
On Parallel Integer Sorting

Sanguthevar Rajasekaran1

Dept. of Computer and Information Science
University of Pennsylvania

Sandeep Sen1

Dept. of Computer Science, Duke University

Abstract. We present an optimal algorithm for sorting n in-
tegers in the range [1, nc] (for any constant c) for the EREW
PRAM model where the word length is nε, for any ε > 0. Using
this algorithm, the best known upper bound for integer sorting
on the (O(log n) word length) EREW PRAM model is improved.
In addition, a novel parallel range reduction algorithm which re-
sults in a near optimal randomized integer sorting algorithm is
presented. For the case when the keys are uniformly distributed
integers in an arbitrary range, we give an algorithm whose ex-
pected running time is optimal.

1 Introduction

1.1 Sequential Sorting Algorithms

The importance of sorting in Computer Science applications cannot be
overemphasized. The problem of sorting a sequence of elements (also called
keys) is to rearrange this sequence in either ascending order or descending
order. When the keys to be sorted are general, i.e., when the keys have no
known structure, a lower bound result [1] states that any sequential algo-
rithm (on the comparison tree and many other sequential models of interest)
will require Ω(n log n) time to sort a sequence of n keys. Many optimal al-
gorithms like QUICK SORT and HEAP SORT whose run times match this
lower bound can be found in the literature [1, 13].

In computer science applications, very often, the keys to be sorted are
from a finite set. In particular, the keys are integers of at most a polynomial
(in the input size) magnitude. For keys with this special property, sorting
becomes much simpler. The BUCKET SORT algorithm [1] sorts n integer

1Supported by NSF-DCR-85-03251 and ONR contract N00014-87-K-0310

1

keys in O(n) sequential steps. Notice that the run time of BUCKET SORT
matches the trivial Ω(n) lower bound for this problem. In this paper we are
concerned with randomized parallel algorithms for sorting integer keys.

1.2 Known Parallel Sorting Algorithms

The performance of a parallel algorithm can be specified by bounds on its
principal resources namely, processors and time. If we let P denote the
processor bound, and T denote the time bound of a parallel algorithm for
a given problem, the product PT is, clearly, bounded from below by the
minimum sequential time, Ts, required to solve this problem. We say a
parallel algorithm is optimal if PT = O(Ts). Optimal parallel sorting for
both general and integer keys remained an open problem for a long time.

Many optimal algorithms (both deterministic and randomized) for sort-
ing general keys in O(log n) time can be found in the literature (see
[20],[19],[2], and [7]). As in the sequential case, many parallel applications of
interest need only sort integer keys. Until recently, no optimal parallel algo-
rithm existed for sorting n integer keys with a run time of O(log n) or less.
Rajasekaran and Reif[18] have given a randomized optimal algorithm for
sorting n integers in the range [1, n(log n)O(1)]. It remains an open problem
to find an optimal algorithm for sorting keys in the range [1, nc], for any con-
stant c (using small word length). Hagerup [10] has published an algorithm
that sorts n integers in the range [1, nc] in time O(log n) using n log log n

log n pro-
cessors. The algorithm uses a stronger model, namely the Priority CRCW
PRAM model, and O(n1+ε) space, for any ε > 0.

1.3 Definitions

Given a sequence of keys k1, k2, . . . , kn drawn from a set S having a linear
order <, the problem of sorting this sequence is to find a permutation σ
such that kσ(1) < kσ(2) < . . . < kσ(n).

By general keys we mean a sequence of n elements drawn from a linearly
ordered set S whose elements have no known structure. The only operation
that can be used to gain information about the sequence is the comparison
of two elements. If each of the n elements in a sequence is an integer in the
range [1, nc] (for any constant c) we call these keys integer keys.

GENERAL SORT is the problem of sorting a sequence of general keys,
and INTEGER SORT is the problem of sorting a sequence of integer keys.

Throughout this paper we let [m] denote {0, 1, 2, . . . ,m−1}. Let B(n, p)

2

stand for a binomial variable with parameters n and p where n is the number
of trials and p is the probability of success.

A sorting algorithm is said to be stable if equal elements remain in the
same relative order in the sorted sequence as they were in originally. In
more precise terms, a sorting algorithm is stable if on input k1, k2, . . . , kn,
the algorithm outputs a sorting permutation σ of (1, 2, . . . , n) such that for
all i, j ∈ [n], if ki = kj and i < j then σ(i) < σ(j). A sorting algorithm that
is not guaranteed to output a stable sorted sequence is called non-stable.

Just like the big-O function serves to represent the complexity bounds
of deterministic algorithms, we employ Õ to represent complexity bounds
of randomized algorithms. We say a randomized algorithm has resource
(like time, space, etc.) bound Õ(g(n)) if there is a constant c such that the
amount of resource used by the algorithm (on any input of size n) is no more
than cαg(n) with probability ≥ 1− 1/nα, for any α ≥ 1.

1.4 Our Model of Computation

We assume the CRCW PRAM model proposed by Shiloach and Vishkin [21]
(except for the algorithm in section 3, where we assume the EREW PRAM).
In a PRAM model, a number (say P) of processors work synchronously com-
municating with each other with the help of a common block of memory.
Each processor is a RAM. A single step of a processor is an arithmetic op-
eration, a comparison, or a memory access. The CRCW PRAM is a version
of the PRAM that allows both concurrent writes and concurrent reads of
shared memory and the EREW PRAM does not allow any concurrent access
to the same location. Write conflicts are resolved arbitrarily. Unless oth-
erwise mentioned, PRAMs are assumed to have a word length of O(log n).
For the randomized algorithms, the processors have access to O(log n) bit
random numbers.

1.5 Contents of this Paper

In this paper we characterize the dependence of the run time of an integer
sorting algorithm on the machine word length. Specifically, we show that if
the word length is sufficiently large, the problem of integer sorting reduces
to the problem of prefix sum computation. As a corollary we get an integer
sorting algorithm that runs in time O(log n) using n/ log n processors with
a word length of nε, for any constant ε > 0.

3

Several non-optimal deterministic algorithms have been given for IN-
TEGER SORT. For example, Kruskal, Rudolph, and Snir [14] gave an al-
gorithm that runs in time O(n

p
log n

log(n/p)) using p processors. Following this,

Hagerup gave an algorithm that runs in O(log n) time using n log log n
log n pro-

cessors. This algorithm is very close to being optimal. However, both the
above algorithms use O(n1+ε) (for any ε > 0) space. Since nowadays the cost
of processing elements is nearly the same as the cost of memory elements,
the space requirements of these algorithms should be viewed with some con-
cern. We address in this paper the question of INTEGER SORT when the
memory usage is restricted to O(n). All the following results assume only
O(n) space.

We give a deterministic INTEGER SORT algorithm that runs in time
(log nn log log log n

p log log n) using p ≤ n
log log n processors. We also present a novel

parallel range reduction algorithm that results in a randomized algo-
rithm for INTEGER SORT that uses n

(log n)2ε processors and runs in time
O((log n)1+ε), for any 0 < ε ≤ 1/2.

For the case of uniformly distributed integer keys in an arbitrary range,
we give a CRCW PRAM algorithm that is optimal on the average. This
algorithm runs in time Õ(log n) using n

log n processors for all but a small frac-
tion (≤ 2−Ω(n/(log n log log n))) of the inputs. Recently, in independent works,
Chlebus[6] and Hagerup [11] have presented optimal algorithms for sorting
n random integers in the range [1, nO(1)]. Our algorithm runs optimally for
a larger fraction of possible inputs, and for each such input the time bound
holds with high probability.

All our sorting algorithms are stable.

2 Preliminary Results

Let Σ be a domain and let ◦ be an associative operation that takes O(1)
sequential time over this domain. The prefix computation problem is defined
as follows.

• input (X(1),X(2), . . . ,X(n)) ∈ Σn

• output (X(1), X(1) ◦X(2), . . . , X(1) ◦X(2) ◦ . . . ◦X(n)).

The special case of prefix computation when Σ is the set of all natural
numbers and ◦ is integer addition is called prefix sum computation. Ladner

4

and Fischer [15] show that prefix computation can be done by a circuit of
depth O(log n) and size n. The processor bound of this algorithm can be
improved as follows. (This is folklore; see for example [18]).

Lemma 2.1 Prefix computation can be done in time O(log n) using n/ log n
EREW PRAM processors.

Recently, Cole and Vishkin [9] have proved the following

Lemma 2.2 Prefix sum computation of n integers (O(log n) bits each)
can be performed in O(log n/ log log n) time using n log log n/ log n CRCW
PRAM processors.

When the keys to be sorted are in the range [1, n(log n)O(1)], there is an
optimal randomized algorithm for INTEGER SORT [18]:

Lemma 2.3 Given n integers in the range [n(log n)O(1)], they can be sorted
in Õ(log n) time using n/ log n CRCW PRAM processors.

Given a sequence of keys k1, k2, . . . , kn, the problem of selection is to find
the lth largest element in the sequence for a given l. Cole [8] has shown

Lemma 2.4 The problem of selection can be solved in O(log n) time using
n/ log n CRCW PRAM processors.

3 An Optimal INTEGER SORT Algorithm

In this section we prove that if the word length of a computer is sufficiently
large, then there exists an optimal algorithm for INTEGER SORT. INTE-
GER SORT in this case reduces to prefix sum computation. We give an
algorithm for stable sorting n keys in the range [nε], for any ε > 0, and then
use the following folklore lemma (see [18]) to extend the range to [nc] for any
constant c. In the remaining paper we shall use the abbreviations LSB and
MSB to denote Least Significant Bit and Most Significant Bit respectively.

Lemma 3.1 If n keys in the range [R] can be stable sorted in O(log n)
time using n/ log n processors, then n keys in the range [RO(1)] can be stable
sorted in O(log n) time using the same number of processors.

5

To sort n integers in the range [nε], we use a word length of nε log n. Each
word is thought of as a sequence of nε blocks Bnε−1, Bnε−2, . . . , B0, where
each block Bi is exactly log n bits long. P = n/ log n processors are used.
Each processor π ∈ [P] is assigned the key indices J(π) = {j|(π− 1) log n <
j ≤ min(n, π log n)}. Details of the algorithm follow.

step1

Each processor π(π ∈ [P]) generates log n words
Wπ,1,Wπ,2, . . . ,Wπ,log n, one for each key index given
to it. If the key has a value k, then it writes a 1 in the
LSB of the kth block of the corresponding word.

step2

P = n/ log n processors collectively compute the pre-
fix sum of the n numbers (W1,1,W1,2, . . . ,WP,log n).
Let S1,1, S1,2, . . . , SP,log n be the prefix sum computed.
This prefix sum orders keys with equal values accord-
ing to their input indices.

step3

Let SP,log n be Bnε−1, Bnε−2, . . . , B0. Then, notice that
Bi is simply the number of keys in the input that have
a value i for 0 ≤ i ≤ nε − 1.
nε processors in parallel compute the prefix sum of
B0, B1, . . . , Bnε−1.

step4

Each processor uses the results of step 2 and step 3
to compute unique ranks for the log n keys assigned
to the processor, and outputs these keys in the right
order.

Clearly, all these four steps can be performed in O(log n) time using
n/ log n processors. The correctness of the algorithm is self evident. Lemma
3.1 together with this algorithm yields the following

Theorem 3.1 There exists an optimal stable algorithm for INTE-
GER SORT that runs in time O(log n) on the EREW PRAM, provided that
the word length is nε (for any ε > 0).

6

The following corollary is immediate.

Corollary 3.1 We can sort n numbers in the range [m] in O(log n) time
using n/ log n EREW PRAM processors if the word length is mε log n (for
any ε > 0).

4 An Improved INTEGER SORT Algorithm

The algorithm to be presented stable sorts n integers k1, k2, . . . , kn in the
range [n]. In accordance with lemma 3.1, this will also be an algorithm to
sort keys in the range [nO(1)] with the same resource bounds. The algorithm
has a time bound of O(log nn log log log n

p log log n) using p processors, for p ≤ n
log log n .

This algorithm uses O(n) space on the O(log n) word length CRCW PRAM.
Let T (n,m) denote the time needed to sort n integers in the range [m].

The problem of sorting n keys in the range [m] can be reduced to two
subproblems of sorting n integers in the range [

√
m], using the idea of radix

sorting, as follows.
Let k′i = �ki/

√
m� and k′′i = ki − k′i ∗

√
m for every i ∈ [n]. First,

stable sort k′′1 , k′′2 , . . . , k′′n, obtaining a permutation σ. Then stable sort
k′σ(1), k

′
σ(2), . . . , k

′
σ(n), obtaining a permutation ρ. Output the given input

sequence applying the permutation ρ ◦ σ on it.
Clearly, the keys k′i’s and k′′i ’s are in the range [

√
m]. Thus we have the

following recurrence relation for T (n,m).

T (n,m) ≤ 2T (n,
√
m) (1)

Another recurrence relation for T (n,m) is given by the following algo-
rithm.

step1

Given the keys k1, k2, . . . , kn in the range [m], partition
the keys into

√
n groups of size

√
n each. Sort each

group in parallel. Let Nij stand for the number of
keys with value i in group j. (i = 1, 2, . . . ,m; j =
1, 2, . . . ,

√
n).

step2

Compute the prefix sum of

7

(N11, N12, . . . , N1
√

n,
N21, N22, . . . , N2

√
n,

. . .
Nm1, Nm2, . . . , Nm

√
n)

This prefix sum gives the sorted order of all n elements.

We may thus write the recurrence equation for the running time of this
phase as:

T (n,m) ≤ T (
√
n,m) + R(m

√
n) (2)

where R(l) is the time needed to perform the prefix sum of l integers.
Thus the complete algorithm has the following structure.
It has two kinds of recursive calls - one on the word-size and the other on the
number of elements. To sort n elements in the range [m], we perform two
stable sorting in the range [

√
m]. Each of these sorts is done by partitioning

the n elements into groups of
√
n and combining them using the procedure

described in the previous paragraph. No mention is made in equations
1 and 2 about the number of processors used. The processor bound will
be computed corresponding to a run time of O(log n log log log n). ¿From
equations 1 and 2 it follows that

T (n, n) ≤ 2T (n,
√
n) ≤ 2T (

√
n,

√
n) + 2R(n)

If we use [9]’s O(log n/(log log n)) time algorithm for prefix sums, then
the above equation can be rewritten as

T (n, n) ≤ 2i T (n1/2i
, n1/2i

) +
i∑

j=1

log n

log log n− j + 1
for any 1 ≤ i ≤ log log n

whose solution is T (n, n) = O(log n log log log n). The number of proces-
sors needed to perform the required prefix computations at the ith level
(1 ≤ i ≤ log log n) of recursion is n

log n(log log n− i)2i. Also at the ith level

of recursion, there are n1−1/2i
sorting subproblems. By unfolding the recur-

rence for time, we see that it has 2i additive terms for sorting n1/2i
numbers

in the range [n1/2i
]. If we let the recurrence run until the subproblems are

of size O(1), θ(n) processors will be needed at the very last step. To get
a processor bound of O(n/(log log n)), the recurrence is stopped when the
subproblems are of size θ((log n)log log log n) which we shall denote by S. S
numbers in the range [log n] can be stable sorted in time O(log S) using

8

S/(log S) processors, in accordance with corollary 3.1. Thus, using this fact
and the idea of radix sorting, S numbers in the range [S] can be stable sorted
in O(log S log log log n) time, using S/(log S) processors.

Therefore, all the existing subproblems in the base case can be solved
in time O(log n

log S log S log log log n) = O(log n log log log n). The number of
processors needed is n

log S = O(n
log log n log log log n).

Also, corresponding to this base case, the time needed to perform all
the recursive steps can easily be seen to be O(log n log log log n). The num-
ber of processors needed to perform the recursive steps is O(n

log log n). This
establishes the stated resource bounds. Thus we get the following

Theorem 4.1 There is an algorithm for INTEGER SORT that takes time
(log nn log log log n

p log log n) using p(≤ n/(log log n)) CRCW PRAM processors.

Note that the same algorithm when implemented on the EREW PRAM
will yield a time bound of O(log n log log n) and a PT bound of O(n log n

log log n).
The boundary condition in this case is when the problem sizes are reduced
to θ((log n)log log n). The reason for the slightly superior PT bound is that
at the base level of recurrence, the number of processors required to sort the
subproblems and merge them are balanced.

5 Parallel Range Reduction

A radix sort algorithm for sorting integers can be thought of as an algo-
rithm that successively reduces the value-range of the keys sorted. In [12],
an algorithm is given that reduces in O(n) sequential time the problem of
sorting n integers in the range [22k(n)] to the problem of sorting n integers
in the range [2k(n)]. But no parallel analogue of this algorithm exists. In
this section we present a parallel range reduction algorithm that results in
a PT bound of Õ(n

√
log n) for INTEGER SORT on the CRCW PRAM.

Rajasekaran and Reif’s [18] optimal algorithm for INTEGER SORT uses
radix sort starting from the LSB’s of the keys. This algorithm consists of
two phases. To sort n keys in the range [n log n], in the first phase keys are
sorted with respect to their (log n − log log n) LSBs. In the second phase
the resultant sequence is stable sorted with respect to the 2 log log n MSBs
of the keys. One of the problems with LSB first radix sorting is that except
for the first phase all the other phases should be stable sort algorithms. It
seems to be difficult to get a randomized stable sort algorithm. The need
for stability can be eliminated if we employ MSB first sorting. But the

9

problem with MSB first radix sorting is the unequal size of the subproblems
that may make the value-range disproportionately larger than the number
of keys (say O(log n) keys in the range [1, n]).

Given n integers in the range [R], assume we sort them with respect to
their k MSBs. Let S(i) be the set of keys with value i for their k MSBs
(0 ≤ i ≤ 2k − 1). Sorting the given n keys is now reduced to 2k disjoint
subproblems, namely the problems of sorting S(0), S(1), . . . , S(2k − 1). The
required output is indeed

sort(S(0))◦ sort(S(1))◦ . . . ◦ sort(S(2k − 1)),

where sort(S(i)) is the sequence of keys in S(i) in sorted order. Thus the
problem of sorting integers in the range [R] can be reduced to 2k disjoint
subproblems, after sorting the input keys with respect to their k MSBs.
Here each subproblem is that of sorting integers in the range [�R/2k�].

¿From hereon let ‘size’ of a subproblem refer to the number of keys in
it, and ‘range’ refer to the interval of values the keys in the subproblem fall
in. Let ‘range-length’ denote the length of this interval. For instance when
n keys are sorted with respect to their k MSBs, 2k subproblems arise. The
range-length of each subproblem is �R/2k�. But the sizes of the subproblems
can be arbitrary (anywhere from 0 to n). This is precisely the problem with
MSB first sorting.

The starting point of this section is the optimal (but unstable) sorting
algorithm of Rajasekaran and Reif. Realize that if n keys in the range [n]
can be stable sorted in time T (on any PRAM) using P processors, we can
also stable sort n keys in the range [nc], for any constant c, in O(T) time
using the same number of processors. Thus we may assume that the input
keys are in the range [n] and are already sorted according to their values
but may be unordered according to their input position (among keys having
same values). Our objective is to produce a stable sorted output. We first
present an algorithm that uses n/ log n processors and runs in time (log n)1.5.
Later we modify this algorithm to use n

(log n)2ε processors. The run time of
the modified algorithm will be (log n)1+ε.

Our first algorithm runs in O(
√
log n) phases. Each phase takes Õ(log n)

time using n/ log n processors. To begin with the n keys in the range [n]
are sorted using the non-stable sorting algorithm of [18]. Call this as the
preprocessing step. At the end of this step, we have an ordered sequence of
at the most n nonempty subproblems (one corresponding to each value in the
range [n]). The range-length of each subproblem is n (because keys in any

10

subproblem have to be sorted with respect to their input positions). In each
phase thereafter, every subproblem is replaced with an ordered sequence of
new subproblems, such that the range-length of each new subproblem is no
more than 1

l times the range-length of the original subproblem, l being the
number of keys in the original subproblem. If during any phase, the size of
some subproblem becomes O(1), or its range-length becomes O(1), keys in
this subproblem are sorted easily. As will be shown, after O(

√
log n) phases

every subproblem will have either O(1) size or O(1) range-length.
We shall give a verbal description of the idea and follow it up with a

more formal description. Consider a subproblem S at the beginning of phase
i (1 ≤ i ≤ O(

√
log n)). Let X and Y be the keys in S of maximum and

minimum values respectively. (Here key values refer to the positions of the
corresponding keys in the input, and hence these are integers in the range
[1, n].) Also let l be the number of keys in S. In phase i, S will be replaced
with an ordered sequence of l subproblems S(0), S(1), . . . , S(l − 1), where
S(i), 0 ≤ i < l is the collection of keys in S whose values fall in the interval[
Y + i

⌈
X−Y

l

⌉
, Y + (i+ 1)

⌈
X−Y

l

⌉
− 1

]
. Realize that some of the S(i)’s

could be empty. But in any phase, the total number of subproblems will not
exceed n.

We process each of the subproblems existing at the beginning of phase
i in the manner described above. This completes phase i. We proceed to
phase i + 1. The algorithm terminates when each of the remaining sub-
problems either has constant size or constant range-length. Notice that if a
subproblem S at the beginning of phase i has range length R, all the new
subproblems arising out of S at the end of phase i will have range-length no
more than R

l (l being the number of keys in S).
In any phase i, in order to process all the subproblems in parallel, we

associate with each key a number in the range [n] and make use of the
integer sorting algorithm of [18]. The number associated with each key will
preserve the ordering of subproblems, i.e., keys in the same subproblem
will get the same number and the subproblems themselves will be ordered.
Details follow.

step1

while ∃ a subproblem such that (its size is > O(1) and
its range is > O(1)) do

11

for each subproblem S in parallel do

Find the maximum (call it X) and the
minimum (call it Y) of the keys in S.
Let |S| = l.
Associate with each key k in S a value
of rank(Y) +

⌈
(k−Y)

(X−Y)/l

⌉
;

Sort all the n keys with respect to their asso-
ciated values.

step2

Sort all the subproblems in parallel and output them
in the right order.

In the above algorithm, rank(Y) stands for the true rank of Y from
among the n input keys.

Theorem 5.1 The above algorithm runs in time Õ((log n)1.5) using n/ log n
CRCW PRAM processors.

Proof First we will show that the while loop of step1 is executed O(
√
log n)

times. Then we will prove that one iteration of the while loop takes time
Õ(log n) using n/ log n processors.

Consider a subproblem S at iteration i of the while loop. If the range-
length of S is R at the beginning of this iteration (or phase), then at the
end of this phase the range-length will be ≤ R/|S|. If S is any subproblem
after O(

√
log n) phases, then the claim is that either |S| = O(1) or the

range-length of S is O(1).
Notice that at every iteration, the maximum subproblem size is at most

half the maximum subproblem size in the previous iteration. Therefore, if
at some iteration, a subproblem S has 2

√
log n keys in it, then after at most√

log n further phases all the subproblems arising out of S will become O(1)
in size. Also, if there is a subproblem S of size > 2

√
log n after O(

√
log n)

phases, it means that the keys will be in the range
n

l1l2...l
O(

√
log n)

= O(1) since each lm is > 2
√

log n. That is, if the range-length

has to be greater than a constant after θ(
√
log n) phases, then there can not

be more than 2
√

log n keys in any subproblem. Thus if S is any subproblem

12

after θ(
√
log n) stages, then either |S| = O(1) or the range-length of S is

O(1).
It remains to show that each iteration of the while loop takes Õ(log n)

time using n/ log n processors. The final sorting step can be performed
within the stated bounds [18]. Let S1, S2, . . . , Sh be all the subproblems of
size and range > O(1) in a given iteration. The operations performed on
the Si’s are finding MAX and MIN of each Si. Group the subproblems with
log n subproblems in each group. If M is the number of keys in a group
G, allocate M/ log n processors to G. Now all the operations on the Si’s
can be performed within the stated resource bounds (see lemmas 2.2, 2.3,
and 2.4). All the steps in each iteration are deterministic except for integer-
sorting in the range [1, n]. The probability of success is not dependent on
the subproblem sizes since the integer-sorting algorithm is applied to the n
keys (and not separately on the subproblems).✷

5.1 Modified Algorithm

The only modification needed is the following. We choose a random sample
of 2(log n)1−2ε

keys, and use these keys as the splitter keys to partition the
sorting problem into 2(log n)1−2ε

parts. The random splitters partition the
problem into roughly equal-sized subproblems (with high probability). This
rough partitioning suffices to prove the resource bounds. The following fact
is crucial to the algorithm.

Let X = k1, k2, . . . , kn be a given sequence of n keys. Sample m(<< n)
keys at random from X, with replacement. Let l1, l2, . . . , lm be the sampled
keys in sorted order. These splitter keys partition X into (m + 1) parts
Xi, 0 ≤ i ≤ m, where X0 = {k : k ∈ Xand k ≤ l1}, Xi = {k : k ∈
Xand li < k ≤ li+1} for 1 ≤ i < m, and Xm = {k : k ∈ Xand k > lm}.
It has been shown ([20], lemma 5) that there exists a constant c such that
for each 0 ≤ i ≤ m, |Xi| ≤ cα n

m log n with high probability (i.e., with a
probability of ≥ 1− n−α).

The algorithm follows.

step1

while ∃ a subproblem such that (its size is > O(1) and
its range is > O(1)) do
begin

for each subproblem S of size > 2(log n)1−2ε
do

13

In parallel choose a random sample
of keys of size 2(log n)1−2ε

= q, say,
and partition the problem S into (q+
1) subproblems S0, S1, . . . , Sq as de-
scribed above.
Associate values with all the n keys in
parallel (each key gets a value equal
to the sum of the rank of its lower
boundary and number of the subprob-
lem it belongs to).

for each subproblem S of size and range >
O(1) do

Find the maximum (call it X) and the
minimum (call it Y) of the keys in S.
Let |S| = l.
Divide the range X − Y into l equal
parts.
i.e., Associate with each key k in S a
value of rank(Y) +

⌈
(k−Y)

(X−Y)/l

⌉
Sort all the n keys with respect to their asso-
ciated values.

end;

step2

Sort all the subproblems and output them in the right
order.

Theorem 5.2 The above algorithm runs in time Õ((log n)1+ε) using
n

(log n)2ε CRCW PRAM processors, for any 0 < ε ≤ 1/2.

Proof First we’ll show that the while loop of step 1 is executed O((log n)ε)
times. Then we’ll prove that one iteration of the while loop takes time
Õ(log n) using n

(log n)2ε processors.
Consider a subproblem S at iteration t of the while loop. If the range-

length of S is [R] at the beginning of this iteration, then at the end of this
iteration it will be ≤ R/|S|. If S is any subproblem after O((log n)ε) phases,
then the claim is either |S| = O(1) or the range-length of S is O(1).

14

Notice that at every iteration, the maximum subproblem size is
O(log n

2(log n)1−2ε) times the maximum subproblem size in the previous itera-
tion with high probability. Therefore, if at some iteration, a subproblem S
has 2(log n)1−ε

keys in it, then after at most O((log n)ε) further phases all the
subproblems arising out of S will become O(1) in size. Also, if there is a
subproblem S of size > 2(log n)1−ε

after O((log n)ε) phases, it means that the
range-length is n

l1l2...lO((log n)ε)
= O(1) since each lm is > 2(log n)1−ε

. That is,
if the range-length were to be > O(1) after O((log n)ε) phases, then there
cannot be more than 2(log n)1−ε

keys in any subproblem. Thus the claim
follows.

It remains to show that each iteration of the while loop takes O(log n)
time using n/(log n)2ε processors. For each problem S of size > 2(log n)1−2ε

that exists at the beginning of the first for loop in any iteration, we have to
choose random splitters and partition the problem. This can be done in time
O((log n)1−2ε) using n processors (see [18]) as follows: 1) sort the splitter
keys using Cole’s general sorting algorithm, 2) assign a single processor to
each key. Each processor in parallel does a binary search on the appropri-
ate splitter sequence, 3) after having found the subproblem that each key
belongs to, all the n keys are sorted according to their subproblem numbers
using the optimal integer sort algorithm. Equivalently (by slowing down)
this partitioning can also be done in O(log n) time using n

(log n)2ε processors.
The second for loop can be performed within the stated resource bounds

as proved in the previous section ✷.

6 The Case of Uniformly Distributed Keys

In this section we assume that the keys to be sorted are uniformly distributed
integers in an arbitrary range. This is not an unreasonable assumption in
many applications (see [13](pp. 170-178), [16], and [17](pp. 84-85)). In
[16], a sequential algorithm is given for this sorting problem; it is stable
and runs in time O(n) on the average (and hence is optimal). The key idea
behind [16]’s algorithm is to sort the keys with respect to some number
of their MSBs. This very nearly sorts the file. In particular, this sorting
partitions the given input into an ordered sequence of subproblems (just
like in the previous section) one for each possible value of the MSBs. With
high probability each one of these subproblems will be of ‘small’ size and
hence any of the General Sorting algorithms can then be used to sort each
subproblem independently.

15

Given the keys k1, k2, . . . , kn, let S(i) stand for the set of keys with value
i (0 ≤ i ≤ (n log n − 1)) for their �(log n + log log n)� MSBs. Then, if we
sort these keys with respect to their �(log n+log log n)� MSBs, the required
output will be

sort(S(0))◦ sort(S(1)) ◦ . . . ◦ sort(S(n log n− 1)),

as was discussed in section 5. The total time needed is O(n) +∑n−1
i=0 |S(i)| log(|S(i)|). The expected value of the second term can be shown

to be O(n) (see e.g., [17](pp. 84-85)). Hence this is an algorithm that is
optimal on the average. Next we show how to modify this algorithm to
get a run time of Õ(log n) using n

log n processors for all but a small fraction
(≤ 2−Ω(n/(log n log log n))) of the inputs. That is, our algorithm works for a
large fraction of inputs, and for each such input the time bound holds with
high probability (≥ 1− n−α, for any α > 1).

step1.

Sort the keys with respect to their �(log n+log log n)�
MSBs.

step2.

Each processor π ∈ [n/ log n] gets log n successive keys
from the sorted sequence of step 1.
In O(log n) time n/ log n processors collectively deter-
mine all the subproblems (call them S′

1, S
′
2, . . . , S

′
l) of

size > C (where C is a constant).

step3.

Do a prefix computation and place the subproblems
S′

1, S
′
2, . . . , S

′
l in successive cells of the memory. Let N

be the total number of keys in these l subproblems.

step4.

Sort the N keys of step 3 using any of the parallel
GENERAL SORT algorithms (such as [7]).

step5.

16

Sort every subproblem of size ≤ C independently using
a total of n

log n processors.

step6.

The relative rank of each key in its subproblem is ob-
tained from two prefix sum computations (one for keys
in subproblems of size > C and one for keys in sub-
problems of size ≤ C) and the two sorted sequences
of step 4 and step 5 are then merged using n/ log n
processors in log n time.

Analysis. We claim that N is at most Õ(n/ log n). Given this, all the
above six steps can be performed within the given resource bounds. Steps
1,2,3,4, and 6 take Õ(log n) time using n/ log n processors. In step 5, a
subproblem of size m needs m logm operations to sort it. Since each m
is ≤ C, a constant, the total number of operations needed to sort all the
subproblems individually is ≤ n. We group these subproblems (using prefix
sums) with log n subproblems in each group and sort these groups. Then
step 5 can be performed in time O(log n) using n

log n processors.

It remains to show that N is Õ(n/ log n). Since we are sorting the
given n keys with respect to their �log n + log log n� MSBs, and the key
values are uniformly distributed, it is as though we are throwing n keys
into n log n subproblems at random. The probability that any subprob-
lem (i.e., any S(i)) contains more than C keys is O(1/ log n)C , using the
Chernoff bounds (appendix A, equation 3). In particular, this probability is
≤ 1

log2 n log log n
. Thus the number (l) of subproblems with > C keys is upper

bounded by the binomial variable B(n log n, 1
log2 n log log n

). Using Chernoff
bounds (appendix A, equation 4), l is ≤ (1+ ε)n/(log n log log n) with prob-
ability ≥ 1− 2−ε2n/(3 log n log log n) = 1− P = 1− 2−Ω(n/(log n log log n).

Consider any n/(log n log log n) subproblems from out of the total n log n
subproblems. We will show that the total number of keys falling into these
n/(log n log log n) subproblems will not exceed n/ log n with the same prob-
ability 1− P . Fix some n/(log n log log n) subproblems. Call this collection
of subproblems Q. The Probability that any particular key (from out of the
n keys) falls into Q is = 1/(log2 n log log n). Therefore, the expected number
of keys falling into Q is n/(log2 n log log n). Using equation 3 (appendix A),
the probability that more than n/ log n keys fall into Q is 2−Ω(n log log n/ log n).

17

The number of choices for Q equals(
n log n

n/(log n log log n)

)
= 2O(n/ log n)

Putting together, the probability that any n/(log n log log n) subprob-
lems have more than n/ log n keys is ≤ P.✷

Note that the above sorting algorithm is stable since in step 4, the GEN-
ERAL SORT algorithm used is stable, and in step 5, subproblems with ≤ C
keys are individually stable sorted. Also, stability is not lost in the merging
performed in step 6. Another way of proving the stability of the output is
to append each key with its input index (which is a �log n� bit integer) and
sort the resultant keys.

Theorem 6.1 There exists an optimal randomized algorithm on the CRCW
PRAM for sorting n uniformly distributed integers in an arbitrary range.
This algorithm uses n/ log n processors and Õ(log n) time. The probability
of success is 1− 2−Ω(n/(log n log log n)).

7 Open Problems

It is an open problem to find an optimal deterministic or randomized algo-
rithm for sorting integers in the range [nc] for any constant c on the O(log n)
word length PRAM models. This would lead to improvements and/or sim-
plification of a number of parallel algorithms for some fundamental problems
in graphs and geometry.

Postscript
We recently learned that Bhatt, Diks, Hagerup, Prasad, Radzik and

Saxena [4] have been able to adapt Hagerup’s algorithm to the arbitrary
CRCW model. However, the space bound is still O(n1+ε).

Acknowledgement
We are very grateful to the anonymous referees whose meticulous com-

ments helped in polishing up the paper significantly. In particular, the
referees had pointed out errors in the bounds of Theorem 4.1 in an earlier
version of the manuscript.

References

[1] Aho, A.V., Hopcroft, J.E., and Ullman, J.D., The Design and Analysis
of Computer Algorithms, Addison-Wesley, 1974.

18

[2] Ajtai, M., Komlós, J., and Szemerédi, E., “An O(n log n) Sorting Net-
work,” Combinatorica 3, 1983, pp. 1-19.

[3] Angluin, D., and Valiant, L.G., “Fast Probabilistic Algorithms for
Hamiltonian Paths and Matchings,” Journal of Computer and Systems
Science, 18, 1979, pp. 155-193.

[4] Bhatt P., Diks K., Hagerup T., Prasad V., Radzik T. and Saxena
S, “Improved Deterministic Parallel Integer Sorting,” Unpublished
Manuscript, 1989.

[5] Chernoff, H., “A Measure of Asymptotic Efficiency for Tests of a Hy-
pothesis Based on the Sum of Observations,” Annals of Math. Statistics
23, 1952, pp. 493-507.

[6] Chlebus, H., “Parallel Iterated Bucket Sort,” Information Processing
Letters 31, 1989, pp. 181-183.

[7] Cole, R., “Parallel Merge Sort,” SIAM Journal on Computing, vol. 17,
no.4, 1988, pp. 770-785.

[8] Cole, R., “An optimally efficient selection algorithm”, Information Pro-
cessing Letters, 26, January 88, pp. 295-299.

[9] Cole, R., and Vishkin, U., “Faster Optimal Parallel Prefix Sums and
List Ranking,” Information and Computation 81, 1989, pp. 334-352.

[10] Hagerup, T., “Towards Optimal Parallel Bucket Sorting,” Information
and Computation 75, 1987, pp. 39-51.

[11] Hagerup, T., “Hybridsort Revisited and Parallelized,” Information Pro-
cessing Letters 32, 1989, pp. 35-39.

[12] Kirkpatrick, D., and Reisch, S., “Upper Bounds for Sorting Integers
on Random Access Machines,” Theoretical Computer Science, vol. 28,
1984, pp. 263-276.

[13] Knuth, D.E., The Art of Computer Programming. Vol.3: Sorting and
Searching, Addison-Wesley Publishing Co., 1973.

[14] Kruskal, C., Rudolph, L., and Snir, M., “Efficient Parallel Algorithms
for Graph Problems,” Algorithmica 5, 1990, pp. 43-64.

19

[15] Ladner, R.E., and Fischer, M.J., “Parallel Prefix Computation,” Jour-
nal of the ACM, 27(4), 1980, pp. 831-838.

[16] MacLaren, M.D., “Internal Sorting by Radix Plus Sifting,” JACM,
vol.13, no.3, 1966, pp. 404-411.

[17] Mehlhorn, K., Data Structures and Algorithms 1: Sorting and Search-
ing, Springer-Verlag Publications, 1984.

[18] Rajasekaran, S., and Reif, J.H., “Optimal and Sublogarithmic Time
Randomized Parallel Sorting Algorithms,” SIAM Journal on Comput-
ing, vol. 18, no.3, 1989, pp. 594-607.

[19] Reif, J.H., and Valiant, L., “A Logarithmic Time Sort for Linear Size
Networks,” JACM, vol.34, no.1, 1987, pp. 60-76.

[20] Reischuk, R., “Probabilistic Parallel Algorithms for Sorting and Selec-
tion,” SIAM Journal on Computing, vol. 14, no. 2, 1985, pp. 396-409.

[21] Shiloach, Y., and Vishkin, U., “Finding the Maximum, Merging, and
Sorting in a Parallel Computation Model,” Journal of Algorithms 2,
1981, pp. 81-102.

Appendix A: Probabilistic Bounds

A binomial variable X with parameters (n, p) is the number of successes in
n independent Bernoulli trials, the probability of success in each trial being
p. Chernoff [5] and Angluin and Valiant [3] have shown that the tail ends
of a binomial distribution can be approximated as follows.
Lemma A.1 If X is binomial with parameters (n, p), and m > np is an
integer, then

Probability(X ≥ m) ≤
(
np

m

)m

em−np. (3)

Also,
Probability(X ≥ �(1 + ε)np�) ≤ exp(−ε2np/3) (4)

for all 0 < ε < 1.

20

