
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045

AUTHOR(S): BMVC AUTHOR GUIDELINES 1

Knowledge Diversification in Ensembles of
Identical Neural Networks

BMVC 2022 Submission # 0798

Abstract
It is well known that diversity in models is the key to enhancing the performance of

an ensemble. In standard neural network ensemble techniques, two or more networks are
trained independently and their logits or predictions are combined using a voting proce-
dure or linear combination strategy. This procedure does not incorporate the exchange of
information between the base networks of the ensemble. We propose a method for im-
proving learnt representations in an ensemble by employing feature exchange between
base models as a part of the training objective. Feature Difference Loss or FDL compels
networks in an ensemble to learn diverse features in a Euclidean sense, thereby directly
optimizing model diversity. Experiments with ensembles of two, three and four net-
works show significant performance boosts over competing ensemble techniques. The
gains are larger for datasets with fewer examples per class, such as MNIST, CIFAR-10
and CIFAR-100. Positive gains can also be observed in large datasets such as ImageNet.
The gains also generalize across several architectures from simple ConvNets to deeper
networks such as VGG and ResNets.

1 Introduction
Creating an ensemble of neural networks is a common way to improve the performance of
learning-based algorithms. The ILSVRC 2015 winning residual network [15] is an ensemble
of six different base ResNet models. Training base models has mostly been done in a model-
independent way. It is intuitive that an ensemble performs better if the base models learn
different sets of features. Because each model contributes a unique set of features or logits
to the ensemble, a broader range of information is captured, increasing generalization.

Random Initialization Ensemble is a method of taking ensembles that involves changing
the initialization states of the base models in order to have different trajectories during op-
timization. One such technique is Deep Ensembles [25]. However such techniques do not
optimize the diversity of learned representations during training. It involves performing mul-
tiple experiments with various initialization and then choosing a subset of the most diverse
models as a part of the ensemble. The SnapShot Ensemble [18] [42] combines checkpoint
collection with cyclic learning rate methods such as SGD with warm restarts [30] to generate
ensembles. Fast Geometric Ensemble [11] traverses high accuracy paths between modes to
generate ensembles by combining modes. Checkpoint ensembles [6] uses checkpoints dur-
ing training as ensemble candidates, which are then combined near the end of training to
generate an ensemble. Adaptive Ensemble [19] based on Confidence Intervals reduces com-
putation overhead by discarding ensemble executions for input samples with high softmax

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Lakshminarayanan, Pritzel, and Blundell} 2017

Citation
Citation
{Huang, Li, Pleiss, Liu, Hopcroft, and Weinberger} 2017

Citation
Citation
{Wen, Gao, and Li} 2019

Citation
Citation
{Loshchilov and Hutter} 2016

Citation
Citation
{Garipov, Izmailov, Podoprikhin, Vetrov, and Wilson} 2018

Citation
Citation
{Chen, Lundberg, and Lee} 2017

Citation
Citation
{Inoue} 2019

046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091

2 AUTHOR(S): BMVC AUTHOR GUIDELINES

outputs. Auto-Ensemble [44] creates an ensemble using checkpoint collection and a learning
rate scheduling algorithm.

Loss functions and training routines that directly target model diversity has been explored
in [20, 28, 29, 33, 40, 48]. In this paper, we try to directly optimize the diversity of features
generated by many identical neural networks. We do this by introducing feature difference
loss (FDL) into the training routine. In order to achieve a diverse set of features, the base
models compete against each other in a minimax fashion with the injection of the FDL loss.
In this paper, our motivation for this work are the following: to provide a trainable way of
improving diversity amongst base models in an ensemble, and to have a stable training rou-
tine with minimal set of hyperparameters for wide applicablility and reproducibility. To this
end, our contributions in this paper are: (a) we propose a method called FDL (Feature Differ-
ence Loss) which takes the Euclidean distance between feature representations into account
during training, and with that we force the base networks towards diverse solution states at
convergence. (b) We propose a training method that is completely devoid of hyperparame-
ters. We split the training procedure in several phases that are independent of each other. (c)
We provide extensive experimentation of various models and datasets ranging from simple
ConvNets to deeper networks such as VGG and also residual architectures such as ResNet-
18 and ResNet-50, which we train on MNIST, CIFAR-10, CIFAR-100 and ImageNet-1K for
upto four networks. We show that FDL provides consistent improvement in all cases.

2 Method

2.1 Ensemble Architecture

We start with N identical base networks. Without loss of generality, we portray the N = 2
case. In Fig. 1(a), we show networks N1 and N2. The two networks produce two sets of
prediction vectors independently, and then those two vectors are concatenated and fed to an
ensemble head network, NE . The ensemble head comprises a single layer of 1×1 convolu-
tion kernels and it learns the optimal linear combination to combine the prediction vectors
at its input. All networks N1, N2 and NE are trained using cross-entropy loss. However, we
also have other losses during training which we portray in next section.

If v⃗1 and v⃗2 are the prediction vectors for an input mini-batch I, then for networks N1 and
N2 respectively, we have:

v⃗1 = (v11, · · · ,v1p) = F1 ∗ I (1)

v⃗2 = (v21, · · · ,v2p) = F2 ∗ I (2)

where F1 and F2 represents the parameters of N1 and N2 respectively, and ∗ is the convolu-
tion operator.

The output of the ensemble head can then be represented as,

v⃗e = (v1, · · · ,vp) = K ∗ (v11, · · · ,v1p,v21, · · · ,v2p) (3)

where K is a set of 1×1 convolution kernels.
During the training of the ensemble head, no gradient is passed back to the base networks.

The training routine of the base networks and the ensemble head is performed in five phases,
which we describe in section 2.3.

Citation
Citation
{Yang and Wang} 2020

Citation
Citation
{Jain, Liu, Mueller, and Gifford} 2020

Citation
Citation
{Lee, Purushwalkam, Cogswell, Crandall, and Batra} 2015

Citation
Citation
{Liu and Yao} 1999

Citation
Citation
{Pearce, Leibfried, and Brintrup} 2020

Citation
Citation
{Webb, Reynolds, Iliescu, Reeve, Luj{á}n, and Brown} 2019

Citation
Citation
{Zhou, Wang, and Bilmes} 2018

092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

AUTHOR(S): BMVC AUTHOR GUIDELINES 3

Figure 1: (a) The architecture of the ensemble head network. Predictions of two identical
networks are combined into a single prediction vector using 2N linear units or 2N (1× 1)
convolution. (b) The architecture of four identical neural networks trained with FDL. All
networks share a common minibatch. Features are exchanged and the networks weights
are updated so as to maximize feature differences between them. The double sided arrows
represent the different loss functions and their position indicates the location where they are
invoked. Prediction vectors (P1, P2, P3, P4) are combined using an ensemble head to create
PE.

2.2 Feature Difference Loss (FDL)
Given a convolutional base neural network N, we define Wi as the ith convolutional layer of
the network. A feature vector Fi−1 is fed into Wi, and the output Fi is generated.

Fi =Wi ∗Fi−1 (4)

We denote the shape of the tensor Fi as (B,C,H,W) where B is the number of images in a
batch, C is the number of channels of each image and H ×W is the resolution of each image.
In Fig. 1(b), we show the architecture and the computation graph of four neural networks
trained using our proposed method. First we portray the two network case, following which
we extend our method for ensembles of more than two networks in section 2.3. Given, two
identical networks N1 and N2, we compute the feature difference loss for the ith layer as:

LN1,N2
i =

1
BCHW

B−1

∑
b=0

C−1

∑
c=0

H−1

∑
h=0

W−1

∑
w=0

(FN1
i (b,c,h,w)−FN2

i (b,c,h,w))2 (5)

The value of the feature loss is then summed up and averaged over the depth (D) of the
network as:

LN1,N2
FDL =

1
D

D−1

∑
d=0

LN1,N2
d (6)

Given the cross-entropy loss of network N1 and N2 as L1 and L2 respectively, we define
the similarity loss function as:

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

4 AUTHOR(S): BMVC AUTHOR GUIDELINES

SN1,N2 = (L1 −L2)
2 (7)

Ideally, we want to perform maximization of the feature difference loss, Eq. 6. However,
as is commonly followed in the training routines of generative adversarial networks (GANs),
the discriminator’s loss functions are not maximized, rather the negative of it is minimized.
Here too, we minimize the negative of the FDL loss function, Eq. 6.

We pose the optimization criterion as:

N∗
E(W) = argmin

W
(−LN1,N2

FDL + k SN1,N2 + k1 LX (ŷN1 ,y)+ k2 LX (ŷN2 ,y)) (8)

LX is the cross-entropy loss function that acts on the the prediction vector ŷ and the
ground truth y. The constants k, k1, k2 controls the weights (‘importance’) of the individual
losses. However, directly optimizing Eq. 8 requires careful tuning of the constants. To avoid
this, we train the entire system in several different phases with each phase targeting a single
loss function and it entirely eliminates the task of tuning the constants of Eq. 8.

2.3 Training Phases
To train the ensemble network with the different losses of Eq. 8, we develop a training algo-
rithm that is akin to the way generative adversarial networks are trained, i.e. in phases. We
have five different phases of training as portrayed in Fig. 2. Without loss of generality we
discuss the N = 2 case, i.e. two base models and a single ensemble head as the ensemble
network. During training, we train N1 and N2 independently from a different seed for a few
epochs. We denote this pretraining phase as the zero’th phase as it occurs only once in the
training cycle. After the pretraining phase is completed, phase 1 through 4 repeats in a cycle
occuring once every iteration until convergence. If we invoke the FDL loss function from the
very first iteration (i.e. without invoking phase zero), the training progresses haphazardly,
leading to instability. So we pretrain N1 and N2 for a few epochs depending on the dataset.
Smaller datasets such as the CIFAR datasets, the number of pretraining epochs are often just
1. Larger datasets require more pretraining. We mention all training details and hyperparam-
eters for complete reproducibility in the supplementary section of this article. It is important
to note that we stop training much before convergence. At this state, the networks have not
reached their convergence point yet. If we invoke the FDL loss from this point onwards,
the two neural networks diverge from their paths and arrive at different and diverse optimal
points. The FDL loss maximizes the gap between the two optimal points, by making the net-
works compete against each other. The farther the final optimal points of each base network,
the better it is for the ensemble as a whole.

In the first phase, we train the base models with a single minibatch from the training
dataset and immediately move on to the next phase. In the second phase of training, we in-
voke the similarity loss. In a two network setting, we take the loss values of the two networks
and compute the mean squared error between them. Since the two loss ‘tensors’ are a part
of the computation graph, the effect of the mean squared error computation backpropagates
through the entire network. The aim of the similarity loss function is to stabilize training.
With the similarity loss, the cross-entropy loss values are kept within a reasonable range of
one another. The reason why we choose to compare the loss values instead of the prediction
vectors is the following. The loss value (a scalar) represents the height of a point on the loss
landscape whose value is determined by the parameters of the network and the input vector

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

AUTHOR(S): BMVC AUTHOR GUIDELINES 5

Figure 2: The training pipeline of two networks N1, N2 along with the ensemble head net-
work trained with FDL loss. The red dotted line indicates the flow of gradients during back-
propagation.

(a minibatch of training images). Several different points on this loss landscape can have
the same loss value. By comparing the loss values of the base models, we force the network
to arrive at a ‘similar’ quality optima at convergence. Due to the fact that stability issues
are typical when training neural networks with negative loss landscapes (FDL or GAN), the
presence of the similarity loss function is essential. If in case we train the base models to
only minimize the negative of the FDL loss without having the similarity loss in the training
pipeline, we observe that in some cases the weights of one of the base networks goes to zero,
while the other network arrives at a perfectly good optimal convergence point. This is intu-
itively plausible, as it is optimal to ‘sacrifice’ the accuracy of one of the networks to have the
FDL loss at a maximum value since the feature vector differences will then be at their great-
est. The presence of the similarity loss prohibits this phenomena. Also, in our formulation
of the similarity loss we do not compare the prediction vectors and instead choose to just
compare the loss values. This is because it is possible for the networks to have the same loss
value for different prediction vectors. Comparing the prediction vectors would instead lead
the networks to arrive at the exact same optimal point, which will lead to a loss in ensemble
diversity. A group of networks that output the same prediction vectors for any input images
does not provide any additional information to the ensemble.

In case of N networks, we find that invoking the similarity loss between every pair of
NC2 networks is computationally intensive and so we randomly choose any two networks
per iteration and invoke the similarity loss objective only on those two networks. A uniform
random sampler ensures that all pairs of networks are choosen with equal likelihood.

In the third phase, we invoke the FDL loss. In this step, we collect all output activations
from only the convolutional layers. We broadcast the activation tensors to all other networks
in the pool, and compare the mean squared difference between them in a pairwise fashion
as per Eq. 5. This means that for N networks, the total number of transfers is NC2. This
is crucially important as it ensures information exchange between all networks in the pool,
which is the crux of our algorithm. The final FDL loss for N networks is the average over all
NC2 transfers. Instead of maximizing the FDL loss, we minimize the negative of it.

L∗
FDL =

1
NC2

N−1

∑
i=1

N

∑
j=i+1

Li, j
FDL (9)

Finally in the fourth phase of training, we train the ensemble head network NE . The
input to NE is a concatenated array of all logits accumulated from all base networks. While

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

6 AUTHOR(S): BMVC AUTHOR GUIDELINES

Figure 3: We perform experiments on the following models. (a): A simple two layer network
on MNIST. (b): Deeper networks, VGG-16 and ResNet-20/32 on CIFAR-10/100. (c): Larger
models: ResNet variants on ImageNet-1K.

training the head network, we do not pass the gradients back to the base networks. This
is an important step required to measure the efficacy of the FDL loss. If the gradient that
is computed at the ensemble end is used to update the weights of the base networks, then
there is a possibility that the base networks improve the ensemble performance through this
gradient update and not through FDL. Hence we choose to keep the weights of the base
networks completely disjoint from the weights of the NE network.

In none of the training phases, we optimize the ensemble’s performance by the loss
computed at the ensemble head. Instead, we use feature exchange and FDL to allow the
network to arrive at better optimas, by nudging it towards different solutions where the learnt
feature representations are diverse. Each iteration comprises phase 1 through 4 exactly once.
The process continues until convergence.

3 Experiments

Our first experiment consists of a simple network (Fig. 3(a)) that has a single convolution
layer with M units of 3× 3 filters. We train all base networks on the MNIST dataset. We
vary M from 1 to 256, and for each experiment and we record the performance of the single
full-width network (of M filters) and the ensemble performance of two half-width networks
(M/2 filters each) (Fig. 4(a)). We observe that in almost every case, the two network FDL
ensemble learns better representations and outperform the single full-width network.

We also experiment with deeper networks, such as VGG-16 [38], ResNet-20 and ResNet-
32 [15] and with the CIFAR-10 and CIFAR-100 [22] datasets. We use a single layer of 1×1
convolution units as the ensemble head, Fig. 3(b). We portray the observed FDL ensemble
accuracies Fig. 4(b). From table 1, we observe that ensembles trained with FDL outperform
other methods. FDL scores higher than SSE (SnapShot Ensemble), FGE (Fast Geometric
Ensemble), and AE (Auto-Ensemble). In CIFAR-10 experiments, FDL outperforms AE Full
by 1% and FGE by 0.59%. In CIFAR-100 experiments, it outperforms FGE by 0.56%.

On the ImageNet-1K [35] (Fig. 3(c)), we see a significant improvement of 1.58% in
ResNet-18, and an improvement of 0.67% in ResNet-50 2. From table 2, we observe that
FDL enables ensmebles of two base ResNet models to achieve higher accuracies over the
standard non-FDL methods. This indicates that FDL is a diversity enoucouraging loss func-
tion. Two ResNet-50 models trained with FDL outperforms SSE (SnapShot Ensemble) by
0.39% and FGE by 0.37% (table 1).

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, etprotect unhbox voidb@x protect penalty @M {}al.} 2015

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

AUTHOR(S): BMVC AUTHOR GUIDELINES 7

Figure 4: (a) Number of Filters (M) vs Accuracy plot of a one layer ConvNet. Red line =
single network of M filters. Blue line = FDL ensemble of 2x networks (M/2 filters each). (b)
Multi-network FDL ensemble accuracies for various models (VGG-16, ResNet-20, ResNet-
32) on (CIFAR-10 and CIFAR-100).

Table 1: Left: Comparisons of ensemble methods in image classification task, performed on
the CIFAR-10 and CIFAR-100 datasets.

Method Accuracy (%)

CIFAR-10 CIFAR-100

VGG-16 (1x) baseline 93.66 74.61
VGG-16 RIE (2x) 93.7 76.95
VGG-16 SSE [18] 94.05 75.31
VGG-16 FGE [11] 94.34 76.46
VGG-16 AE Full [44] 93.93 72.16
VGG-16 FDL (2x) [ours] 94.93 77.02

Method
Accuracy (%)

ImageNet-1K

ResNet-50 (1x) baseline 76.38
ResNet-50 RIE (2x) 76.96
ResNet-50 SSE [18] 76.67
ResNet-50 FGE [11] 76.69
ResNet-50 FDL (2x) [ours] 77.06

4 Ablation Studies
We discuss the efficacy of FDL loss by performing the same training routine of Fig. 2, with
the same hyperparameters, but as two separate experiments: ‘with’ FDL and ‘without’ FDL.
In table 2 (right), column [C] denotes the accuracies of ensembles of two identical base
networks trained ‘with’ and ‘without’ FDL. Column [A] denotes the performance of each
base network for which the ensemble in [C] is obtained. Column [B] denotes the individual
best accuracy obtained during the entire training process. We observe that with FDL, not
only the ensemble performance is better than without it, but also the base models trained
with FDL outperform base models trained without FDL.

We also provide a visualization of feature difference maps between two VGG-16 models
in Fig. 6 trained with and without FDL. We observe that FDL forces higher feature differ-
ences among base models, which we hypothesize as the primary contributor to increase in
diversity, leading to the observed higher accuracies in FDL ensembles.

In Fig. 5(a) we plot different loss plots and test accuracy plots for 2x VGG-16 ensemble
on CIFAR-100. The FDL loss decreases initially (red line). After 200 epochs it starts to
increase, even though the cross-entropy loss of N1 keeps on decreasing (blue line). The
yellow circle marks the epoch where maximum ensemble accuracy is achieved. In Fig.
5(b, c) we perform additional ablation studies, where we train the networks with FDL and

Citation
Citation
{Huang, Li, Pleiss, Liu, Hopcroft, and Weinberger} 2017

Citation
Citation
{Garipov, Izmailov, Podoprikhin, Vetrov, and Wilson} 2018

Citation
Citation
{Yang and Wang} 2020

Citation
Citation
{Huang, Li, Pleiss, Liu, Hopcroft, and Weinberger} 2017

Citation
Citation
{Garipov, Izmailov, Podoprikhin, Vetrov, and Wilson} 2018

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

8 AUTHOR(S): BMVC AUTHOR GUIDELINES

Figure 5: 2x VGG-16 ensemble training on CIFAR-100. (a) Loss and accuracy plots. (b)
Similarity loss plots. (c) Plot of Mean Squared Feature Differences during the training.

Table 2: Left: Test accuracies on the test set of ImageNet-1K. Right: Results of ablation
study performed on the ResNet-18 network on ImageNet. We observe that FDL ensemble
performs better than the non-FDL emsemble.

Model
ImageNet Accuracy (%)

1x 2x 2x FDL
Network Ensemble Ensemble

ResNet-18 70.012 71.014 71.594
ResNet-50 76.386 76.964 77.06

Model Network 1 Network 2 Ensemble

[A] [B] [A] [B] [C]

ResNet-18 69.902 70.012 69.632 69.748 71.014
+ FDL 69.892 69.998 69.666 69.73 71.594

ResNet-50 76.042 76.386 75.97 76.306 76.964
+ FDL 76.186 76.246 76.052 76.108 77.06

without FDL. In Fig. 5(b), we plot the similarity loss during training. We observe that in
both cases the networks final attain close to zero similarity loss. This indicates that both
networks achieve similar optimal points at convergence. However, in case of FDL, the inital
few iterations the similarity loss is quite high and fluctuates rapidly. This indicates that with
FDL the networks’ states initially moves away from each other jumping across different local
optimas as it explores the entire loss landscape. Whereas in the without-FDL scenario, the
similarity loss is very close to zero right from the beginning of training. In Fig. 5(c) we plot
the Mean Squared Feature Differences during training for both ‘with’ and ‘without’ FDL
cases. We observe that FDL loss steadily decreases to zero if the networks are not trained
with it (blue line), but increases later down during training (red line).

5 Related Works
Several methods exist for learning ensembles such as [14], [23] and [8]. Negative correlation
learning [1] and error independent ensembling [13] has also been utilized to create ensem-
bles. In many cases, the dataset is often divided into many overlapping or non-overlapping
subsets and fed to the base models and with enough hardware, the models can be simul-
taneously trained [12] [47] and their predictions aggregated. Often, the base models are
trained with different hyperparameters to reach different solution points. The base models
are combined using model averaging, various types of voting (majority voting, soft voting
or plurality voting) or weighted consensus (boosting voting) [43]. In collaborative learning
[39], many ensemble head networks are used on the same network to improve robustness
and generalization. A similar idea is explored in [49] and from the perspective of pruning in
[26].

Citation
Citation
{Hansen and Salamon} 1990

Citation
Citation
{Krogh and Vedelsby} 1994

Citation
Citation
{Dietterich} 2000

Citation
Citation
{Alhamdoosh and Wang} 2014

Citation
Citation
{Giacinto and Roli} 2001

Citation
Citation
{Ge, Chen, and Li} 2020

Citation
Citation
{Zhang, Xiang, Hospedales, and Lu} 2018

Citation
Citation
{Wu, Liu, Xie, Bae, Chow, and Wei} 2020

Citation
Citation
{Song and Chai} 2018

Citation
Citation
{Zhou, Wu, and Tang} 2002

Citation
Citation
{Le, Vo, and Thoai} 2020

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

AUTHOR(S): BMVC AUTHOR GUIDELINES 9

Figure 6: Differences between feature maps of two VGG-16 base models trained on the
CIFAR-100 with and without FDL. The intensity of yellow on each feature map indicates
the strength of the mean squared difference between two feature maps from the same layer
and the same channel.

Some well-known techniques for obtaining ensembles from base models include Ran-
dom Forest [5] [17], Bagging [4], Boosting [36], and AdaBoost [37], Random Layer Sam-
pling [27]. EnsembleBench [43] tries to minimize the number of possible ensemble candi-
dates required for evaluation while maximizing overall ensemble performance. It is widely
accepted that maximizing diversity is critical to maximizing ensemble benefits. It is obvious
that if all the base models are exact replicas of each other, the ensemble’s performance is no
better than any of its base models. Correlation between diversity and ensemble performance
is explored in [24] and [32].

Co-training losses ensure that all base models eventually perform similarly with the en-
semble output being an average of all predictions. Student-teacher based ensembles has been
explored in [31, 47] using distillation [16]. Co-training has been used to achieve diversifi-
cation [2, 3, 12, 34, 45]. Neural Architecture Search (NAS) based methods have also been
used to create ensembles [7, 9, 10, 21, 41, 46, 50].

6 Conclusion
We present a method of optimizing ensemble performance of identical networks by intro-
ducing feature difference losses and a custom training routine. FDL maximizes feature dif-
ferences by pushing the networks towards more diverse solutions. From experiments on
shallow networks and smaller datasets, to larger models and larger datasets show positive
performance gains in all scenarios. FDL encourages high diversity in base model by directly
optimizing Euclidean difference between pairs of feature sets across all NC2 combinations
of N networks.

Citation
Citation
{Breiman} 2001

Citation
Citation
{Ho} 1995

Citation
Citation
{Breiman} 1996

Citation
Citation
{Schapire} 1999

Citation
Citation
{Schapire} 2013

Citation
Citation
{Lee, Lee, Kim, and Ro} 2020

Citation
Citation
{Wu, Liu, Xie, Bae, Chow, and Wei} 2020

Citation
Citation
{Kuncheva and Whitaker} 2003

Citation
Citation
{Partridge and Krzanowski} 1997

Citation
Citation
{Lyu, Zhao, Ma, and Chen} 2021

Citation
Citation
{Zhang, Xiang, Hospedales, and Lu} 2018

Citation
Citation
{Hinton, Vinyals, and Dean} 2015

Citation
Citation
{Batra and Parikh} 2017

Citation
Citation
{Blum and Mitchell} 1998

Citation
Citation
{Ge, Chen, and Li} 2020

Citation
Citation
{Qiao, Shen, Zhang, Wang, and Yuille} 2018

Citation
Citation
{Yang, Zhu, Chen, Yan, Zhang, and Willis} 2020

Citation
Citation
{Cortes, Gonzalvo, Kuznetsov, Mohri, and Yang} 2017

Citation
Citation
{Elsken, Metzen, and Hutter} 2019

Citation
Citation
{Fang, Chen, Zhang, Zhang, Huang, Meng, Liu, and Wang} 2019

Citation
Citation
{Jin, Song, and Hu} 2019

Citation
Citation
{Weill, Gonzalvo, Kuznetsov, Yang, Yak, Mazzawi, Hotaj, Jerfel, Macko, Adlam, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

Citation
Citation
{Zaidi, Zela, Elsken, Holmes, Hutter, and Teh} 2021

Citation
Citation
{Zoph and Le} 2016

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

10 AUTHOR(S): BMVC AUTHOR GUIDELINES

References
[1] Monther Alhamdoosh and Dianhui Wang. Fast decorrelated neural network ensembles

with random weights. Information Sciences, 264:104–117, 2014.

[2] Tanmay Batra and Devi Parikh. Cooperative learning with visual attributes. arXiv
preprint arXiv:1705.05512, 2017.

[3] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-
training. In Proceedings of the eleventh annual conference on Computational learning
theory, pages 92–100, 1998.

[4] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[5] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[6] Hugh Chen, Scott Lundberg, and Su-In Lee. Checkpoint ensembles: Ensemble meth-
ods from a single training process. arXiv preprint arXiv:1710.03282, 2017.

[7] Corinna Cortes, Xavier Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri, and Scott Yang.
Adanet: Adaptive structural learning of artificial neural networks. In International
conference on machine learning, pages 874–883. PMLR, 2017.

[8] Thomas G Dietterich. Ensemble methods in machine learning. In International work-
shop on multiple classifier systems, pages 1–15. Springer, 2000.

[9] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A
survey. The Journal of Machine Learning Research, 20(1):1997–2017, 2019.

[10] Jiemin Fang, Yukang Chen, Xinbang Zhang, Qian Zhang, Chang Huang, Gaofeng
Meng, Wenyu Liu, and Xinggang Wang. Eat-nas: elastic architecture transfer for accel-
erating large-scale neural architecture search. arXiv preprint arXiv:1901.05884, 2019.

[11] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry Vetrov, and Andrew Gor-
don Wilson. Loss surfaces, mode connectivity, and fast ensembling of dnns. In Pro-
ceedings of the 32nd International Conference on Neural Information Processing Sys-
tems, pages 8803–8812, 2018.

[12] Yixiao Ge, Dapeng Chen, and Hongsheng Li. Mutual mean-teaching: Pseudo label
refinery for unsupervised domain adaptation on person re-identification. ICLR, 2020.

[13] Giorgio Giacinto and Fabio Roli. Design of effective neural network ensembles for
image classification purposes. Image and Vision Computing, 19(9-10):699–707, 2001.

[14] Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE transactions
on pattern analysis and machine intelligence, 12(10):993–1001, 1990.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[16] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

AUTHOR(S): BMVC AUTHOR GUIDELINES 11

[17] Tin Kam Ho. Random decision forests. In Proceedings of 3rd international conference
on document analysis and recognition, volume 1, pages 278–282. IEEE, 1995.

[18] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Wein-
berger. Snapshot ensembles: Train 1, get m for free. arXiv preprint arXiv:1704.00109,
2017.

[19] Hiroshi Inoue. Adaptive ensemble prediction for deep neural networks based on confi-
dence level. In The 22nd International Conference on Artificial Intelligence and Statis-
tics, pages 1284–1293. PMLR, 2019.

[20] Siddhartha Jain, Ge Liu, Jonas Mueller, and David Gifford. Maximizing overall diver-
sity for improved uncertainty estimates in deep ensembles. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 4264–4271, 2020.

[21] Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An efficient neural architecture
search system. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 1946–1956, 2019.

[22] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[23] Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation, and
active learning. Advances in neural information processing systems, 7, 1994.

[24] Ludmila I Kuncheva and Christopher J Whitaker. Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy. Machine learning, 51(2):
181–207, 2003.

[25] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scal-
able predictive uncertainty estimation using deep ensembles. Advances in neural infor-
mation processing systems, 30, 2017.

[26] Duong H Le, Trung-Nhan Vo, and Nam Thoai. Paying more attention to snapshots
of iterative pruning: Improving model compression via ensemble distillation. arXiv
preprint arXiv:2006.11487, 2020.

[27] Hakmin Lee, Hong Joo Lee, Seong Tae Kim, and Yong Man Ro. Robust ensemble
model training via random layer sampling against adversarial attack. arXiv preprint
arXiv:2005.10757, 2020.

[28] Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David Crandall, and Dhruv Ba-
tra. Why m heads are better than one: Training a diverse ensemble of deep networks.
arXiv preprint arXiv:1511.06314, 2015.

[29] Yong Liu and Xin Yao. Ensemble learning via negative correlation. Neural networks,
12(10):1399–1404, 1999.

[30] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983, 2016.

[31] Shuchang Lyu, Qi Zhao, Yujing Ma, and Lijiang Chen. Make baseline model stronger:
Embedded knowledge distillation in weight-sharing based ensemble network. 2021.

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

12 AUTHOR(S): BMVC AUTHOR GUIDELINES

[32] Derek Partridge and Wojtek Krzanowski. Software diversity: practical statistics for its
measurement and exploitation. Information and software technology, 39(10):707–717,
1997.

[33] Tim Pearce, Felix Leibfried, and Alexandra Brintrup. Uncertainty in neural networks:
Approximately bayesian ensembling. In International conference on artificial intelli-
gence and statistics, pages 234–244. PMLR, 2020.

[34] Siyuan Qiao, Wei Shen, Zhishuai Zhang, Bo Wang, and Alan Yuille. Deep co-training
for semi-supervised image recognition. In Proceedings of the european conference on
computer vision (eccv), pages 135–152, 2018.

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet
large scale visual recognition challenge. International journal of computer vision, 115
(3):211–252, 2015.

[36] Robert E Schapire. A brief introduction to boosting. In Ijcai, volume 99, pages 1401–
1406. Citeseer, 1999.

[37] Robert E Schapire. Explaining adaboost. In Empirical inference, pages 37–52.
Springer, 2013.

[38] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[39] Guocong Song and Wei Chai. Collaborative learning for deep neural networks. ICLR,
2018.

[40] Andrew M Webb, Charles Reynolds, Dan-Andrei Iliescu, Henry Reeve, Mikel Luján,
and Gavin Brown. Joint training of neural network ensembles. stat, 1050:12, 2019.

[41] Charles Weill, Javier Gonzalvo, Vitaly Kuznetsov, Scott Yang, Scott Yak, Hanna Maz-
zawi, Eugen Hotaj, Ghassen Jerfel, Vladimir Macko, Ben Adlam, et al. Adanet: A
scalable and flexible framework for automatically learning ensembles. arXiv preprint
arXiv:1905.00080, 2019.

[42] Long Wen, Liang Gao, and Xinyu Li. A new snapshot ensemble convolutional neural
network for fault diagnosis. Ieee Access, 7:32037–32047, 2019.

[43] Yanzhao Wu, Ling Liu, Zhongwei Xie, Juhyun Bae, Ka-Ho Chow, and Wenqi Wei.
Promoting high diversity ensemble learning with ensemblebench. arXiv preprint
arXiv:2010.10623, 2020.

[44] Jun Yang and Fei Wang. Auto-ensemble: An adaptive learning rate scheduling based
deep learning model ensembling. IEEE Access, 8:217499–217509, 2020.

[45] Taojiannan Yang, Sijie Zhu, Chen Chen, Shen Yan, Mi Zhang, and Andrew Willis.
Mutualnet: Adaptive convnet via mutual learning from network width and resolution.
In European Conference on Computer Vision, pages 299–315. Springer, 2020.

552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597

AUTHOR(S): BMVC AUTHOR GUIDELINES 13

[46] Sheheryar Zaidi, Arber Zela, Thomas Elsken, Chris C Holmes, Frank Hutter, and Yee
Teh. Neural ensemble search for uncertainty estimation and dataset shift. Advances in
Neural Information Processing Systems, 34:7898–7911, 2021.

[47] Ying Zhang, Tao Xiang, Timothy M Hospedales, and Huchuan Lu. Deep mutual learn-
ing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4320–4328, 2018.

[48] Tianyi Zhou, Shengjie Wang, and Jeff A Bilmes. Diverse ensemble evolution: Curricu-
lum data-model marriage. Advances in Neural Information Processing Systems, 31,
2018.

[49] Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural networks: many could
be better than all. Artificial intelligence, 137(1-2):239–263, 2002.

[50] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning.
arXiv preprint arXiv:1611.01578, 2016.

