
Back to basics in algorithms
The NEP 2020 must take a larger view of computational thinking and move beyond just data science and AI

S. Arun-Kumar Subhashis Banerjee∗

Computer Science and Engineering
IIT Delhi

October 14, 2020

It is heartening to note that the National Education Policy 2020 (NEP) envisages putting greater
emphasis on mathematical and computational thinking throughout the school years, starting right
from the foundational stage of the learning process. Indeed, algorithmics – the abstract process of
arriving at a post-condition through a sequential process of state changes – is among the earliest hu-
man intellectual endeavours that has become imperative for almost all organised thinking. However,
the framing in the NEP appears to put it at the same level of distinction as the more instrumental
‘coding’, and almost as a mere tool towards the utilitarian goals of artificial intelligence (AI) and
data science. We think this is misplaced.

The notions of computation and algorithms are as old as mathematics and date back to the early
stages of representing numbers and geometrical figures and manipulating them for various uses.
Their origins can be traced back almost to the beginning of the Mesolithic stone age, when the
notions of counting and addition began to take form. All early learning of counting and arithmetic is
method-based and hence algorithmic in nature, and all calculations involve computational processes
encoded in algorithms.

Figure 1: Euclid’s method for finding the greatest common divisor (GCD) of two starting lengths
BA and DC, both defined to be multiples of a common “unit” length. On the right is Nicomachus’s
example with the numbers 49 and 21 resulting in their GCD of 7. Source: Wikipedia.

∗also associated with the School of Public Policy

http://www.cse.iitd.ac.in/~sak
http://www.cse.iitd.ac.in/~suban
http://www.cse.iitd.ac.in/
http://www.iitd.ac.in/
https://en.wikipedia.org/wiki/Nicomachus
http://spp.iitd.ac.in


Modern algorithms, almost in the same form as we know them today, began to appear from
around 300 BC. Some of the earliest examples are the procedures to compute the greatest common
divisor of a pair of numbers, or the factorial, which appeared in Euclid’s books of Elements; and
the descriptions of fast exponentiation and the Fibonacci sequence which appeared around 200 BC
in the treatise of Chandah-Sutra by Acharya Pingala. The core algorithmic ideas of modern AI and
machine learning are based on some seminal algorithmic ideas of Newton and Gauss, which date
back a few hundred years. Though the form of expressions of algorithms – ‘coding’ – have been
different across ages and cultures, the fundamental principles of classical algorithm design have
remained invariant.

In the modern world, the use of algorithmic ideas is not limited only to computations with num-
bers, or even to digitization or communication or AI and data science. They play a crucial role
in modelling and expressing ideas in diverse areas of human thinking including the basic sciences
of biology, physics and chemistry; all branches of engineering; in understanding disease spread;
in modelling social interactions and social graphs; in transportation networks, supply chains, com-
merce, banking and other business processes, and even in economic and political strategies and in
design of social processes. Hence learning algorithmic thinking early in the education process is
indeed crucial.

Coding however, is merely the act of encoding an algorithmic method in a particular program-
ming language, which provides an interface such that the computational process can be invoked
in a modern digital computer. It thus is less fundamental, and indeed great algorithms have been
designed through the ages even without this facility. While coding certainly can provide excellent
opportunities to the initiated for experimentation with algorithmic ideas, they are not central or in-
dispensable to algorithmic thinking. After all, coding is merely one vehicle to achieve experiential
learning of a computational process.

Rather than the intricacies of specific programming languages, it is more important at an early
stage of education to develop an understanding of the basic algorithmic processes behind manipu-
lating geometric figures, computing with numbers, solving systems of equations, modelling road
networks and social graphs, and applying algorithmic ideas to everyday problems. In fact, an
overemphasis on learning the nitty-gritty of specific programming languages prematurely - even
from middle school - may actually distract from focussing on the development of algorithmic cre-
ativity. Indeed, this is a common outcome of the overly utilitarian ‘skills training’ based approaches
evidenced throughout the country.

The devil lies in the details, and, while the NEP guideline of introducing algorithmic thinking
early is a very welcome step, we advocate care in ensuring that it does not degenerate and get bogged
down with mundane coding tricks at a budding stage in the education process.


