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Abstract. We generalize the k-means algorithm presented by the au-
thors [14] and show that the resulting algorithm can solve a larger class
of clustering problems that satisfy certain properties (existence of a ran-
dom sampling procedure and tightness). We prove these properties for
the k-median and the discrete k-means clustering problems, resulting in
o2®*/ E)O(l)dn) time (1 + £)-approximation algorithms for these prob-
lems. These are the first algorithms for these problems linear in the size
of the input (nd for n points in d dimensions), independent of dimensions
in the exponent, assuming k and ¢ to be fixed. A key ingredient of the
k-median result is a (1 + €)-approximation algorithm for the 1-median
problem which has running time O(2("/ %M d). The previous best known
algorithm for this problem had linear running time.

1 Introduction

The problem of clustering a group of data items into similar groups is one of the
most widely studied problems in computer science. Clustering has applications
in a variety of areas, for example, data mining, information retrieval, image
processing, and web search ([5, 7,9]). Given the wide range of applications, many
different definitions of clustering exist in the literature ([8,4]). Most of these
definitions begin by defining a notion of distance (similarity) between two data
items and then try to form clusters so that data items with small distance
between them get clustered together.

Often, clustering problems arise in a geometric setting, i.e., the data items
are points in a high dimensional Euclidean space. In such settings, it is natural
to define the distance between two points as the Fuclidean distance between
them. Two of the most popular definitions of clustering are the k-means clus-
tering problem and the k-median clustering problem. Given a set of points P,
the k-means clustering problems seeks to find a set K of k centers, such that
> pepdp, K )? is minimized, whereas the k-median clustering problems seeks to
find a set K of k centers, such that > . pd(p, K) is minimized. Note that the
points in K can be arbitrary points in the Euclidean space. Here d(p, K) refers



to the distance between p and the closest center in K. We can think of this as
each point in P gets assigned to the closest center. The points that get assigned
to the same center form a cluster. These problems are NP-hard for even k = 2
(when dimension is not fixed). Interestingly, the center in the optimal solution to
the 1-mean problem is the same as the center of mass of the points. Howvever,
in the case of the 1-median problem, also known as the Fermat-Weber problem,
no such closed form is known. We show that despite the lack of such a closed
form, we can obtain an approximation to the optimal 1-median in O(1) time
(independent of the number of points). There exist variations to these clustering
problems, for example, the discrete versions of these problems, where the centers
that we seek are constrained to lie on the input set of points.

1.1 Related work

A lot of research has been devoted to solving these problems exactly (see [11] and
the references therein). Even the best known algorithms for the k-median and the
k-means problem take at least £2(n?) time. Recently, some work has been devoted
to finding (1 + €)-approximation algorithm for these problems, where £ can be
an arbitrarily small constant. This has led to algorithms with much improved
running times. Further, if we look at the applications of these problems, they
often involve mapping subjective features to points in the Euclidean space. Since
there is an error inherent in this mapping, finding a (1 +¢)-approximate solution
does not lead to a deterioration in the solution for the actual application.

The following table summarizes the recent results for the problems, in the
context of (1 + )-approximation algorithms. Some of these algorithms are ran-
domized with the expected runing time holding good for any input.

Problem Result Reference
1-median O(n/e%) Indyk [12]
k-median OnCW/+y for d =2 Arora [1]

O(n + 0k®M1og®Mn) (discrete also)| Har-Peled et al. [10]
where ¢ = exp[O((1 + logl/e) /€)1

0(2(’“/5)0(1)do(l)nlogo(k)n) Badoiu et al. [3]
discrete k-median|O(gnlognlogk) Kolliopoulos et al. [13]
k-means O(n/e?) for k =2 Inaba et al. [11]

O(ns_%Zdlogkn) Matousek [15]

O(g(k, €)nlog*n) de la Vega et al. [6]

g(k,€) = exp[(k®/e®)(In(k/e)Ink]

O(n + kF+2e= GdFDk gk ok 1) | Har-Peled et al. [10]
O(Z(k/s)o(l)dn) Kumar et al. [14]




1.2 Our contributions

In this paper, we generalize the algorithm of authors [14] to a wide range of clus-
tering problems. We define a general class of clustering problems and show that
if certain conditions are satsified, we can get linear time (1 + €)-approximation
algorithms for these problems. We then use our general framework to get the
following results. Given a set of n points P in R?, we present

1. arandomized algorithm that generates a candidate center set of size O(2'/ M

such that at least one of the points in this set is a (1 + €)-approximate 1-
median of P with constant probability. The running time of the algorithm is
oY o d), assuming that the points are stored in a suitable data structure
such that a point can be randomly sampled in constant time. This improves
on the algorithm of Badoiu et al. [3] which generates a candidate center set
of size O(21/¢"logn) in time O(d2'/="logn).

2. a randomized (1 + ¢)-approximation algorithm for the l-median problem
which runs in time O(2'/ so(l)d), assuming that the points are stored in
a suitable data structure such that a point can be randomly sampled in
constant time.

3. a randomized (1 + ¢)-approximation algorithm for the k-median problem
which runs in O(Q(k/a)o(l)nd) time.

4. arandomized (1+ ¢)-approximation algorithm for the discrete k-means clus-
tering which runs in 0(2(k/5)o(1)nd) time.

All our algorithms yield the desired result with constant probability (which
can be made as close to 1 as we wish by a constant number of repetitions). As
mentioned earlier, we generalize the result of the authors in [14] to solve a larger
class of clustering problems satisfying a set of conditions (c.f. section 2). We then
show that the k-median problem and the discrete k-means problem fall in this
class of clustering problems. One important condition that the clustering prob-
lems must satisfy is that there should be an algorithm to generate a candidate
set of points of size independent of 7, such that at least one of these points is
a close approximation to the optimal center when we desire only one cluster.
Armed with such a subroutine, we show how to approximate all the centers in
the optimal solution in an iterative manner.

It is easy to see that our algorithms for the k-median and the discrete k-
means problems have better running time than the previously known algorithms
for these problems, specially when d is very large. In fact, these are the first algo-
rithms for the k-median and the discrete k-means clustering that have running
time linear in the size of the input for fixed k and e.

For the 1-median problem, the candidate center set generation and the actual
approximation algorithm have better running time than all previously known
algorithms. The algorithms in this paper have the additional advantage of sim-
plicity inherited from generalizing the approach of Kumar et al. [14].

The remaining paper is organized as follows. In Section 2, we describe a
general approach for solving clustering problems efficiently. In the subsequent
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sections we give applications of the general method by showing that this class of
problems includes the k-median, the k-means and the discrete k-means problems.
In section 4.3, we also describe an efficient approximation algorithm for the 1-
median problem.

2 Clustering Problems

In this section, we give a general definition of clustering problems. Our algorithms
will work on any of these problems provided certain conditions are satisfied. We
will state these conditions later in the section.

We shall define a clustering problem by two parameters — an integer k£ and
a real-valued cost function f(Q,x), where @ is a set of points, and z is a point
in an Euclidean space. We shall denote this clustering problem as C(f, k). The
input to C(f, k) is a set of points in a Euclidean space.

Given an instance P of n points, C(f, k) seeks to partition them into k sets,
which we shall denote as clusters. Let these clusters be C1,...,Ck. A solution
also finds k points, which we call centers, ci,...,c,. We shall say that ¢; is the
center of cluster C; (or the points in C; are assigned to ¢;). The objective of the
problem is to minimize the quantity Zle f(Cy,¢).

This is a fairly general definition. Let us see some important special cases.

— k-median : f(Q,z) = o d(g, ).
— k-means : f(Q,2) =3 o d(g, )%

We can also encompass the discrete versions of these problems, i.e., cases
where the centers have to be one of the points in P. In such problems, we can
make f(Q,z) unbounded if z ¢ Q.

As stated earlier, we shall assume that we are given a constant € > 0, and we
are interested in finding (1 + ¢)-approximation algorithms for these clustering
problems.

We now state the conditions the clustering problems should satisfy. We begin
with some definitions first. Let us fix a clustering problem C(f, k). Although we
should parameterize all our definitions by f, we avoid this because the clustering
problem will be clear from the context.

Definition 1. Given a point set P, let OPTy(P) be the cost of the optimal solu-
tion to the clustering problem C(f,k) on input P.

Definition 2. Given a constant a, we say that a point set P is (k, a)-irreducible
if OPT;_1(P) > (1+ 150c)0PT(P). Otherwise we say that the point set is (k, a)-
reducible.

Reducibility captures the fact that if P is (k, a)-reducible for a small constant
o, then the optimal solution for C(f,k — 1) on P is close to that for C(f, k) on
P. So if we are solving the latter problem, it is enough to solve the former one.
In fact, when solving the problem C(f, k) on the point set P, we can assume



that P is (k,a)-irreducible, where o = €/1200k. Indeed, suppose this is not
the case. Let ¢ be the highest integer such that P is (i, a)-irreducible. Then,
0PT,(P) < (1 + 150ka)*~i0PT;(P) < (1 + £/4)0PT;(P). Therefore, if we can
get a (1 + e/4)-approximation algorithm for C(f,i) on input P, then we have
a (1 + e)-approximation algorithm for C(f, k) on P. Thus it is enough to solve
instances which are irreducible.

The first property that we want C(f, k) to satisfy is a fairly obvious one — it
is always better to assign a point in P to the nearest center. We state this more
formally as follows :

Closeness Property : Let @) and Q' be two disjoint set of points, and let
g € Q. Suppose z and z' are two points such that d(q,z) > d(g,z'). Then
the cost function f satisfies the following property

HQ,2) + £(Q',2") 2 £(Q — {a},2) + f(Q"U{q},2").

This is essentially saying that in order to find a solution, it is enough to find
the set of k centers. Once we have found the centers, the actual partitioning of
P is just the Voronoi partitioning with respect to these centers. It is easy to see
that the k-means problem and the k-median problem (both the continuous and
the discrete versions) satisfy this property.

Definition 3. Given a set of points P and a set of k points C, let OPTi(P,C)
be the cost of the optimal solution to C(f, k) on P when the set of centers is C.

We desire two more properties from C(f, k). The first property says that if we
are solving C(f,1), then there should be a simple random sampling algorithm.
The second property says that suppose we have approximated the first ¢ centers
of the optimal solution closely. Then we should be able to easily extract a large
number of points in P which get assigned to these centers. We describe these
properties in more detail below :

— Random Sampling Procedure : There exists a procedure A that takes a

set of points Q € R and a parameter a as input. A first randomly samples
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a set R of size points from @. Starting from R, A produces a set

o(1)
of points, which we call core(R), of size at most 2(2)7 . A satisfies the
condition that with constant probability there is at least one point ¢ €
core(R) such that 0PT;(Q, {¢}) < (1 + @)0PT;(Q). Further the time taken

o(1)

by A to produce core(R) from R is at most 0(2(5) -dn).

— Tightness Property : Let P be a set of points which is (k, a)-irreducible
for some constant «. Consider an optimal solution to C(f,k) on P — let
C = {c1,...,c,} be the centers in this solution. Suppose we have a set
of i points C} = {c},...,c.}, such that OPT,(P,C") < (1 + a/k)*0PT;(P),
where C' = {c},..., ¢, ¢iy1,...,cx}. Let P/,..., P/ be the partitioning of
P if we choose C' as the set of centers (in other words this is the Voronoi
partitioning of P with respect to C'). We assume w.l.o.g. that P;, , is the
largest cluster amongst Pj, 1, ..., P;. Then there exists a set of points S such
that the following conditions hold :



(a) S is contained in P{U...UP].
(b) Let z € S,2' € P —S. Then, d(z,{c},...,c}}) < d(@',{c,...,c;}).

(¢) P — S contains at most fgﬁ' points of P{ U...U P}.

3 A General Algorithm for Clustering

We can show that if a clustering problem C(f, k) satisfies the conditions stated in
the previous section, then there is an algorithm which with constant probability

produces a solution within (1 +c¢) factor of the optimal cost. Further the running
o(1)
time of this algorithm is 0(2(5) -dn). The techniques are very similar those

in [14] and are omitted. We now give applications to various clustering problems.
We show that these clustering problems satisfy the tightness property and admit
a random sampling procedure as described in the previous section.

4 The k-median Problem

As described earlier, the clustering problem C(f, k) is said to be the k-median
problem if f(Q,z) = > .o d(g,z). We now exhibit the two properties for this
problem.

4.1 Random Sampling Procedure

Badoiu et al. [3] showed that a small random sample can be a used to get a
close approximation to the optimal 1-median solution. Given a set of points P,
let AvgMed(P) denote Op'lr;,ﬁp), i.e., the average cost paid by a point towards the

optimal 1-median solution.

Lemma 1. [3] Let P be a set of points in R¢, and ¢ be a constant between
0 and 1. Let X be a random sample of O(1/e®logl/e) points from P. Then
with constant probability, the following two events happen: (i) The flat span(X)
contains a point © such that OPT (P, {z}) < (14¢€)0PT1(P). and (ii) X contains
a point y at distance at most 2AvgMed(P) from x.

We now show that if we can upper and lower bound AvgMed(P) upto constant
factors, then we can construct a small set of points such that at least one of these
is a good approximation to the optimal center for the 1-median problem on P.

Lemma 2. Let P be a set of points in R? and X be a random sample of size
0O(1/e%logl/e) from P. Suppose we happen to know numbers a and b such that
a < AvgMed(P) < b. Then, we can construct a set' Y of 0(2(1/5)0(1)10g(b/£a))
points such that with constant probability there is at least one point z € X UY
satisfying OPTy (P, {z}) < (1 + 2¢)0PT(P). Further, the time taken to construct
Y from X is 0(21/9°7 q).



Proof. Our construction is similar to that of Badoiu et al. [3]. We can assume
that the result stated in Lemma 1 holds (because this happens with constant
probability). Let z and y be as in Lemma, 1.

We will carefully construct candidate points around the points of X in
span(X) in an effort to get within close distance of z.

For each point p € X, and each integer 7 in the range [|logfal, [logb]] we
do the following — let ¢ = 2*. Consider the grid G(¢) of side length et/(4|X|) =
O(te*log(1/¢)) in span(X) centered at p. We add all the vertices of this grid
lying within distance at most 2t from p to our candidate set Y. This completes
the construction of Y. It is easy to see that the time taken to construct Y from
X is 0(2/9°% q).

We now show the existence of the desired point z € X UY. Consider the
following cases:

1. d(y, z)<eAvgMed(P) : Using triangle inequality, we see that
f(Py) < f(P,z) + |Pld(y, =) < (1 + 2¢)0PT, (P).

Therefore y itself is the required point.

2. d(y,z) > eAvgMed(P) : Consider the value of i such that 2i~!<AvgMed(P,1)<2t
— while constructing Y, we must have considered this value of i for all points
in X. Let t = 2%. Clearly, t/2<AvgMed(P)<t.
Observe that d(y,z)<2AvgMed(P)<2t. Therefore, by the manner in which
we have constructed G(t), there must be a point p € Gy(t) fow which
d(p,z) < et/2 < eAvgMed(P). This implies that

f(P,p) < f(P,z) +|Pld(z,p) < (14 2¢)0PT1(P).
Therefore p is the required point.
This completes the proof of the lemma.

We now show the existence of the random sampling procedure.

Theorem 1. Let P be a set of n points in R, and let € be a constant, 0 < £ <
1/12. There ezists an algorithm which randomly samples a set R of O((%)O(l))
points from P. Using this sample only, it constructs a set of points core(R) such
that with constant probability there is a point © € core(R) satisfying f(P,z) <
(1 + O(e))0PTy(P). Further, the time taken to construct core(R) from R is

0(2/9)°% ).

Proof. Consider the optimal 1-median solution for P —let ¢ be the center in this
solution. Let T denote AvgMed(P). Consider the ball B; of radius 7'/ around c.
Let P’ be the points of P contained in By. It is easy to see that |P'| > (1 —¢&?)n.

Sample a point p at random from P. With constant probability, it lies in P’.
Randomly sample a set () of 1/e points from P. Again, with constant probability,
these points lie in P’. So we assume that these two events happen. Let v =
> 4cq d(g,p). We want to show that v is actually close to AvgMed(P).

Let By denote the ball of radius €T centered at p. One of the following two
cases must happen :



— There are at least 2¢|P'| points of P’ outside B : In this case, with constant
probability, the sample () contains a point outside By. Therefore, v > £T'.
Also notice that any two points in B; are at distance at most 27 /e? from
each other. So, v < 2T'|Q|/e2. We choose a = % and b = v/e. Notice that

b/a is O(1/e°M)). We can now use the Lemma 2 to construct the desired
core set.

— There are at most 2¢|P’| points of P’ outside B2 : Suppose d(p,c) < 4eT.
In this case f(P,p) < (1 + O(¢))0PT:(P) and we are done. So assume this
is not the case. Note that the number of points outside Bs is at most |P —
P'| + 2¢|P'| < €?n + 2¢(1 — €2?)n < 3en. Now suppose we assign all points
of P from ¢ to p. Let us see the change in cost. The distance the points in
B; have to travel decreases by at least d(c,p) — 2¢T. The increase in the
distance for points outside B is at most d(c,p). So the overall decrease in
cost is at least

|Ba|(d(c, p) — 2¢T) — (n — [Bs)d(c,p) > 0

if we use |Bz| > n(l — 3¢) and d(c,p) > 4eT. This yields a contradiction
because c is the optimal center. Thus we are done in this case as well.

4.2 Tightness Property

We now show the existence of tightness property. We will use the same notation
as used while defining the tightness property in Section 2. We need to show the
existence of the desired set S.

Consider the closest pair of centers between the sets C'\C} and C} — let these
centers be ¢; and ¢} respectively. Let t = d(c;,c.). Let S be the set of points
B(cy,t/4) U --- U B(c,t/4), i.e., the points which are distant at most ¢/4 from
Cl={d,...,ci}.

Clearly, S is contained in P U --- U P/. This shows (a). Also, for any z €
S,¢' € P- S, d(z,{c},...,c}}) <d(z',{c,-..,c;}). This proves (b).

Suppose P — S contains more than |P;|/a points of P{ U---U P}. In that
case, these points are assigned to centers at distance at least ¢/4. It follows that

OPT,(P,C") is at least ”4—?. This implies that ¢|P;| < 4a0PT;(P,C"). But then if

we assign all the points in P; to ¢}, the cost increases by at most
|P|t < 4a0PTk(P,C") < 4a(14a/k)'0PTi(P) < 4a(1+a/k)*0PT,(P) < 12a0PTy(P).
But this contradicts the fact that P is (k, a)-irreducible.

4.3 Applications to the 1-median Problem

In this section, we present an algorithm for the 1-median problem. Given a set
of n points in N¢, the algorithm with constant probability produces a solution
of cost at most (1 + ) of the optimal cost for any constant £ > 0. The running
time of the algorithm is O(2!/ Eo(l)d), assuming that it is possible to randomly
sample a point in constant time.

Our algorithm is based on the following idea presented by Indyk [12].
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Lemma 3. [12] Let X be a set of n points in R?. For a point a € R and
a subset Q C X, define Sg(a) = }_,cqd(a,z) and S(a) = Sx(a). Let € be a
constant, 0 < e < 1. Suppose a and b are two points such that S(b) > (1+¢€)S(a).
Then,

Pr| S da,)>S db,a) | < e QU0

TEQR TEQ

We now show the existence of a fast algorithm for approximating the optimal
1-median solution.

Theorem 2. Let P be a set of n points in R, and let € be a constant, 0 < € < 1.
There exists an algorithm which randomly samples a set R of O((%)O(l)) points
from P. Using this sample only, it finds a point p such that f(P,x) < (1 +
O(e))0PT (P) with constant probability (independent of €). The time taken by

the algorithm to find such a point p from R is 0(2(1/5)0(1)d).

Proof. We first randomly sample a set Ry of O((1)°(") points from P and
using Theorem 1, construct a set core(R;) of 0(2(1/5)0(1)) points such that

with constant probability, there is a point x € core(R;) satisfying f(P,z) <
(14 O(e))0PTy (P).

Now we randomly sample a set Ry of O((1/¢)°™) points and find the point
p € core(R;) for which Sg,(p) = f(R2,p) is minimum. By Lemma 3, p is with
constant probability a (1 + O(g))-approximate median of P.

Clearly, the time taken by the algorithm is O(2(1/9°" q).

Also note that we can boost the success probability to an arbitrarily small
constant by selecting a large enough (yet constant) sample R.

5 k-means clustering

In this problem, f(Q,z) = 3 . d(g, x)2. The two properties for the k-means
problem were shown by the authors in [14]. For a set of points T', let ¢(T") denote
their centroid. The random sampling property follows from the following fact
showed by Inaba et al. [11].

Lemma 4. [11] Let T be a set of m points obtained by independently sampling
m points uniformly at random from a point set P. Then, for any 6 > 0,

1
T 1+ — ) OPTy(P
15.em) < (14 55 oPTa(P)
holds with probability at least 1 — 6.

The proof of tightness property is similar to that for the k-median problem.
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6 Discrete k-means Clustering

This is same as k-means problem with the extra constraint that the centers must
be from the input point set only. We now show the two properties here.

6.1 Random Sampling Procedure

We first show that given a good approximation to the center of the optimal
(continuous) 1-means problem, we can get a good approximation to the center
of the optimal discrete 1-means problem. Let us have some notation first. Let
P be a set of n points in R¢. Let ¢ be the center of the optimal solution to the
(continuous) 1-means problem on P.

Lemma 5. Let o be a constant, 0 < o < 1, and ¢’ be a point in R? such that
Ypepdd,c)? < (1+ @)X cpdp,c)®. Let x' be the point of P closest to ¢
Then OPT; (P, {z'})<(1 + O(y/a))0PT, (P).

Proof. Let x be the center of the optimal discrete 1-means solution, i.e., O0PT; (P, {z}) =
OPT;(P). Let T be the average cost paid by the points of P in the optimal 1-
2
means solution, i.e., T = %
Then 0PTy(P) = |P|(T + d(c,x)?) and OPTy(P,{z'}) = |P|(T + d(c,x')?).
From the definition of ¢/, we know that d(c,c')?<aT. Notice that

d(c,z")<d(c,d) +d(c',2")<d(e,c') + d(¢', 2)<2d(c, ') + d(c, x).
We know that f(P,z) = |P|(T + d(c,z)?) and f(P,z') = |P|(T + d(c,x')?). So

f(P,z") — f(P,x) = |P|(d(c,2')* — d(c,x)?) < |P| ((2d(c, ) + d(c,))* — d(c, x)?))
< 4|P| (d(c, ¢)? + d(c, ¢ )d(c,z)) < 4|P)| (aT +VaTd(c, a:))
< 4P| (aT + Va(T + d(e,)?)) < O(/a)0PT: (P).

We now show the existence of the random sampling procedure.

Theorem 3. Let a be a constant, 0 < a < 1. There ezists an algorithm which
randomly samples a set R of O (é) points from P. Using this sample, it finds a
singleton set core(R) such that with constant probability the point x € core(R)
satisfies f(P,z) < (1 + O(y/a))OPT1(P). Further, the time taken to construct
core(R) from R is O((% + n)d).

Proof. Using Lemma 4, we can get a point ¢’ such that ) pd(p, )2 <1+
@)Y ,cpdp, ¢)?. As mentioned in the lemma, we do this by by taking the cen-
troid of a random sample of O(1/a) points of P. This takes time O(% - d).

The rest follows from the previous lemma.
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6.2 Tightness Property

We now show the existence of tightness property. We will use the same notation
as used while defining the tightness property in Section 2. We need to show the
existence of the desired set S.

Consider the closest pair of centers between the sets {c, ..., c;} and {¢iy1,...,¢k}
— let these centers be ¢, and ¢; respectively. Let ¢t = d(c;, c..). Let S be the set of
points B(c},t/4) U ---UB(c},t/4), i.e., the points which are distant at most t/4
from C} = {c},...,c}.

Clearly, S is contained in P U --- U P}. This shows (a). Also, for any z €
S, € P—-8S,d(z,{c},-..,c;}) <d(z',{c],--.,c;}). This proves (b).

Suppose P — S contains more than |P;|/a? points of P{ U---U P/. In that
case, these points are assigned to centers at distance at least ¢/4. It follows that

2
OPT(P,C") is at least tlblf;'. This implies that t?|P| < 16a?0PT (P, C").

Let m; and m! be the centers of the optimal (continuous) 1-means solution
of P, and P) respectively. Further, let T; and T, be the average cost paid by

T
_ Epepl d(l’:"ll)2

P, and P! in this optimal solution respectively, i.e., T} = B T and
 d(p, :-2
T = Zrn 0 Observe that f(Fi, ) = | BI(Ti+d(er,mi)?) and /(P ¢}) =

|P|(T; + d(c!.,m;)?). Therefore, if we assign the points in P, from ¢ to c., the
increase in cost is
|By| (d(ch,mi)? — d(er,m)?) < IR ((d(ey, a) + dle,ma))? — d(er,mq)?)
< |Pl| (t2 + 2td(cl,ml))

We know that the first term above, i.e., |P|t? is at most 16a20PT (P, C").
We now need to bound the second term only. We consider two cases

— t < ad(cy, ¢) : In this case, | P|-2td(ci, ) < 2ad(cr,m)?|Pi| < 2af (P, a) <
2a0PTy(P,C").
2
— t > ad(c, cp) : In this case, |P| - 2td(¢, m;) < % < 32a0PTi (P, C").

Thus, in either case, the cost increases by at most
480a0PT, (P, C") < 48a(140a/k) 0PT,(P) < 48a(14a/k)*0PT,(P) < 144a0PT(P).

But this contradicts the fact that P is (k, a)-irreducible.

7 Concluding Remarks

The algorithm can also be extended to solve the above clustering problems when
each of the points have an associated (integral) weight with total weight W. The
solution to the above clustering problems for the weighted version is the same
as the solution to the unweighted version where a point p with weight w is
replaced by w points of unit weight. It can be verified that for handling the
weighted case: the closeness property remains unchanged; in condition (c) for
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the tightness property, the size of the set gets replaced by the weight of the
set; The random sampling procedure requires time at most linear in n (number

of remaining distinct points) in order to perform the required weighted sampling.
The running time thus obtained for the algorithm in the weighted case is O(2(*/ 9%y

dlog® W).
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