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Knowledge Diversification in Ensembles of
Identical Neural Networks
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Abstract
It is well known that diversity in models is the key to enhancing the performance of

an ensemble. In standard neural network ensemble techniques, two or more networks are
trained independently and their logits or predictions are combined using a voting proce-
dure or linear combination strategy. This procedure does not incorporate the exchange of
information between the base networks of the ensemble. We propose a method for im-
proving learnt representations in an ensemble by employing feature exchange between
base models as a part of the training objective. Feature Difference Loss or FDL compels
networks in an ensemble to learn diverse features in a Euclidean sense, thereby directly
optimizing model diversity. Experiments with ensembles of two, three and four net-
works show significant performance boosts over competing ensemble techniques. The
gains are larger for datasets with fewer examples per class, such as MNIST, CIFAR-10
and CIFAR-100. Positive gains can also be observed in large datasets such as ImageNet.
The gains also generalize across several architectures from simple ConvNets to deeper
networks such as VGG and ResNets.

1 Introduction
Creating an ensemble of neural networks is a common way to improve the performance of
learning-based algorithms. The ILSVRC 2015 winning residual network [15] is an ensemble
of six different base ResNet models. Training base models has mostly been done in a model-
independent way. It is intuitive that an ensemble performs better if the base models learn
different sets of features. Because each model contributes a unique set of features or logits
to the ensemble, a broader range of information is captured, increasing generalization.

Random Initialization Ensemble is a method of taking ensembles that involves changing
the initialization states of the base models in order to have different trajectories during op-
timization. One such technique is Deep Ensembles [25]. However such techniques do not
optimize the diversity of learned representations during training. It involves performing mul-
tiple experiments with various initialization and then choosing a subset of the most diverse
models as a part of the ensemble. The SnapShot Ensemble [18] [42] combines checkpoint
collection with cyclic learning rate methods such as SGD with warm restarts [30] to generate
ensembles. Fast Geometric Ensemble [11] traverses high accuracy paths between modes to
generate ensembles by combining modes. Checkpoint ensembles [6] uses checkpoints dur-
ing training as ensemble candidates, which are then combined near the end of training to
generate an ensemble. Adaptive Ensemble [19] based on Confidence Intervals reduces com-
putation overhead by discarding ensemble executions for input samples with high softmax
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outputs. Auto-Ensemble [44] creates an ensemble using checkpoint collection and a learning
rate scheduling algorithm.

Loss functions and training routines that directly target model diversity has been explored
in [20, 28, 29, 33, 40, 48]. In this paper, we try to directly optimize the diversity of features
generated by many identical neural networks. We do this by introducing feature difference
loss (FDL) into the training routine. In order to achieve a diverse set of features, the base
models compete against each other in a minimax fashion with the injection of the FDL loss.
In this paper, our motivation for this work are the following: to provide a trainable way of
improving diversity amongst base models in an ensemble, and to have a stable training rou-
tine with minimal set of hyperparameters for wide applicablility and reproducibility. To this
end, our contributions in this paper are: (a) we propose a method called FDL (Feature Differ-
ence Loss) which takes the Euclidean distance between feature representations into account
during training, and with that we force the base networks towards diverse solution states at
convergence. (b) We propose a training method that is completely devoid of hyperparame-
ters. We split the training procedure in several phases that are independent of each other. (c)
We provide extensive experimentation of various models and datasets ranging from simple
ConvNets to deeper networks such as VGG and also residual architectures such as ResNet-
18 and ResNet-50, which we train on MNIST, CIFAR-10, CIFAR-100 and ImageNet-1K for
upto four networks. We show that FDL provides consistent improvement in all cases.

2 Method

2.1 Ensemble Architecture

We start with N identical base networks. Without loss of generality, we portray the N = 2
case. In Fig. 1(a), we show networks N1 and N2. The two networks produce two sets of
prediction vectors independently, and then those two vectors are concatenated and fed to an
ensemble head network, NE . The ensemble head comprises a single layer of 1×1 convolu-
tion kernels and it learns the optimal linear combination to combine the prediction vectors
at its input. All networks N1, N2 and NE are trained using cross-entropy loss. However, we
also have other losses during training which we portray in next section.

If v⃗1 and v⃗2 are the prediction vectors for an input mini-batch I, then for networks N1 and
N2 respectively, we have:

v⃗1 = (v11, · · · ,v1p) = F1 ∗ I (1)

v⃗2 = (v21, · · · ,v2p) = F2 ∗ I (2)

where F1 and F2 represents the parameters of N1 and N2 respectively, and ∗ is the convolu-
tion operator.

The output of the ensemble head can then be represented as,

v⃗e = (v1, · · · ,vp) = K ∗ (v11, · · · ,v1p,v21, · · · ,v2p) (3)

where K is a set of 1×1 convolution kernels.
During the training of the ensemble head, no gradient is passed back to the base networks.

The training routine of the base networks and the ensemble head is performed in five phases,
which we describe in section 2.3.
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Figure 1: (a) The architecture of the ensemble head network. Predictions of two identical
networks are combined into a single prediction vector using 2N linear units or 2N (1× 1)
convolution. (b) The architecture of four identical neural networks trained with FDL. All
networks share a common minibatch. Features are exchanged and the networks weights
are updated so as to maximize feature differences between them. The double sided arrows
represent the different loss functions and their position indicates the location where they are
invoked. Prediction vectors (P1, P2, P3, P4) are combined using an ensemble head to create
PE.

2.2 Feature Difference Loss (FDL)
Given a convolutional base neural network N, we define Wi as the ith convolutional layer of
the network. A feature vector Fi−1 is fed into Wi, and the output Fi is generated.

Fi =Wi ∗Fi−1 (4)

We denote the shape of the tensor Fi as (B,C,H,W ) where B is the number of images in a
batch, C is the number of channels of each image and H ×W is the resolution of each image.
In Fig. 1(b), we show the architecture and the computation graph of four neural networks
trained using our proposed method. First we portray the two network case, following which
we extend our method for ensembles of more than two networks in section 2.3. Given, two
identical networks N1 and N2, we compute the feature difference loss for the ith layer as:

LN1,N2
i =

1
BCHW

B−1

∑
b=0

C−1

∑
c=0

H−1

∑
h=0

W−1

∑
w=0

(FN1
i (b,c,h,w)−FN2

i (b,c,h,w))2 (5)

The value of the feature loss is then summed up and averaged over the depth (D) of the
network as:

LN1,N2
FDL =

1
D

D−1

∑
d=0

LN1,N2
d (6)

Given the cross-entropy loss of network N1 and N2 as L1 and L2 respectively, we define
the similarity loss function as:
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SN1,N2 = (L1 −L2)
2 (7)

Ideally, we want to perform maximization of the feature difference loss, Eq. 6. However,
as is commonly followed in the training routines of generative adversarial networks (GANs),
the discriminator’s loss functions are not maximized, rather the negative of it is minimized.
Here too, we minimize the negative of the FDL loss function, Eq. 6.

We pose the optimization criterion as:

N∗
E(W ) = argmin

W
(−LN1,N2

FDL + k SN1,N2 + k1 LX (ŷN1 ,y)+ k2 LX (ŷN2 ,y)) (8)

LX is the cross-entropy loss function that acts on the the prediction vector ŷ and the
ground truth y. The constants k, k1, k2 controls the weights (‘importance’) of the individual
losses. However, directly optimizing Eq. 8 requires careful tuning of the constants. To avoid
this, we train the entire system in several different phases with each phase targeting a single
loss function and it entirely eliminates the task of tuning the constants of Eq. 8.

2.3 Training Phases
To train the ensemble network with the different losses of Eq. 8, we develop a training algo-
rithm that is akin to the way generative adversarial networks are trained, i.e. in phases. We
have five different phases of training as portrayed in Fig. 2. Without loss of generality we
discuss the N = 2 case, i.e. two base models and a single ensemble head as the ensemble
network. During training, we train N1 and N2 independently from a different seed for a few
epochs. We denote this pretraining phase as the zero’th phase as it occurs only once in the
training cycle. After the pretraining phase is completed, phase 1 through 4 repeats in a cycle
occuring once every iteration until convergence. If we invoke the FDL loss function from the
very first iteration (i.e. without invoking phase zero), the training progresses haphazardly,
leading to instability. So we pretrain N1 and N2 for a few epochs depending on the dataset.
Smaller datasets such as the CIFAR datasets, the number of pretraining epochs are often just
1. Larger datasets require more pretraining. We mention all training details and hyperparam-
eters for complete reproducibility in the supplementary section of this article. It is important
to note that we stop training much before convergence. At this state, the networks have not
reached their convergence point yet. If we invoke the FDL loss from this point onwards,
the two neural networks diverge from their paths and arrive at different and diverse optimal
points. The FDL loss maximizes the gap between the two optimal points, by making the net-
works compete against each other. The farther the final optimal points of each base network,
the better it is for the ensemble as a whole.

In the first phase, we train the base models with a single minibatch from the training
dataset and immediately move on to the next phase. In the second phase of training, we in-
voke the similarity loss. In a two network setting, we take the loss values of the two networks
and compute the mean squared error between them. Since the two loss ‘tensors’ are a part
of the computation graph, the effect of the mean squared error computation backpropagates
through the entire network. The aim of the similarity loss function is to stabilize training.
With the similarity loss, the cross-entropy loss values are kept within a reasonable range of
one another. The reason why we choose to compare the loss values instead of the prediction
vectors is the following. The loss value (a scalar) represents the height of a point on the loss
landscape whose value is determined by the parameters of the network and the input vector
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Figure 2: The training pipeline of two networks N1, N2 along with the ensemble head net-
work trained with FDL loss. The red dotted line indicates the flow of gradients during back-
propagation.

(a minibatch of training images). Several different points on this loss landscape can have
the same loss value. By comparing the loss values of the base models, we force the network
to arrive at a ‘similar’ quality optima at convergence. Due to the fact that stability issues
are typical when training neural networks with negative loss landscapes (FDL or GAN), the
presence of the similarity loss function is essential. If in case we train the base models to
only minimize the negative of the FDL loss without having the similarity loss in the training
pipeline, we observe that in some cases the weights of one of the base networks goes to zero,
while the other network arrives at a perfectly good optimal convergence point. This is intu-
itively plausible, as it is optimal to ‘sacrifice’ the accuracy of one of the networks to have the
FDL loss at a maximum value since the feature vector differences will then be at their great-
est. The presence of the similarity loss prohibits this phenomena. Also, in our formulation
of the similarity loss we do not compare the prediction vectors and instead choose to just
compare the loss values. This is because it is possible for the networks to have the same loss
value for different prediction vectors. Comparing the prediction vectors would instead lead
the networks to arrive at the exact same optimal point, which will lead to a loss in ensemble
diversity. A group of networks that output the same prediction vectors for any input images
does not provide any additional information to the ensemble.

In case of N networks, we find that invoking the similarity loss between every pair of
NC2 networks is computationally intensive and so we randomly choose any two networks
per iteration and invoke the similarity loss objective only on those two networks. A uniform
random sampler ensures that all pairs of networks are choosen with equal likelihood.

In the third phase, we invoke the FDL loss. In this step, we collect all output activations
from only the convolutional layers. We broadcast the activation tensors to all other networks
in the pool, and compare the mean squared difference between them in a pairwise fashion
as per Eq. 5. This means that for N networks, the total number of transfers is NC2. This
is crucially important as it ensures information exchange between all networks in the pool,
which is the crux of our algorithm. The final FDL loss for N networks is the average over all
NC2 transfers. Instead of maximizing the FDL loss, we minimize the negative of it.

L∗
FDL =

1
NC2

N−1

∑
i=1

N

∑
j=i+1

Li, j
FDL (9)

Finally in the fourth phase of training, we train the ensemble head network NE . The
input to NE is a concatenated array of all logits accumulated from all base networks. While
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Figure 3: We perform experiments on the following models. (a): A simple two layer network
on MNIST. (b): Deeper networks, VGG-16 and ResNet-20/32 on CIFAR-10/100. (c): Larger
models: ResNet variants on ImageNet-1K.

training the head network, we do not pass the gradients back to the base networks. This
is an important step required to measure the efficacy of the FDL loss. If the gradient that
is computed at the ensemble end is used to update the weights of the base networks, then
there is a possibility that the base networks improve the ensemble performance through this
gradient update and not through FDL. Hence we choose to keep the weights of the base
networks completely disjoint from the weights of the NE network.

In none of the training phases, we optimize the ensemble’s performance by the loss
computed at the ensemble head. Instead, we use feature exchange and FDL to allow the
network to arrive at better optimas, by nudging it towards different solutions where the learnt
feature representations are diverse. Each iteration comprises phase 1 through 4 exactly once.
The process continues until convergence.

3 Experiments

Our first experiment consists of a simple network (Fig. 3(a)) that has a single convolution
layer with M units of 3× 3 filters. We train all base networks on the MNIST dataset. We
vary M from 1 to 256, and for each experiment and we record the performance of the single
full-width network (of M filters) and the ensemble performance of two half-width networks
(M/2 filters each) (Fig. 4(a)). We observe that in almost every case, the two network FDL
ensemble learns better representations and outperform the single full-width network.

We also experiment with deeper networks, such as VGG-16 [38], ResNet-20 and ResNet-
32 [15] and with the CIFAR-10 and CIFAR-100 [22] datasets. We use a single layer of 1×1
convolution units as the ensemble head, Fig. 3(b). We portray the observed FDL ensemble
accuracies Fig. 4(b). From table 1, we observe that ensembles trained with FDL outperform
other methods. FDL scores higher than SSE (SnapShot Ensemble), FGE (Fast Geometric
Ensemble), and AE (Auto-Ensemble). In CIFAR-10 experiments, FDL outperforms AE Full
by 1% and FGE by 0.59%. In CIFAR-100 experiments, it outperforms FGE by 0.56%.

On the ImageNet-1K [35] (Fig. 3(c)), we see a significant improvement of 1.58% in
ResNet-18, and an improvement of 0.67% in ResNet-50 2. From table 2, we observe that
FDL enables ensmebles of two base ResNet models to achieve higher accuracies over the
standard non-FDL methods. This indicates that FDL is a diversity enoucouraging loss func-
tion. Two ResNet-50 models trained with FDL outperforms SSE (SnapShot Ensemble) by
0.39% and FGE by 0.37% (table 1).
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Figure 4: (a) Number of Filters (M) vs Accuracy plot of a one layer ConvNet. Red line =
single network of M filters. Blue line = FDL ensemble of 2x networks (M/2 filters each). (b)
Multi-network FDL ensemble accuracies for various models (VGG-16, ResNet-20, ResNet-
32) on (CIFAR-10 and CIFAR-100).

Table 1: Left: Comparisons of ensemble methods in image classification task, performed on
the CIFAR-10 and CIFAR-100 datasets.

Method Accuracy (%)

CIFAR-10 CIFAR-100

VGG-16 (1x) baseline 93.66 74.61
VGG-16 RIE (2x) 93.7 76.95
VGG-16 SSE [18] 94.05 75.31
VGG-16 FGE [11] 94.34 76.46
VGG-16 AE Full [44] 93.93 72.16
VGG-16 FDL (2x) [ours] 94.93 77.02

Method
Accuracy (%)

ImageNet-1K

ResNet-50 (1x) baseline 76.38
ResNet-50 RIE (2x) 76.96
ResNet-50 SSE [18] 76.67
ResNet-50 FGE [11] 76.69
ResNet-50 FDL (2x) [ours] 77.06

4 Ablation Studies
We discuss the efficacy of FDL loss by performing the same training routine of Fig. 2, with
the same hyperparameters, but as two separate experiments: ‘with’ FDL and ‘without’ FDL.
In table 2 (right), column [C] denotes the accuracies of ensembles of two identical base
networks trained ‘with’ and ‘without’ FDL. Column [A] denotes the performance of each
base network for which the ensemble in [C] is obtained. Column [B] denotes the individual
best accuracy obtained during the entire training process. We observe that with FDL, not
only the ensemble performance is better than without it, but also the base models trained
with FDL outperform base models trained without FDL.

We also provide a visualization of feature difference maps between two VGG-16 models
in Fig. 6 trained with and without FDL. We observe that FDL forces higher feature differ-
ences among base models, which we hypothesize as the primary contributor to increase in
diversity, leading to the observed higher accuracies in FDL ensembles.

In Fig. 5(a) we plot different loss plots and test accuracy plots for 2x VGG-16 ensemble
on CIFAR-100. The FDL loss decreases initially (red line). After 200 epochs it starts to
increase, even though the cross-entropy loss of N1 keeps on decreasing (blue line). The
yellow circle marks the epoch where maximum ensemble accuracy is achieved. In Fig.
5(b, c) we perform additional ablation studies, where we train the networks with FDL and
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Figure 5: 2x VGG-16 ensemble training on CIFAR-100. (a) Loss and accuracy plots. (b)
Similarity loss plots. (c) Plot of Mean Squared Feature Differences during the training.

Table 2: Left: Test accuracies on the test set of ImageNet-1K. Right: Results of ablation
study performed on the ResNet-18 network on ImageNet. We observe that FDL ensemble
performs better than the non-FDL emsemble.

Model
ImageNet Accuracy (%)

1x 2x 2x FDL
Network Ensemble Ensemble

ResNet-18 70.012 71.014 71.594
ResNet-50 76.386 76.964 77.06

Model Network 1 Network 2 Ensemble

[A] [B] [A] [B] [C]

ResNet-18 69.902 70.012 69.632 69.748 71.014
+ FDL 69.892 69.998 69.666 69.73 71.594

ResNet-50 76.042 76.386 75.97 76.306 76.964
+ FDL 76.186 76.246 76.052 76.108 77.06

without FDL. In Fig. 5(b), we plot the similarity loss during training. We observe that in
both cases the networks final attain close to zero similarity loss. This indicates that both
networks achieve similar optimal points at convergence. However, in case of FDL, the inital
few iterations the similarity loss is quite high and fluctuates rapidly. This indicates that with
FDL the networks’ states initially moves away from each other jumping across different local
optimas as it explores the entire loss landscape. Whereas in the without-FDL scenario, the
similarity loss is very close to zero right from the beginning of training. In Fig. 5(c) we plot
the Mean Squared Feature Differences during training for both ‘with’ and ‘without’ FDL
cases. We observe that FDL loss steadily decreases to zero if the networks are not trained
with it (blue line), but increases later down during training (red line).

5 Related Works
Several methods exist for learning ensembles such as [14], [23] and [8]. Negative correlation
learning [1] and error independent ensembling [13] has also been utilized to create ensem-
bles. In many cases, the dataset is often divided into many overlapping or non-overlapping
subsets and fed to the base models and with enough hardware, the models can be simul-
taneously trained [12] [47] and their predictions aggregated. Often, the base models are
trained with different hyperparameters to reach different solution points. The base models
are combined using model averaging, various types of voting (majority voting, soft voting
or plurality voting) or weighted consensus (boosting voting) [43]. In collaborative learning
[39], many ensemble head networks are used on the same network to improve robustness
and generalization. A similar idea is explored in [49] and from the perspective of pruning in
[26].
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Figure 6: Differences between feature maps of two VGG-16 base models trained on the
CIFAR-100 with and without FDL. The intensity of yellow on each feature map indicates
the strength of the mean squared difference between two feature maps from the same layer
and the same channel.

Some well-known techniques for obtaining ensembles from base models include Ran-
dom Forest [5] [17], Bagging [4], Boosting [36], and AdaBoost [37], Random Layer Sam-
pling [27]. EnsembleBench [43] tries to minimize the number of possible ensemble candi-
dates required for evaluation while maximizing overall ensemble performance. It is widely
accepted that maximizing diversity is critical to maximizing ensemble benefits. It is obvious
that if all the base models are exact replicas of each other, the ensemble’s performance is no
better than any of its base models. Correlation between diversity and ensemble performance
is explored in [24] and [32].

Co-training losses ensure that all base models eventually perform similarly with the en-
semble output being an average of all predictions. Student-teacher based ensembles has been
explored in [31, 47] using distillation [16]. Co-training has been used to achieve diversifi-
cation [2, 3, 12, 34, 45]. Neural Architecture Search (NAS) based methods have also been
used to create ensembles [7, 9, 10, 21, 41, 46, 50].

6 Conclusion
We present a method of optimizing ensemble performance of identical networks by intro-
ducing feature difference losses and a custom training routine. FDL maximizes feature dif-
ferences by pushing the networks towards more diverse solutions. From experiments on
shallow networks and smaller datasets, to larger models and larger datasets show positive
performance gains in all scenarios. FDL encourages high diversity in base model by directly
optimizing Euclidean difference between pairs of feature sets across all NC2 combinations
of N networks.
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