
CSL 857 Model Centric Algorithm Design
Minor 1 , Sem II 2016-17, Max 40, Time 1 1/2 hrs

Note (i) Write your answers neatly and precisely. You won’t get a second chance to explain what you have written.

(ii) Every algorithm must be accompanied by proof of correctness and a formal analysis of running time and processor bound.

Feel free to quote any result from the lectures without proof - for any anything new, you must prove it first.

1. Consider an array A of n integers and another set of integers i1, i2, . . . ik where 1 = i1 < ij < ij+1 <
xk = n + 1. Describe an optimal O(log n) time PRAM algorithm to compute the partial sums

Sj =
∑ij+1−1

t=ij
xt for all 1 ≤ j ≤ k − 1.

For example, for inputs 4, 2, 8, 9, -3 and indices 1 , 2, 4, 6 the answer is 4, 2+8 = 10 , 9 -3 = 6. The
normal prefix sum can be done with i1 = 1, i2 = n + 1. (10 marks)

The main issue here is that of processor allocation - since there are k independent prefix sum problems.
These problem sizes can be computed from the indices i1, i2 . . ., viz., the size of first problem is i2− i1
etc. If a problem size s exceeds log n, then we allocate b s

lognc processors. For s < log n, we will
combine these small subproblems so that each group will consist of at most 2log n elements. Consider
an array y1, y2 . . . yk such that yi < log n. Compute prefix sum of yi and block them in contiguous
segments such that each block has a sum bounded by 2 log n. This can be done by marking the first
locations where the sums have exceeded i log n for i = 1, 2,

For the small subproblems we allocate one processor per block which implies at most n
logn processors.

Each processor takes at most O(log n) serial time for computation.

For the other subproblems, the total number of processors is

∑
i

bsi/ log nc ≤
∑
i

si/ log n =

∑
i si

log n
≤ n/ log n

For each subproblem, the time taken is O(log si) using si/ log si processors. Since we have si
logn

processors, from slow down lemma, we will need O(log n) time (log si × si/ log si
si/ logn

).

2. Consider the following linear recurrence

xi = 3xi−1 + xi−2 + 5xi−3 + 2

and x1 = 0, x2 = 2, x3 = 1. Design a O(log n) parallel algorithm to compute xn for a given n. Do
not try to compute an analytical formula. (15 marks)
Hint: Write the recurrence as an appropriate matrix.


xi
xi−1

xi−2

1

 =


3 1 5 2
1 0 0 0
0 1 0 0
0 0 0 1

 ·


xi−1

xi−2

xi−3

1



This relation can be expressed as Xi = A · Xi−1 and X0 =


1
2
0
1

. From this it follows that

Xi = Ai−3 · X0 and since matrix multiplication is associative, we can use prefix computation with
operator 4× 4 matrix multiplication to compute the sequence x1, x2 . . . xn.

1

3. Given two sorted arrays A and B of size n, design an optimal O(log n) time n/ log n processors
algorithm using the following idea.

For every k-th element in each array, find the cross ranks and then use them to split up the original
merging problem into 2n

k merging problem of size at most k. Choose an appropriate value of k. (15
marks)

Following the hint, consider every k-th element in the two sorted arrays and denote them by aik and
bik respectively where i ≤ n/k. Using one processor per element and using concurrent read find the
cross rank of each element in the other array using a binary search. This takes O(log n) time using
k/ log n processors.

Now consider the cross ranks of two consecutive aik and a(i+1)k which is given by their positions in
the array B - say Ci and Ci+1. If they fall within the same k-block of B then we can merge the
elements [aik, a(i+1)k] with [bri , bri+1] that contains at most 2k elements. If they fall within different
k-blocks of B, then the cross ranks of the elements in B define independent merging problems in
[aik, a(i+1)k] which are again of size at most 2k.

To identify the independent merging problems, the crossranks can be used. A subproblem is defined
by aik, a(i+1)k if their cross ranks Ci, Ci+1 are within the same k-block of B and vice-versa. Allocate
one processor to such a pair.

Each element x in A (B) needs to know its subproblem identity which can be uniquely identified by
a pair (a1, a2, b1, b2). which are the straddling elements in arrays A and B. This can be achieved as
follows. When the cross-ranks are determined, we simultaneously mark the elements BCi and store its
index (there may be conflicts when more than one elements have the same cross-ranks, so concurrent
write may be necessary and suffices to compute the smallest and the largest index with the same
cross-ranks. This would require some extra computations involving cross-ranks). Now an element x
needs to find the straddling indices that can be done by an application of prefix computation.

Each of these merging problems can be completed in O(k) time using 1 processor,and there are at
most 2n/k subproblems. By choosing k = log n, the entire merging can be completed in O(log n)
parallel time using n/ log n) processors.

2

