribution of the enhanced images produced by the proposed algorithm across
different training settings.

Fig. 3.17: Sample results obtained by the model when trained with and without NIST SD4 images in the
training dataset.



Fig. 3.19: Samples of successful enhancement of latent fingerprints by the proposed model.



Fig. 3.20: Some challenging cases for the proposed model.


