CSL 857 Model Centric Algorithm Design
Minor 1, Sem II 2016-17, Max 40, Time 1 1/2 hrs

Note (i) Write your answers neatly and precisely. You won’t get a second chance to explain what you have written.
(ii) Every algorithm must be accompanied by proof of correctness and a formal analysis of running time and processor bound.

Feel free to quote any result from the lectures without proof - for any anything new, you must prove it first.

1. Consider an array A of n integers and another set of integers i1, i2,...%; where 1 = i1 <i; <41 <
xr = n + 1. Describe an optimal O(logn) time PRAM algorithm to compute the partial sums

S =S ay forall1 <j <k —1.

For example, for inputs 4, 2, 8, 9, -3 and indices 1, 2, 4, 6 the answer is 4, 24+8 = 10, 9-3 = 6. The
normal prefix sum can be done with i; = 1,i2 = n + 1. (10 marks)

The main issue here is that of processor allocation - since there are k independent prefix sum problems.
These problem sizes can be computed from the indices i1, 75 . . ., viz., the size of first problem is io — iy
etc. If a problem size s exceeds logn, then we allocate Llognj processors. For s < logn, we will
combine these small subproblems so that each group will consist of at most 2log n elements. Consider
an array yi,42 ...y, such that y; < logn. Compute prefix sum of y; and block them in contiguous
segments such that each block has a sum bounded by 2logn. This can be done by marking the first

locations where the sums have exceeded ilogn for ¢ =1,2,....

For the small subproblems we allocate one processor per block which implies at most & Processors.
Each processor takes at most O(logn) serial time for computation.

For the other subproblems, the total number of processors is

2isi <n/logn
logn

ZLsi/lognJ < Zé’i/logn _

Si
logn

For each subproblem, the time taken is O(logs;) using s;/logs; processors. Since we have

Si/IOgSi)'

processors, from slow down lemma, we will need O(logn) time (logs; x 3 TTogn

2. Consider the following linear recurrence
r; =31+ x;i o+ dxr;_3+2

and 1 = 0,29 = 2,23 = 1. Design a O(logn) parallel algorithm to compute x,, for a given n. Do
not try to compute an analytical formula. (15 marks)
Hint: Write the recurrence as an appropriate matrix.

€Ty 3 1 5 2 Ti—1
Ti—1 o 1 0 0 O Xi—2
zi—o | |0 1 0 0 Ti_
1 0 0 01 1

From this it follows that

3
1
This relation can be expressed as X; = A - X;_1 and Xy = (2)
1

X; = A3 . X and since matrix multiplication is associative, we can use prefix computation with
operator 4 x 4 matrix multiplication to compute the sequence z1,zs. .. Zy,.

3. Given two sorted arrays A and B of size n, design an optimal O(logn) time n/logn processors
algorithm using the following idea.

For every k-th element in each array, find the cross ranks and then use them to split up the original
merging problem into 27 merging problem of size at most k. Choose an appropriate value of k. (15
marks)

Following the hint, consider every k-th element in the two sorted arrays and denote them by a;; and
bii. respectively where ¢ < n/k. Using one processor per element and using concurrent read find the
cross rank of each element in the other array using a binary search. This takes O(logn) time using
k/ log n processors.

Now consider the cross ranks of two consecutive a;; and a(;41), which is given by their positions in
the array B - say C; and Cj;q. If they fall within the same k-block of B then we can merge the
elements [a, a(i11);] With [by,, b,] that contains at most 2k elements. If they fall within different
k-blocks of B, then the cross ranks of the elements in B define independent merging problems in
@ik, a(i+1)k] Which are again of size at most 2k.

To identify the independent merging problems, the crossranks can be used. A subproblem is defined
by a;k, a1y if their cross ranks Cy, Ciy1 are within the same k-block of B and vice-versa. Allocate
one processor to such a pair.

Each element z in A (B) needs to know its subproblem identity which can be uniquely identified by
a pair (a1, a9, by, be). which are the straddling elements in arrays A and B. This can be achieved as
follows. When the cross-ranks are determined, we simultaneously mark the elements B¢, and store its
index (there may be conflicts when more than one elements have the same cross-ranks, so concurrent
write may be necessary and suffices to compute the smallest and the largest index with the same
cross-ranks. This would require some extra computations involving cross-ranks). Now an element x
needs to find the straddling indices that can be done by an application of prefix computation.

Each of these merging problems can be completed in O(k) time using 1 processor,and there are at
most 2n/k subproblems. By choosing k& = logn, the entire merging can be completed in O(logn)
parallel time using n/logn) processors.

