
Chapter 12

Parallel Algorithms

12.1 Models of parallel computation

There is a perpetual need for faster computation which is unlikely to be ever satisfied.
With device technologies hitting physical limits, alternate computational models are
being explored. The Big Data phenomenon precedes the coinage of this term by many
decades. One of the earliest and natural direction to speed up computation, was to
deploy multiple processors instead of a single processor for running the same program.
The ideal objective is speed up a program p fold by using p processors simultaneously.
A common caveat is that, an egg cannot be boiled faster by employing multiple cooks
! Analogously, a program cannot be executed faster indefinitely by using more and
more processors. This is not just because of physical limitations but dependencies
between various fragments of the code, imposed by precedence constraints.

At a lower level, namely, in digital hardware design, parallelism is inherent - any
circuit can be viewed as a parallel computational model. Signals travel across dif-
ferent paths and components and combine to yield the desired result. In contrast, a
program is coded in a very sequential manner and the data flows are often depen-
dent on eachother - just think about a loop that executes in a sequence. Second, for a
given problem, one may have to redesign a sequential algorithm to extract more paral-
lelism. In this chapter, we focus on designing fast parallel algorithms for fundamental
problems.

A very important facet of parallel algorithm design in the underlying architec-
ture of the computer, viz., how do the processors communicate with each other and
access data concurrently. Moreover, is there a common clock across which we can
measure the actual running time ? Synchronization is an important property that
makes parallel algorithm design somewhat more tractable. In more generalized asyn-
chronous models, there are additional issues like deadlock and even convergence is

154

very challenging to analyze.
In this chapter, we will consider synchronous parallel models (sometimes called

SIMD) and look at two important models - Parallel Random Access Machine (PRAM)
and the Interconnection Network model. The PRAMmodel is the parallel counterpart
of the popular sequential RAM model where p processors can simultaneously access
a common memory called shared memory. Clearly, enormous hardware support is
required to enable processors to access the shared memory concurrently which will
scale with increasing number of processors and memory size. Nevertheless, we adopt
a uniform access time assumption for reads and writes. The weakest model is called
EREW PRAM or exclusive read exclusive write PRAM where all the processors
can access memory simultaneously provided that there is no conflict in the accessed
locations. The exclusiveness must be guaranteed by the algorithm designer. There are
other varations as well, called CREW1 and CRCW PRAMs that allow read conflicts
and write conflicts. Although these are abstract models that are difficult to build,
they provide conceptual simplicity for designing algorithms which can subsequently
be compiled into the weaker models.

The interconnection networks are based on some regular graph topology where the
nodes are processors and the edges provide a physical link. The processors commu-
nicate with eachother via message passing through the wired links where each link is
assumed to take some fixed time. The time to send a message between two processors
is proportional to the number of links (edges) between the two processors. This would
motivate us to add more links, but there is a tradeoff between the number of edges
and the cost and area of the circuit, which is usually built as VLSI circuits. Getting
the right data at the right processor is the key to faster execution of the algorithm.
This problem is commonly referred to as routing. Towards the end of this chapter we
will discuss routing algorithms that provides a bridge between the PRAM algorithms
and the interconnection networks.

12.2 Sorting and comparison problems

12.2.1 Finding maximum

This is considered to be a trivial problem in the sequential context and there are
several ways of computing the maximum using n − 1 comparisons. A simple scan
suffices where one maintains the maximum of the elements seen so far.

Exercise 12.1 Show that n − 1 comparisons are necessary to find the maximum of
n elements.

1C denotes concurrent

155

We want to do many comparisons in parallel so that we can eliminate many elements
from further consideration - every comparison eliminates the smaller element. We
assume that in each round, each of the available processors compares a single pair. If
we want to minimize the number of rounds, we can use

(
n
2

)
processors to do all the

pairwise comparisons and output the element that wins across all all comparisons.
The second phase of locating the element that has not lost requires more details in the
parallel context and may require several rounds. But is the first phase itself efficient ?
We need roughly Ω(n2) processors and so the total number of operations far exceeds
the sequential bound of O(n) comparisons and does not seem to be cost effective.

Can we reduce the number of processors to O(n). That seems unlikely as we can
do at most n

2 comparisons in one round by pairing up elements and there will be at
least n/2 potentail maximum at the end of the first round. We can continue doing
the same - pair up the winners and compare them in the second round and keep
repeating this till we find the maximum. This is similar to a knockout tournament
where after i rounds there are at most n

2i potential winners. So after log n rounds, we
can pick the maximum.
How many processors do we need ?
If we do it in a straight-forward manner by assigning one processor to each of the
comparisons in any given round, we need n

2 processors (which is the maximum across
across all rounds). So the processor-time product is Ω(n logn), however the total
number of comparisons is n

2 +
n
4 + . . . ≤ n which is optimum. So we must explore the

reason for the inefficient use of processors.
One possibility is to reduce the number of processors to p≪ n and slow down each

round. For example, the n
2 first round comparisons can be done using p processors in

rougly ⌈ n
2p⌉ rounds. This amounts to slowing down round i by a factor n

2i·p
2 so that

the total number of rounds is

O(
n

p
· (1
2
+

1

22
+ . . .

1

2i
) ≤ n

p
.

By definition, this is optimal work as processor-time product is linear. There is a
caveat - we are ignoring any cost associated with assigning the available processors
to the prescribed comparisons in each round. This is a crucial component of imple-
menting parallel algorithms called load balancing which itself is a non-trivial parallel
procedure requiring attention at the system level. We will sketch some possible ap-
proaches to this in the section on parallel prefix computation. For now, we ignore
this component and therefore we have a parallel algorithm for finding maximum of n
elements that require O(np) parallel time. But this tells us that we can find maximum
in O(1) time using p = Ω(n) ! Clearly we cannot do it in less than O(logn) round by
the previous algorithm.

2ignoring the ceilings to keep the expression simple

156

So there is a catch - when the number of comparisons falls below p, the time is
at least 1, a fact that we ignored in the previous summation. So let us split the
summation into two components - one when the number of camparisons is ≥ p and
the subsequent ones when they are less than p. When they are less than p, we can run
the first version in O(log p) rounds which is now an additive term in the expression
for parallel time that is given by O(np + log p). It is now clear that for p = Ω(n), the
running time is Ω(log n) and the more interesting observation is that it is minimized
for p = n

logn . This leads to a processor-time product O(n) with parallel running time
O(logn).

A simpler way to attain the above bound will be to first let the p = n
logn pro-

cessors sequentially find the maximum of (disjoint subsets of) logn elements in log n
comparisons and then run the first version of n

logn elements using p processors in
log(n

logn) ≤ log n parallel steps. This has the added advantage that practically no
load-balancing is necessary as all the comparisons can be carried out by the suitably
indexed processor.

Exercise 12.2 If a processor has index i , 1 ≤ i ≤ p, find out a way of preassigning
the comparisons to each of the processors.
Use the binary tree numbering to label the comparison number.

Can we reduce the number of rounds without sacrificing efficiency ?
Let us revisit the 1-round algorithm and try to improve it. Suppose we have n3/2

processors which is substantially less than n2 processors. We can divide the elements
into
√
n disjoint subsets, and compute their maximum using n processors in a single

round. After this round we are still left with
√
n elements which are candidates for

the maximum. However, we can compute their maximum in another round using the
one round algorithm. 3 Taking this idea forward, we can express the algorithm in a
recursive manner as follows

The recurrence for parallel time can be written in terms of T ||(x, y) which rep-
resents the parallel time for computing maximum of x elements using y processors.
Then, we can write

T ||(n, n) ≤ T ||(
√
n,
√
n) + T ||(

√
n, n)

The second term yields O(1) and with appropriate terminating condition, we can show
that T ||(n, n) is O(log logn). This is indeed better than O(logn) and the processor-
time product can be improved further using the previous technqiues.

Exercise 12.3 Show how to reduce the number of processors further to n
log logn and

still retain T ||(n, n/ log logn) = O(log log n).

3We are ignoring the cost of load-balancing

157

Can we improve the parallel running time further ?
This is a very interesting question that requires a different line of argument. We

will provide a sketch of the proof. Consider a graph G = (V,E) where |V | = n and
|E| = p. Every vertex corresponds to an element and an edge denotes a comparison
between a pair of elements. We can think about the edges as the set of comparisons
done in a single round of the algorithm. Consider an independent subset W ⊂ V . We
can assign the largest values to the elements associated with W . Therefore, at the
end of the round, there are still |W | elements that are candidates for the maximum.
In the next round, we consider the (reduced) graph G1 on W and the sequence of
comparisons in round i corresponds to the independent subsets of Gi−1. The number
of edges is bound by p. The following result on the size of independent set of a graph,
known as Turan’s theorem will be useful in our context.

Lemma 12.1 In an undirected graph with n vertices and m edges, there exists an
independent subset of size at least least n2

m+n .

Proof: We will outline a proof that is based on probabilistic reasoning. Randomly
number the vertices V in the range 1 to n, where n = |V | and scan them in an
increasing order. A vertex i is added to the independent set I if all its neighbours
are numbered higher than i. Convince yourself that I is an independent set. We now
find a bound for E[|I|]. A vertex v ∈ I iff all the d(v) neighbors (d(v) is the degree of
vertex v) are numbered higher than v and the probability of this event is 1

d(v)+1 . Let
us define a indicator random variable Iv = 1 if v is chsen in I and 0 otherwise. Then

E[|I|] = E[
∑

v∈V

Iv] =
∑

v∈V

1

d(v) + 1

Note that
∑

v d(v) = 2m and the above expression is minimized when all the d(v) are
equal, i.e., d(v) = 2m

n . So E[|I|] ≥ n
2m/n+1 = n2

2m+n . Since the expected value of |I| is
at least n2

2m+n , it implies that for at least one permutation, I attains this value and
therefore the lemma follows. ✷

Let ni i = 0, 1, 2 . . . denote the vertices in the sequence G = G0, G1, G2 . . . Gi as
defined by the independent sets in the algorithm. Then, from the previous claim

ni ≥
n

32i−1

Exercise 12.4 For p = n, show that after j = log logn
2 rounds, nj > 1.

158

Procedure Odd-even transposition sort for processor(i)

1 for j = 1 to ⌈n/2⌉ do
for p = 1, 2 do

2 if If i is odd then
3 Compare and exchange with processor i+ 1 ;

else
4 Compare and exchange with processor i− 1 ;

5 if If i is even then
6 Compare and exchange with processor i+ 1 ;

else
7 Compare and exchange with processor i− 1 ;

Figure 12.1: Parallel odd-even transposition sort

12.2.2 Sorting

Let us discuss sorting on the interconnection network model where each processor
initially holds an element and after sorting the processor indexed i should contain the
rank i element. The simplest interconnection network is a linear arry of n processing
elements. Since the diameter is n− 1, we cannot sort faster than Ω(n) parallel steps.

An intuitive approach to sort is compare and exchange neighboring elements with
the smaller element going to the smaller index. This can be done simultaneously for
all (disjoint) pairs. To make this more concrete, we will we define rounds with each
round containing two phases - odd-even and even-odd. In the odd-even phase, each
odd numbered processor compares its element with the larger even number element
and in the odd-even phase, each even numbered processor compares with the higher
odd numbered processor.

We repeat this over many rounds till the elements are sorted. To argue that it
will indeed be sorted, consider the smallest element. In every comparison it will start
moving towards processor numbered 1 which is its final destination. Once it reaches,
it will continue to be there. Subsequently, we can consider the next element which will
finally reside in the processor numbered 2 and so on. Note that once elements reach
their final destination and all the smaller elements have also in their correct location,
we can ignore them for future comaprisons. Therefore the array will be sorted after
no more than n2 rounds as it takes at most n rounds for any element to reach its
final destination. This analysis is not encouraging from the presective of speed-up as
it only matches bubble-sort. To imrove our analysis, we must track the simultaneous
movements of elements rather than 1 at a time. To simplify our analysis, we invoke

159

the following result.

Lemma 12.2 (0-1 principle) If any sorting algorithm sorts all possible inputs of
0’s and 1’s correctly, then it sorts all possible inputs correctly.

We omit the proof here but we note that there are only 2n possible 0-1 inputs of
length n where as there are npermutations. The converse clearly holds.

So, let us analyze the above algorithm, called odd-even transposition sort for
inputs restricted to {0, 1}n. Such an input is considered sorted if all the 0’s are to the
left of all 1’s. Let us track the movement of the leftmost 0 over successive rounds of
comparisons. It is clear that the leftmost 0 will keep moving till it reaches processor
14. If this 0 is in position k in the beginning it will reach within at most ⌈k/2⌉ rounds.
If we consider the next 0 (leftmost 0 among the remaining elements), to be denoted
by 02, the only element that can block its leftward progress is the leftmost 0 and this
can happen at most once. Indeed, after the leftmost 0 is no longer the immediate left
neighbor of 02, this elements will keep moving left till it reaches its final destination.
If we denote the sequence of 0’s using 0i for the i-th zero, we can prove the following
by induction.

Exercise 12.5 The element 0i may not move for at most i phases (⌈i/2⌉ rounds)
in the beginning and subsequently it moves in every phase until it reaches its final
destination.

Since the final destination of 0i is i, and it can be at most n− i away from the final
destination, the total number of phases for it to reach processor i is i + n − i = n.
Note that the above argument holds simultaenously all the elements and so all the
0’s (and therefore all 1’s) are in their final positions within n phases or ⌈n/2⌉ rounds.

Next, we consider the two dimensional mesh which is a widely used parallel ar-
chitecture. For sorting, we can choose from some of the standard indexing schemes
like row-major - every row i contains elements smaller than the next row, and the
elements in a row are sorted form left to right. Column-major has the same property
across columns, snake-like row major where the alternate rows are sored from left to
right and the others from right to left.

Suppose we sort rows and columns in successive phases. Does this converge to a
sorted array ? No, you can construct an input where each row is sorted and every
column is sorted (top to bottom) but not all elements are in their final position. A
small change fixes this problem - sort rows according to snake-like row major and the
columns from top to bottom. The more interesting question is how many rounds of
row/column sorts are required ?

4We are assuming that there is at least one 0 in the input otherwise there is nothing to prove.

160

Procedure Shearsort algorithm for rectangular mesh(m,n)

1 for j = 1 to ⌈logm⌉ do
2 Sort rows in alternating directions ;
3 Sort columns from top to bottom ;

Figure 12.2: Shearsort

Each row/column can be sorted using the odd-even transposition sort, so if we
need t iterations, then the total parallel steps will be O(t

√
n) for a

√
n ×
√
n array.

To simplify our analysis we will again invoke the 0-1 principle. First consider only
two rows of 0’s and 1’s. Let us sort the first row from left to right and the second
row from right to left. Then we do the column sort.

Lemma 12.3 Either the top row will contain only 0’s or the bottom row will contain
only 1’s - at least one of the conditions will hold.

We define a row clean if it consists of only 0’s or only 1’s and dirty otherwise. Ac-
cording the above observation (prove it rigorously), after the row and column sort, at
least one of the rows is clean so that in the next itseration (sorting rows), the array is
sorted. Now extend the analysis to an m×m array. After one row sort and column
sort, at least half the rows are clean. Indeed each consecutive pair of rows produces
at least one clean row and they continue to remain clear thereafter. In each iteration,
the number of dirty rows reduce by at least a factor of 2, leading to logm iterations
for all (but one) row to be clean. One more row sorting completes the ordering.

Lemma 12.4 The number of iterations of alternately sorting rows and columns re-
sults in a sorted array after at most logm iterations in a m× n array.

Therefore a
√
n×
√
n array can be sorted in O(

√
n log n) parallel steps. This rather

simple algorithm, called Shearsort is close to being optimal, within a factor of
O(logn). In the exercises, you will be lead through a O(

√
n) algorithm based on

a recursive variation of Shearsort.
It is not difficult to extend Shearsort to higher dimesnional meshes but it doesn’t

lead to a O(logn) time sorting algorithm in the hypercubic network. Obtaining an
ideal speed-up sorting algorithm on an n-processor interconnection network is very
challenging and had required many non-trivial ideas both in terms of algorithms and
the network topology.

In the shared memory model like PRAM, one can obtain an O(logn) time algo-
rithm by generalizing the idea of quicksort.

161

Procedure Parallel partition Sort

Input X = {x1, x2 . . . xn} ;
1 if n ≤ C then
2 Sort using any sequential algorithm
else

3 Choose a uniform random sample R of size
√
n ;

4 Sort R - let r1, r2 . . . denote the sorted set ;
5 Let Ni = {x|ri−1 ≤ x ≤ ri} be the i-th subproblem ;
6 In parallel do ;
7 Recursively partition sort Xi ;

Figure 12.3: Partition Sort

The analysis requires use of probabilistic inequalities like Chernoff bounds that
enable us to obtain good control on the subproblem sizes for the recursive calls.
Roughly speaking, if we can induce O(

√
n) bound on the size of the recursive calls

when we partition n elements into
√
n intervals, the number of levels in bounded

by O(log log n)5. Moreover, each level can be done in time O(logni) where ni is
the maximum subproblem size in level i. Then the total parallel running time is∑

i O(logn) + log(
√
n) + . . . log(n1/2i) = O(logn).

Here we outline the proof for bounding the size of subprobems using a uniforrmly
sampled subset R ⊂ S where |S = n and R has size about r.

Lemma 12.5 Suppose every element of S is sampled uniformly and independently
with probability r

n . Then the number of unsampled elements of S in any interval

induced by R is bounded by O(n log r
r) with probabiity at least 1− 1

rΩ(1) .

Proof: Let x1, x2 . . . be the sorted sequence of S and let random variables

Xi = 1 if xi is sampled and 0 otherwise 1 ≤ i ≤ n

So the expected number of sampled elements =
∑n

i=1 Pr[Xi = 1] = n · r
n = r. The

actual number may vary but let us assume that |R| = r. Suppose, the number of
unsampled elements between two consecutive sampled elements [ri, ri+1] be denoted
by Yi (Y0 is the number of elements before the first sampled element). Since the
elements are sampled independently, Pr[|Yi| = k] = r

n · (1− r
n)

k. It follows that

Pr[|Yi| ≥ k] =
∑

i=k

r

n
· (1− r

n
)
i
≤ (1− r

n
)
k

5This is true for size of subproblems bounded by nc for any c < 1

162

For k = cn log r
r , this is less than ec log r ≤ 1

rc .
If any of the intervals has more than k = cn log r

r unsampled elements then some
pair of consecutive sampled elements [ri, ri+1] have more than k elements unsampled
elements between them and we have computed the probability of this event. So among
the

(
r
2

)
pairs of elements, the r consecutive pairs are the ones that are relevant events

for us. In other words, the previous calculations showed that for a pair (r′, r′′),

Pr[|(r′, r′′) ∩ S| ≥ k|r′, r′′ are consecutive] ≤ 1

rc

Since Pr[A|B] ≥ Pr[A ∩ B] we obtain

Pr[|(r′, r′′) ∩ S| ≥ k and r′, r′′ are consecutive] ≤ 1

rc

So, for all the pairs, by the union bound, the probability that there is any consecutive
sampled pair with more than k unsampled elements is O(r

2

rc). For c ≥ 3, this is less
than 1/r.

From Markov’s inequality, the number of samples exceeds r2 is less than 1
r . The

reason that our sampling fails to ensure gaps less than cn log r/r is due to one of the
following events
(i) Sample size exceeds n2 (ii) Given that sample size is less than r2, the gap exceeds
k.
This works out as O(1r) as the union of the probabilities. Note that we can increase
c to keep the union bound less than 1/r for r2 samples. ✷

12.3 Parallel Prefix

Given elements x1, x2 . . . xn and an associative binary operator ⊙, we want to compute

yi = x1 ⊙ x2 . . . xi i = 1, 2, . . . n

Think about ⊙ as addition or multiplication and while this may seem trivial in the
sequential context, the prefix computation is one of the most fundamental problems
in parallel computation and have extensive applications.

Note that yn = x1 ⊙ x2 . . . xn can be computed as a binary tree computation
structure in O(logn) parallel steps. We need the other terms as well. Let yi,j =
xi ⊙ xi+1 . . . xj. Then we can express a recursive computation procedure as given in
Figure 12.4. Let T ||(x, y) represent the parallel time to compute the prefix of x inputs
using y processors. For the above algorithm, we obtain the following recurrence

T ||(n, n) = T ||(n/2, n/2) +O(1)

163

Procedure Prefix computation of n elements prefix(xa, xb)

1 if If b− a ≥ 1 then
2 c = ⌊a+b

2 ⌋ ;
3 In parallel do
4 prefix (a,c) , prefix (c+1,b) ;
5 end parallel ;
6 Return (prefix (a,c) , ya,c⊙ prefix (c+1 , b) (* ya,c is available in prefix

(a,c) *)
else

7 Return xa ;

Figure 12.4: Parallel Prefix Computation

The first term represents the time for two (parallel) recursive calls of half the size
and the second set of outputs will be multiplied with the term y1,n/2 that is captured
by the additive constant. The solution is T ||(n, n) = O(logn). Note that this is not
optimal work since the prefix can be computed sequentially in n operations, whereas
the processor-time product is O(n logn) for the above algorithm.

This can be improved by reducing the processors by a factor of logn and computing
the prefix of disjoint blocks of log n elements and then combining them according to
the method described below.

Let zi = x(i−1)k+1 ⊙ x(i−1)k+2 ⊙ . . . xik for some integer k. We can perform prefix
computation on zis and from these we can compute the prefix on the xi’s easily by
combining with the prefix sums within each k-block of the xis. For example let us
consider elements x1, x2 . . . x100 and k = 10. Then

y27 = x1 ⊙ x2 . . . x27 = (x1 ⊙ x2 . . .⊙ x10)⊙ (x11 ⊙ x12 . . .⊙ x20)⊙ (x21 ⊙ . . . x27)

= z1 ⊙ z2 ⊙ (x21 ⊙ x22 . . .⊙ x27).
The last term (in paranthesis) is computed within the block as prefix of 10 elements
x21, x22 . . . x30 and the rest is computed as prefix on the zis.

Exercise 12.6 Analyze the parallel running time of the above approach by writing
the appropriate recurrence.
What is the best value of k for minimizing the parallel running time ?

12.3.1 Applications

Parallel compaction

164

A very scenario in parallel computation in periodic compaction of active processes
so that the available processors can be utilized effective. Even in a structured process
flow graph like a binary tree, at every level, half of the elements drop out of future
computation. The available processors should be equitably distributed to the active
elements, so that the parallel time is minimized.

One way to achieve is to think of the elements6 in an array where we tag them as
0 or 1 to denote if they are dead or active. If we can compress the 1’s to one side of
the array, then we can find out how many elements are active, say m. If we have p
processors then we can distribute them equally such that every processor is allocated
roughly m

p active elements.
This is easily achieved by running parallel prefix on the elements with the oper-

ation ⊙ defined as addition. This is known as prefix sum. The i-th 1 gets a label i
and it can be moved to the i-th location without any conflicts. Consider the array

1 , 0, 0 1, 0, 1, 0, 1, 0, 0, 0 , 1, 1

After computing prefix sum, we obtain the labels yi’s as
1 , 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 6

Then we can move the 1’s to their appropriate locations and this can be done in
parallel time n/p for p ≤ n/ log n.

Simulating a DFA
Given a DFA M , let δM(Q,w) denote the transition vector whose i-th component

is δ(qi, w) , qi ∈ Q, where δ denotes the transition function of M . Recall that
δ(q, a · w) = δ(δ(q, a), w) for a ∈ Σ. So the transition vector gives us the final states
for each of the |Q| starting states.

Let w = w1w2 . . . wk where wi ∈ Σ - for convenience let us assume that the length
of the input string is a power of 2. We will use the notation wi,j to denote the
substring w1 · wi+1 . . . wj.

Claim δM is associative, i.e., δM (Q,w1 · (w2w3)) = δM (Q,w1 · (w2 ·w3)). Moreover

δM (Q,wi,ℓ) = δM(δM(Q,wi,j), wj+1,ℓ).

Alternately, you can express δM(a) as a |Q| × |Q| matrix A where Aa
i,j = 1 if

δ(qi, a) = qj and 0 otherwise. Then

δM(w1w2 . . . wk) = Aw1 ⊗Aw2 ⊗ . . . Awk

where
⊗

corresponds to matrix multiplication.
For example, let Q = {q0, q1} and

6Can also be thought of as labels of processes

165

0 1
q0 q0 q0
q1 q0 q1

For w = 1011, δM(10) =

[
q0
q0

]
and δM (11) =

[
q0
q1

]
.

This yields δM(1011) =

[
q0
q0

]

So, we can use the prefix computation to compute all the intermediate states in
O(logn) time using n/ log n processors. So this gives us the intermediate states for
all possible starting states of which we choose the one corresponding to the actual
starting state.

The addition of two binary numbers can be easily represented as state transition
of a finite state machine. For example, if the numbers are 1011 and 1101 respectively
then one can design a DFA for an adder that takes an input stream (11, 10, 01,
11) which are the pairs of bits starting form the LSB. The successive transitions are
made according to the previous carry, so there are two states correspoding to carry
0 and carry 1. Once the carry bits are known then the sum bits can be generated in
constant time.

12.4 Basic graph algorithms

Many efficient graph algorithms are based on DFS (depth first search) numbering. A
natural approach to designing parallel graph algorithms will be to design an efficient
parallel algorothm for DFS. This turned out to be very challenging and no simple
solutions are known and there is evidence to suggest that it may not be possible. This
has led to interesting alternate techniques for designing parallel graph algorithms.
We will consider the problem of constructing connected components in an undirected
graph.

12.4.1 List ranking

A basic parallel subroutine involves finding the distance of every node of a given
linked list to the end of the list. For concreteness and simplicity, let us consider an
array A[1 . . . n] of size n. Each location i contains an integer j that corresponds to
A[j] being the successor of A[i] in the linked list. The head of the list is identified as
k such that A[k] contains k, i.e., it points to itself. The purpose of list ranking is to
find the distance of every element form the head of the list where the distance of the
head to itself is considered as 0.

A sequential algorithm can easily identify the tail of the list (the integer in [1, n]
which doesn’t appear in the array) and simply traverses the list in n steps. For the
parallel algorithm, let us initially assume that we have a processor for every element

166

Procedure Parallel List ranking(pi)

1 Initialize If A[i] ̸= i then d[i] = 1 else d[i] = 0 ;
2 while A[i] > 0 do
3 A[i]← A[A[i]] ;
4 d[i]← d[i] + d[A[i]] ;

Return d[i] ;

Figure 12.5: Parallel List ranking

and each processor executes the algorithm in Figure 12.5. To analyze the algorithm,
let us renumber the list elements such that x0 is the head of the list and xi is at
distance i from x0. The crux of the algorithm is a doubling strategy. After j ≥ 1
steps the processor responsible for xi, say pi points to an element k such that k is
2j−1 steps away from j. So, in the next step, the distance doubles to 2j. Of course
it cannot be further than the head of the list, so we have to account for that. Notice
that, when a processor points to the head, all the smaller numbered processors must
also have reached the head. Moreover, they will also have the correct distances.

Lemma 12.6 After j iterations, pi points to an element xk where k = max{i −
2j−1, 0}. Equivalently, the distance function from i, d(i) is given by min{2j−1, i}.

Proof: We shall prove it by induction on i which is the distance from the head. For
the base case i = 0, it is clearly true as it keeps pointing to itself and d[i] does not
change. Suppose it is true for all elements < i where i ≥ 1. Let l(i) be defined as
2l(i) ≤ i < 2l(i)+1.

Further. observe that if after j iterations, a node k points 2j−1 ahead, then
all nodes > k will also point 2j−1 by symmetry. If 2l(i) = i, then after exactly l(i)
iterations, pi will point to an element that is distance 2l(i)−1 away since all the elements
k ∈ [2l(i)−1, 2l(i)− 1], will have their lengths doubled during each of the l(i) iterations
from induction hypothesis. In the l(i)+1 iteration, it will point to the head at correct
distance (2l(i)−1 + 2l(i)−1 = 2l(i), since x2l(i)−1 has the correct distance by then.

If 2l(i) < i, then, a similar argument applies, so that after the l(i)+1 iterations, it
points 2l(i) ahead. During the last iteration, the length would not double but increase
additively by i− 2l(i). ✷

As a corollary, the overall algorithm terminates in O(logn) steps using n processors.
It is a challenging exercise to reduce the number of processors to n

logn so that the
efficiency becomes comparable with the sequential algorithm.

Exercise 12.7 Reduce the number of processors in the list ranking algorithm to n
logn

without increase the asymptotic time bound.

167

In a PRAM model, each iteration can be implemented in O(1) parallel steps but
it may require considerably more time in interconnection network since the array
elements may be far away and so the pointer updates cannot happen in O(1) steps.

The above algorithm can be generalized to a tree where each node contains a
pointer to its (unique) parent. The root points to itself. A list is a special case of a
degenerate tree.

Exercise 12.8 Generalize the above algorithm to a tree and analyze the performance.

12.4.2 Connected Components

Given an undirected graph G = (V,E), we are interested to know if there is a path
from u to w in G where u, w ∈ V . The natural method to solve this problem is to
compute maximal subsets of vertices that are connected to eachother7.

Since it is difficult to compute DFS and BFS numbering in graphs in parallel, the
known approaches adopt a strategy similar to computing minimum spanning trees.
This approach is somewhat similar to Boruvka’s algorithm described earlier. Each
vertex starts out as singleton components and they interconnect among eachother
using incident edges. A vertex u hooks to another vertex w using the edge (u, w)
and intermediate connected components are defined by the edges used in the hooking
step. The connected components are then merged into a single meta-vertex and this
step is repeated until the meta-vertices do not have any edges going out. These meta-
vertices define the connected components. There are several challenges in order to
convert this high level procedure into an efficient parallel algorithm.

C1 What is an appropriate data structure to maintain the meta-vertices ?

C2 What is the hooking strategy so that the intermediate structures can be con-
tracted into a meta-vertex ?

C3 How to reduce the number of parallel phases.

Let us address these issues one by one. For C1, we pick a representative vertex
from each component, called the root and let other vertices in the same component
point to the root. This structure is called a star and it can be thought of as a
(directed) tree of depth 1. The root points to itself. This is a very simple structure
and it is easy to verify if a tree is a star. Each vertex can check if it is connected
to the root (which is unique because it points to itself). With sufficient number of
processors it can be done in a single parallel phase.

7this is an equivalence relation on vertices

168

For the hooking step, we will enable only the root vertices to perform this, so that
the intermediate structures have a unique root (directed trees) that can be contracted
into a star. We still have to deal with the following complications.
How do we prevent two (root) vertices hooking on to eachother ? This is a typical
problem of symmetry breaking in a parallel algorithm where we want exactly of the
many (symmetric) possibilities to succeed using some discriminating properties. In
this case, we can follow a convention that the smaller numbered vertex can hook on
to a larger numbered vertex. We are assuming that all vertices have a unique id
between 1 . . . n. Moreover, among the eligible vertices that it can hook onto, it will
choose one arbitrarily 8 . This leaves open the possibility of several vertices hooking
to the same vertex but that does not affect the algorithm.

Let us characterize the structure of the subgraph formed by hooking. The largest
numbered vertex in a component cannot hook to any vertex. Each vertex has at
most one directed edge going out and there cannot be a cycle in this structure. If we
perform shortcut operations for every vertex similar to list ranking then the directed
tree will be transformed into a star.

For the hooking step, all the edges going out of a tree are involved, as the star
can be considered as a meta-vertex. If all the directed trees are stars and we can
ensure that a star combines with another one in every parallel hooking phase, then
the number of phases is at most log n. The number of stars will decrease by a factor
of two (except those that are already maximal connected components). This would
require that we modify the hooking strategy, so that every star gets a chance to
combine with another.

Figure 12.6 gives an example where only one star gets hooked in every step because
of the symmetry breaking rule. So, we can add another step where a star that
could not combine since the root had a larger number (but it lost out to other large
numbered roots) can hook to a smaller numbered root. Since the smaller numbered
root must have hooked to some other tree (since the present tree continues to be a
star), this cannot create any cycles and is therefore safe.

The algorithm is described formally in Figure 12.7.
The analysis is based on a potential function that captures the progress of the

algorithm in terms of the heights of the trees. Once all the connected components are
hooked together, the algorithm can take at most logn iterations to transform them
into stars, based on our analysis of pointer jumping.

We define a potential function Φi =
∑

T∈F di(T) where di(T) is the depth of a
tree T (star has depth 1) in iteration i. Here F denotes the forest of trees. Note that
a tree contains vertices from a single connected component. We can consider each
of the components separately and calculate the number of iterations that it takes to

8This itself requires symmetry breaking in disguise but we will appeal to the model.

169

T

n

nï1

nï2

nï3
nï4

nï5

nï6

5
1

2

3

4

6
7

8
9

T

Figure 12.6: The star rooted at vertex 5 is connected all the stars (dotted edges)
on the right that have higher numbered vertices. It can only hook on to one of the
trees at a time that makes the process effectively sequential. The other stars have no
mutual connectivity.

form a single star from the component starting with singleton vertices. The initial
value of Φ is |C| where C ⊂ V is a maximal component and finally we want it to be
1, i.e., a single star.

If T1 and T2 are two trees that combine in a single tree T after hooking, it is
easily seen that Φ(T) ≤ Φ(T1) + Φ(T2). For any tree (excluding a star), the height
must reduce by a factor of almost 1/2. Actually a tree of depth 3, reduces to 2,
which is the worst case. So, Φ(C) =

∑
T∈C d(T) must reduce by a factor 2/3 in every

iteration, resulting in overall O(logn) iterations. The total number of operations in
each iteration is proportional to O(|V |+ |E|).

The reader is encouraged to analyze a variation of this algorithm, where we per-
form repeated pointer jumping in step 3, so as to convert a tree into a star before we
proceed to the next iteration.

Exercise 12.9 Compare the two variants of the connectivity algorithm.

12.5 Basic Geometric algorithms

The Quickhull algorithm described in section 6.5 is a good candidate for a parallel
algorithm as most of the operations can be done simultaneously. These are O(1) time

170

Procedure Parallel Graph connectivity(G)

1 Initialize For all v ∈ V , we set p(v) = v ;
2 while not all vertices of a connected component are not in star do
3 for (u, v) ∈ E do
4 if Isroot(p(u)) and (p(u) < p(v)) then
5 hook (p(u), p(v))

6 if IsStar (r) then
7 hook((p(v), p(u)) ;

8 for v ∈ V do
9 p(v)← p(p(v)) ;

Function IsStar(w)

1 This is run on all the vertices v ∈ V ;
2 if p(w) ̸= p(p(w)) then
3 the tree containing w is not a star ;

Return the tag of v ;

Procedure hook(u, w)

1 (u, w) is an edge ;
2 if IsStar (u) then
3 p(p(w))← p(p(u))

Function IsRoot(v)

1 if p(v) = v then
2 true
else

false

Figure 12.7: Parallel Connectivity

171

left − turn tests involving the sign of a 3 × 3 determinant, based on which some of
the points are elminated from further consideration. The subproblems are no more
than 3

4 of the original problem implying that there are O(logn) levels of recursion.
The number of operations in each level is proportional to O(n) and so if each level
of recursion can be done in t(n) parallel time, the total time will be O(t(n) · log n).
If t(n) is O(1), it would lead to an O(logn) time parallel algorithm which is often
regarded as the best possible because of a number of related lower-bounds. Although
the left− turn tests can be done in O(1) steps, the partitioning of the point sets into
contiguous locations in an array is difficult to achieve in O(1) time. Without this, the
we will not be able to apply the algorithm recursively that works with the points in
contigious locations. We know that compaction can be done in O(logn) time using
prefix computation, so we will settle for an O(log2 n) time parallel algorithm.

The number of processors is O(n/ logn), that will enable us to do O(n) left−turn
tests in O(logn) time. Unlike the (sequential) Quickhull algorithm, the analysis is
not sensitive to the output size. For this, we will relate the parallel running time with
the sequential bounds to obtain an improvement of the following kind.

Theorem 12.1 There is a parallel algorithm to construct a planar convex hull in
O(log2 n · log h) parallel time and total work O(n logh) where n and h are the input
and output sizes respectively.

We will describe a very general technique for load distribution in a parallel al-
gorithm. Suppose there are T parallel phases in an algorithm where there is no
dependence between operations carried out within a phase. If there are p processors
available, then by sharing the tasks equally among them the mi, 1 ≤ i ≤ T , tasks
in phase i can be completed in time O(⌈mi

p ⌉). So the total parallel time is given by
∑T

i O(⌈mi
p ⌉) = O(T) +O(

∑
i mi

p).
To this we also need to add the time for load balancing based on prefix compu-

tation, namely, O(mi
p) for phase i as long as mi ≥ p log p. So, this implies that each

of the O(logn) phases require Ω(log p) steps since mi/p ≥ log p. So, we can state the
result as follows

Lemma 12.7 (Load balancing) In any parallel algorithm that has T parallel phases

with mi operations in phase i, the algorithm can be executed in O(T log p+
∑

i mi

p) par-
allel steps using p processors.

Let us apply the previous result in the context of the Quickhull algorithm. There
are log n parallel phases and in each phase there are at most n operations as the
points belonging to the different subproblems are disjoint. From the analysis of the
sequential algorithm, we know that

∑
i mi = O(n logh) where h is the number of

output points. Then an application of the above load balancing technique using p

172

processors will result in a running time of O(logn · log p) +O(n log h
p). Using p ≤ n

log2 n

processors yields the required bound of Theorem 12.1.
Note that using p = n log h

log2 n
would yield a superior time bound of O(log2 n), but h

being an unknown parameter, we cannot deploy these in advance.

12.6 Relation between parallel models

The PRAM model is clearly stronger than the interconnection network since all pro-
cessors can access any data in O(1) steps from the shared memory. More formally,
any single step of an interconnection network can be simulated by the PRAM in one
step. The converse is not true since data redistribution in the network could take
time proportional to its diameter.

The simplest problem related to redistribution of data is called 1-1 permutation
routing. Here every processor is a source and a destination of exactly one data item.
The ideal goal is to achieve this routing in time proportion to D which is the diameter.
There are algorithms for routing in different architectures that achieve this bound.

One of the simplest algorithm is greedy where the data item is sent along the
shortest route to its destination. A processor can send and receive one data item
to/from each of its neighbors in one step.

Exercise 12.10 Show that in a linear array of n processors, permutation routing can
be done in n steps.

If a processor has multiple data items to be sent to any specific neighbor then
only data item is transmitted while the rest must wait in a queue. In any routing
strategy, the maximum queue length must have an upper bound for scalability. In
the case of linear array, the queue length can be bounded by a constant.

To simulate a PRAM algorithm on interconnection network, one needs to go be-
yond permutation routing. More specifically, one must be able to simulate concurrent
read and concurrent write. There is a rich body of literature that describes emulation
of PRAM algorithms on low diameter networks like hypercubes and butterfly net-
work that takes O(logn) time using constant size queues. This implies that PRAM
algorithms can run on interconnection networks incurring no more than a logarithmic
slowdown.

12.6.1 Routing on a mesh

Consider an n × n mesh of n2 processors whose diameter is 2n. Let a processor be
identified by (i, j) where i is the row number and j is the column number. Let the
destination of a data packet starting from (i, j) be denoted by (i′, j′).

173

A routing strategy is defined by

(i) Path selection
(ii) Priority scheme between packets that contend for the same link.
(iii) Maximum queue size in any node.

In the case of a linear array, path selection is a greedy choice which is unique and
priority is redundant since there were never two packets trying to move along a link
in the same direction (we assume that links are bidirectional allowing two packets to
move simultaneously in opposite direction on the same link). There is no queue build
up during the routing process.

However, if we change the initial and final conditions by allowing more than one
packet to start from the same processor, then a priority order has to be defined
between contending packets. Suppose we have ni packets in the i-th processor, 1 ≤
i ≤ n, and

∑
i ni ≤ cn for some constant c. A natural priority ordering is defined as

furthest destination first. Let n′
i denote the number of packets that have destination

in the i-th node. Clearly
∑

i ni =
∑

i n
′
i and let m = maxi{ni} and m′ = maxi{n′

i}.
The greedy routing achieves a routing time of cn steps using a queue size that is
max{mm′}.

Here is an analysis using the furthest destination first priority scheme. For a
packet starting from the i-th processor, with destination j j > i, it can be delayed
by packets with destination in [j + 1, n]. If n′

i = 1 for all i, then there are exactly
n − j − 1 such packets so the packet will reach with n− j − 1 + (j − i) = n− i− 1
steps that is bounded by n− 1. Note that once a packet starts moving it can never
be delayed further by any other packet. This can be easily argued starting from the
rightmost moving packet and the next packet which can be delayed at most once and
so on. When n′

i can exceed 1, then a packet can get delayed by
∑i=n

i=j n
′
i. The queue

sizes can only increase when a packet reaches its destination.
Using the previous strategy, we will etend it to routing on a mesh. Let us use a

path such that a packet reached the correct column and then it goes to the destination
row. If we allow unbounded queue size then it can be easily done using two phases
of one-dimensional routing, requiring a maximum of 2n steps. However the queue
sizes could become as large as n. (Think about a bad routing instance that achieves
this bound.) To avoid this situation, let us distribute the packets within the same
column such that the packets that have to reach a specific column are distributed
across different rows.

A simple way to achieve this is for every packet to choose a random intermediate
destination within the same column. From our previous observations, this would take
at most n+m steps where m is the maximum number of packets in any (intermediate)
destination. Subsequently, the time to route to the correct column will depend on
the maximum number of packets that end up in any row. The third phase of routing

174

phase 3

(r, c)

(r’ , c) (r’, t)

(s,t)

phase 1

phase 2

Figure 12.8: Starting from (r, c), the packet is routed a random row r′ within the
same column c. Subsequently it reaches the destination column t and finally the
destination (s, t).

will take no more than n steps since every processor is a destination of exactly one
packet. Figure ?? illusrtates the path taken by a packet in a three phase routing.

To analyse phases 1 and 2, we will get a bound on the expected number of packets
that choose a given destination and the number of packets in a row that are destined
for any specific column. Since the destinations are chosen uniformly at random, the
probability that a specific processor P is chosen is 1

n . Let Pi be a 0-1 random variable
which is 1 if processor P is chosen by the data packet i and 0 otherwise. Then the
number of packets that will end up in P is also a random variable X =

∑i=n
i=1 Pi. So,

E[X] = E[
∑

i

Pi] =
∑

i

Pr[Pi = 1] = 1

Using a similar calculation, the expected number of packets in a row i after phase 1,
that have column C as final destination is

∑
j nj ×E[Xj,C]. Here nj is the number of

such packets in column j and Xj,C is the number of packets in processor (i, j) that
started from column j and picked row i as the random intermediate destination and
that. All these packets have column C as the destination in phase 2. Along the lines
of our previous calculation E[Xj,C] =

nj

n , so
9 the expected number of packets in row i

destined for column C, denoted by Yi,C is bounded by 1/n
∑

j nj = 1 since
∑

j nj = n.

9sum of nj 0-1 variables each with expectation 1/n

175

Let Yi be the total number of packets in row i (over all destination columns), then
using similar calculations E[Yi] = n.

If the random destinations are chosen independently, then the random variables
are Binomially distributed (sum of independent Bernoulli trials) so using Chernoff
bounds, it follows that

Pr[X ≥ Ω(log n/ log log n)] ≤ 1

n2
Pr[Yi ≥ n + Ω(

√
n logn)] ≤ 1

n2

Note that the random variables X and Yi,C are the bounds on the queue sizes at
the end of phase 1 and phase 2 respectively and have a similar distribution. Using
the union bound, all the queue sizes can be bounded by logn/ log logn in phase 1 and
phase 2. Moreover the routing time in phase 2, can be bounded by n + O(

√
n log n)

in phase 2. Thus the total routing time over all the 3 phases can be bound by
3n+O(

√
n log n) using O(logn/ log logn) sized queues.

The above bound can be improved to 2n+ o(n) routing time and O(1) queue size
by using more sophisticated analysis and overlapping phases 2 and 3, i.e., a packet
begins its phase 3 as soon as it completes phase 3, rather than wait for all the other
packets to complete phase 2.

176

Chapter 13

Memory hierarchy and caching

13.1 Models of memory hierarchy

Designing memory architecture is an important component of computer organization
that tries to achieve a balance between computational speed and memory speed, viz.,
the time to fetch operands from the memory. The computational speeds are much
faster since it happens within the chip whereas a memory access could involve off
chip memory units. To offset this disparity, the modern computer has several layers
of memory, called cache memory that provide faster access to the operands. Because
of technological and cost limitations, the cache memories offer a range of speed-cost
tradeoffs. For example the L1 cache ,the fastest level is usually also of the smallest
size. The L2 cache is larger, say by a factor of ten but also considerably slower. The
secondary memory which is the disk is largest but could be 10,000 times slower than
the L1 cache. For any large size application most of the data resides on disk and
transferred to the faster levels of cache when required.1

This movement of data is usually beyond the control of the normal programmer
and managed by the operating system and hardware. By using empirical principles
called temporal and spatial locality of memory access, several replacement policies are
used to maximize the chances of keeping the operands in the faster cache memory
levels. However, it must be obvious that there will be occasions that the required
operand is not present in L1, so one has to reach out to L2 and beyond and pay the
penalty of higher access cost. In other words memory access cost is not uniform as
discussed in the beginning of this book but for simplicity of analysis, we pretend that
it remains same.

In this chapter we will do away with this assumption; however for simpler expo-
sition, we will deal with only two levels of memory slow and fast where the slower

1We are ignoring a predictive technique called prefetching here.

177

memory has infinite size while the slower one is limited, say, size M and significantly
faster. Consequently we can pretend that the faster memory has zero (negligible) cost
and the slower memory has cost 1. For any computation, the operands must reside
inside the cache. If they are not present in the cache, they must be fetched from the
slower memory, paying a unit cost (scaled appropriately). To offset this transfer cost,
we transfer a contiguous chunk of B memory locations. This applies to both read and
writes to the slower memory. This model is known as the External memory model
with parameters M,B and will be denoted by C(M,B). Note that M ≥ B and in
most practical situations M ≥ B2.

We will assume that the algorithm designer can use the parameters M,B to design
appropriate algorithms to achieve higher efficiency in C(M,B). Later we will discuss
that even without the explicit use of M,B one can design efficient algorithms, called
cache oblivious algorithms. To focus better on the memory management issues, we
will not account for the computational cost and only try to minimize memory transfers
between cache and secondary memory. We will also assume appropriate instructions
available to transfer a specific block block from the secondary memory to the cache.
If there is no room in the cache then we have to replace an existing block in the
cache and we can choose the block to be evicted.2 A very simple situation is to add
n elements stored as n/B memory blocks where initially they are all in the secondary
memory. Clearly, we will encounter at least n/B memory transfers just to read all
the elements.

We plan to study and develop techniques for designing efficient algorithms for
some fundamental problems in this two level memory model and highlight issues that
are ignored in the conventional algorithms.

13.2 Transposing a matrix

Consider an p×q matrix A that we want to transpose and store in another q×pmatrix
A′. initially this matrix is stored in the slower secondary memory and arranged in a
row-major pattern. Since the memory is laid out in a linear array, a row-major format
stores all the elements of first row, followed by the second row elements and so on.
The column major layout stores the elements of column 1 followed by column 2 and
so on. Therefore computing A′ = AT involves changing the layouts from row-major
to column-major.

The straightforward algorithm for transpose involves moving an element ai,j ∈ A
to bj,i ∈ A′ for all i, j. In the C(M,B) model, we would like to accomplish this for
B elements simultaneously since we always transfer B elements at a time. If the

2This control is usually not available to the programmers in a user mode and left to the operating
system responsible for memory management.

178

Procedure Computing transpose efficiently in for matrix A(p, q)

1 Input A is a p× q matrix in row-major layout in external memory ;
2 for i = 1 to p/B do
3 for j = 1 to q/B do
4 Transfer At(i,j) to the cache memory C ;
5 Compute the transpose AT

t(i,j) within C in a a conventional element-wise

manner ;
6 Transfer to A′

t(j,i)

7 A′ contains the transpose of A in the external memory ;

Function Transfer(Dt(k,l), r, s)

1 Input transfer a B × B submatrix located at i · B − 1, j · B − 1 of an r × s
matrix to cache memory ;

2 for i = 1 to B do
3 move block starting at (k · B + i) · r + B · l into the i-th block in C ;

4 Comment A similar procedure is used to transfer from C to the external
memory ;

Figure 13.1: Transposing a matrix using minimal transfers

matrices are laid out in row-major form, then we fetch B elements from the same
row (assuming that p, q are multiples of B), but they must be in different columns
so then cannot be transferred simultaneously. So these will take B transfers. This is
clearly an inefficient scheme, but it is not difficult to improve it with a little thought.
Partition the matrix into B × B submatrices (see Figure 13.2) and denote these by
At(a,b) 1 ≤ a ≤ p/B 1 ≤ b ≤ q/B for matrix A. These submatrices define a tiling of
the matrix A and the respective tiles for A′ are denoted by A′

t(a,b) 1 ≤ a ≤ q/B 1 ≤
b ≤ q/B.

Figure 13.1 describes an alternate procedure for computing B = AT .
The algorithm described in Figure 13.1 makes O(pq/B) block transfers which is

clearly optimal.

13.3 Sorting in external memory

For sorting n elements in C(M,B), we will focus on the number of data movement
steps so as to minimize the number of transfers between cache and external memory.
Unlike the traditional sorting algorithms, the number of comparisons is not accounted

179

B

p

p

q

B

B

Figure 13.2: The tiling of a matrix in a row major layout.

in this model. We will adapt mergesort to this model by choosing a larger degree of
merge.

Exercise 13.1 Instead of partitioning the input into two almost-equal halves, sorting
them recursively and doing a binary merge, if we partition into k ≥ 2 parts and do a
k-ary merge, show that the number of comparisons remain unchanged.

We will choose an appropriate value of k so that the recursive depth of the algo-
rithm reduces. Note that for each level of the mergesort algorithm, we make a pass
through the entire data. For the convention binary mergesort, we have to make log n
passes through the data while merging sorted sequences of lengths n/2i for level i.
When we merge k sorted sequences, it suffices to keep the leading (smallest) blocks
of each sequence in the cache memory and chose the smallest element among them
for the next output. The number of passes required is logk n. To economize memory
transfer, we want to read and write contiguous chunks of B elements, so we write
only after B elements are output. Note that the smallest B elements must occur
among the leading blocks (smallest B elements) of the sorted sequence. Since all
the k + 1 sequences including the k input and 1 output sequence must be within the
cache, the largest value value of k is O(M/B). We need some extra space to store the
data structure for merging (a k-ary min-heap) but we will not discuss any details of
this implementation since it can be done using any conventional approach within the
cache memory. So we can assume that k = M

cB for some appropriate constant c > 1.
We shall first analyze the number of memory block transfers does it take to merge

k sorted sequences of lengths ℓ each. As previously discussed, we maintain the leading

180

block of each sequence in the cache memory and fetch the next block, after this is
exhausted. So we need ℓ/B = ℓ′ block transfers for each sequence which may be
thought of as the number of blocks in the sequence (if it is not a multiple of B, then
we count the partial block as an extra block). Likewise the output is written out as
blocks and this must be the sum of all input sequences which is k

ℓ

′
. In other words,

the number of block transfers for merging is proportional to the sum of the sequences
being merged.

In any level of k-way mergesort, all sequences are counted exactly once as they
participate in exactly one merge and so the total cost is n/B. For k = Ω(M/B), there
are logM/B(n/B) levels of recursion as the smallest size of a sequence is at least B.
So the total number of block transfers is O(n

B logM/B(n/B)) for sorting n elements in
C(M,B).

Recall that this is only the number of memory block transfers - the number of
comparisons remains O(n logn) like conventional mergesort. For M > B2, note that
logM/B(n/B) = O(logM(n/B).

Exercise 13.2 For M = O(B), what is the I-O complexity (number of block trans-
fers) to transpose an n× n matrix ?

Exercise 13.3 The FFT computation based on the butterfly network in Figure 7.1 is
a very important problem. Show how to accomplish this in O(n

B logM/B(n/B)) I-O’s
in C(M,B).
Hint: Partition the computation into FFT sub-networks of size M .

13.3.1 Can we improve the algorithm

We will develop some formal arguments to obtain a lower bound for the problem of
permuting n elements where any rearrangement have to be routed through a buffer
of bounded size, in this case, M . Any lower bound on permutation is also applicable
to sorting since permutation can be done by sorting on the destination index of the
elements. If π(i) = j, then one can sort on j′s where π() is the permutation function.

We will make some assumptions to simplify the arguments for the lower-bound.
These assumptions can be removed with some loss of constant factors in the final
bound. There will be exactly one copy of any element, viz., when the element is
fetched from slower memory then there is no copy left in the slower memory. Likewise,
when an element is stored in the slower memory then there is no copy in the cache.
With a little thought, the reader can convince himself that maintaining multiple
copies in a permutation algorithm is of no use since the final output has only one
copy that can be traced backwards as the relevant copy.

The proof is based on a simple counting argument on how many orderings are
possible after t block transfers. For a worst-case bound, the number of possible

181

orderings must be at least n! for n elements. We do not insist that the elements must
be in contiguous locations. If π(i) > π(j) then Ri > Rj , where Ri is the final location
of the i-th element for all pairs i, j.

A typical algorithm has the following behavior.

1. Fetch a block from the slow memory into the cache.
2. Perform computation within cache to facilitate the permutation.
3. Write out a block form the cache to the slower memory.

Note that Step 2 does not require block transfers and is free since we are not counting
operations within the cache. So we would like to count the additional orderings
generated by Steps 1-3.

Once a block of B elements is read into the cache, it can induce additional or-
derings with respect to the M − B elements present in the cache. This number is

M !
B!·(M−B)! =

(
M
B

)
which is the relative orderings between M −B and B elements. Fur-

ther, if these B elements were not written out before, i.e., these were never present
in cache before then there are B! ordering possible among them. (If the block was
written out in a previous step, then they were in cache together then these orderings
would have been already accounted for.) So this can happen at most n/B times, viz.,
only for the initial input blocks.

In Step 3, during the t-th output, there are at most n/B+ t places relative to the
existing blocks. There were n/B blocks to begin with and t − 1 previously written
blocks, so the t-th block can be written out in n/B + t intervals relative to the other
blocks. Note that there may be arbitrary gaps between blocks as long as the relative
ordering is achieved.

From the previous arguments, we can bound the number of attainable orderings
after t memory transfers by

(B!)n/B ·
i=t−1∏

i=0

(n/B + i) ·
(
M

B

)

If T is the worst case bound on number of block transfers, then

(B!)n/B ·
i=T∏

i=1

(n/B + i) ·
(
M

B

)
≤ (B!)n/B · (n/B + T)! ·

(
M

B

)T

≤ Bn · (n/B + T)n/B+T · (M/B)BT

using Stirling’s approximation n! ∼ (n/e)n and
(
n
k

)
≤ (en/k)k.

From the last inequality it follows that

Bn · (n/B + T)n/B+T · (M/B)BT ≥ n! ≥ (n/e)n

182

Taking logarithm on both sides and rearranging, we obtain

BT log(M/B)+ (T +n/B) · log(n/B+T) ≥ n logn−n logB = n log(n/B) (13.3.1)

We know that (n/B) log(n/B) ≥ T ≥ (n/B),3 so (T + n/B) log(n/B + T) ≤
4T log(n/B) and we can rewrite the inequality above as

T (B log(M/B) + 4 log(n/B)) ≥ n log(n/B)

For 4 log(n/B) ≤ B log(M/B), we obtain T = Ω(n
B logM/B(n/B)). For log(n/B) >

B log(M/B), we obtain T = Ω(n log(n/B)
log(n/B) = Ω(n).

Theorem 13.1 Any algorithm that permutes n elements in C(M.B) uses Ω(n
B ·logM/B(n/B))

block transfers in the worst case.

Exercise 13.4 Show that the average case lower bound for permutation is asymptot-
ically similar to the worst-case bound.

As a consequence of the Theorem 13.1, the lower bound for sorting matches the
bound for the mergesort algorithm and hence the algorithm cannot be improved in
asymptotic complexity.

13.4 Cache oblivious design

Consider the problem of searching a large static dictionary in the external memory
of n elements. If we use B-tree type data structure, then we can easily search using
O(logB n) memory transfers. This is can be explained by effectively end up doing a
B-way search. Each node of the B-tree contains B records that we can fetch using a
single block transfer.

Building a B-tree requires the knowledge of B. Since we are dealing with a static
dictionary, we can consider doing a straightforward B-ary search in a sorted data
set. Still, it requires the knowledge of B. What if the programmer is not allowed to
use the parameter B ? Consider the following alternative of doing a

√
n-ary search

presented in Figure 13.3.
The analysis of this algorithm in C(M,B) depends crucially on the elements being

in contiguous locations. Although S is initially contiguous, S ′ is not, so the indexing
of S has to be done carefully in a recursive fashion. The elements of S ′ must be
indexed before the elements of S − S ′ and the indexing of each of the

√
n subsets of

3From the previous bound on mergesort

183

Procedure Search(x, S)

1 Input A sorted set S = {x1, x2 . . . xn} ;
if |S| = 1 then

return Yes or No according to whether x ∈ S
else

2 Let S ′ = {xi
√
n} be a subsequence consisting of every

√
n-th element of S. ;

3 Search (x, S ′) ;
Let p, q ∈ S ′ where p ≤ x < q ;

4 Return Search (x, S ∩ [p, q]) - search the relevant interval of S ′ ;

Figure 13.3: Searching in a dictionary in external memory

S − S ′ will also be indexed recursively. Figure ?? shows the numbering of a set of 15
elements.

The number of memory transfers T (n) for searching satisfies the following recur-
rence

T (n) = T (
√
n) + T (

√
n) T (k) = O(1) for k ≤ B

since there are two calls to subproblems of size
√
n. This yields T (n) = O(logB n).

Note that although the algorithm did not rely on the knowledge of B, the recur-
rence made effective use of B, since searching within contiguous B elements requires
one memory block transfer (and at most two transfers if the memory transfers are
not aligned with block boundaries). After the block resides within the cache, no
further memory transfers are required although the recursive calls continue till the
terminating condition is satisfied.

13.4.1 Oblivious matrix transpose

In this section, we assume that M = Ω(B2) which is referred to as tall cache assump-
tion. Given any m× n matrix A, we use a recursive approach for transposing it into
an n×m matrix B = AT .

[
Am×n/2

1 Am×n/2
2

]
⇒

[
Bn/2×m

1

Bn/2×m
2

]

where n ≥ m and Bi = AT
i

[
A′m/2×n

1 A′m/2×n
2

]
⇒

[
B′n×m/2

1

B′n×m/2
2

]
where m ≥ n and B′

i = A′T
i

184

Procedure Transpose(A,B)

1 Input A is an m× n matrix ;
2 if max{m,n} ≤ c then
3 perform transpose by swapping elements

4 if n ≥ m then
5 Transpose (A1, B1) ; Transpose (A2, B2)
else

6 Transpose (A′
1, B

′
1); Transpose (A′

2, B
′
2)

A

B

Cache size M > B
2

Figure 13.4: Base case: Both A,B fit into cache - no further cache miss

The formal algorithm based on the previous recurrence is described in Figure
Transpose .

When m,n ≤ B/4, then there are no more cache misses, since each row (column)
can occupy at most two cache lines. The algorithm actually starts moving elements
from external memory when the recursion terminates at size c ≪ B. Starting from
that stage, untill m,n ≤ B/4, there are no more cache misses since there is enough
space for submatrices of size B/4×B/4. The other cases of the recurrence addresses
the recursive cases corresponding to splitting across columns or rows - whichever is
larger. Therefore, the number of memory block transfers Q(m,n) for an m×n matrix

185

satisfies the following recurrence.

Q(m,n) ≤

⎧
⎪⎪⎨

⎪⎪⎩

4m n ≤ m ≤ B/4 in cache
4n m ≤ n ≤ B/4 in cache
2Q(m, ⌈n/2⌉) m ≤ n
2Q(⌈m/2⌉, n) n ≤ m

Exercise 13.5 Show that Q(m,n) ≤ O(mn/B) from the above recurrence. You may
want to rewrite the base cases to simplify the calculations.

When the matrix has less than B2 elements (m ≤ n ≤ B or n ≤ m ≤ B), the
recursive algorithm brings all the required blocks - a maximum of B, transposes them
within the cache and writes them out. All this happens without the explicit knowledge
of the parameters M,B but requires support from the memory management policy.
In particular, the recurrence is valid for the Least Recently Used (LRU) policy. Since
the algorithm is parameter oblivious, there is no explicit control on the blocks to be
replaced and hence its inherent dependence on the replacement policy. The good
news is that the LRU poicy is known to be competitive with respect to the ideal
optimal replacement policy

Theorem 13.2 Suppose OPT is the number of cache misses incurred by an optimal
algorithm on an arbitrary sequence of length m with cache size p. Then the number
of misses incurred by the LRU policy on the same sequence with cache size k ≥ p can
be bounded by k

k−p ·m
4.

It follows that for k = 2p, the number of cache misses incurred LRU is within a factor
two of the optimal replacement.

We can pretend that the available memory is M/2 which preserves all the previous
asymptotic calculations. The number of cache misses by the LRU policy will be
within a factor two of this bound. Theorem 13.2 is a well-known result in the area
of competitive algorithms which somewhat out of scope of the discussion here but we
will present a proof of the theorem.

Consider a sequence of m requests σi ∈ {1, 2 . . .N} which can be thought of as the
set of cache lines. We further divide this sequence into subsequences s1, s2 such that
every subsequence has k+1 distinct requests from {1, 2 . . .N} and the subsequence is
of minimal length, viz., it ends the first time when we encounter the k+1-st distinct
request without including this request. The LRU policy will incur at most k misses
in each subsequence. Now consider any policy (including the optimal policy) that
has cache size p where k > p. In each phase, it will incur at least k − p misses since

4A more precise ratio is k/(k − p+ 1).

186

σi1σi1+1 . . .σi1+r1 σi2σi2+1 . . .σi2+r2 σi3σi3+1 . . .σi3+r3 . . . σitσit+1 . . .

Figure 13.5: The subsequence σi1σi1+1 . . .σi1+r1σi2 have k+1 distinct elements
whereas the subsequence σi1σi1+1 . . . σi1+r1 have k distinct elements.

it has to evict at least that many items to handle k distinct requests. Here we are
assuming that out of the k distinct requests, there are p cache lines from the previous
phase and it cannot be any better. In the first phase, both policies will incur the
same number of misses (starting from an empty cache).

Let f i
LRU denote the number of cache misses incurred by LRU policy in subse-

quence i and f i
OPT denote the number of cache misses by the optimal policy. Then∑t

i=1 f
i
LRU ≤ (t− 1) · k and

∑t
i=1 f

i
OPT ≥ (p− k) · (t− 1) + k. Their ratio is bounded

by ∑t
i=1 f

i
LRU∑t

i=1 f
i
OPT

≤ (t− 1) · k + k

(t− 1) · (p− k) + k
≤ (t− 1) · k

t− 1) · (k − p)
=

k

k − p

187

Chapter 14

Streaming Data Model

14.1 Introduction

In this chapter, we consider a new model of computation where the data arrives a
very long sequence of elements. Such a setting has become increasingly important in
scenarios where we need to handle huge amount of data and do not have space to
store all of it, or do not have time to scan the data multiple times. As an example,
consider the amount of traffic encountered by a network router – it sees millions of
packets every second. We may want to compute some properties of the data seen by
the router, for example, the most frequent (or the top ten) destinations. In such a
setting, we cannot expect the router to store details about each of the packet – this
would require terabytes of storage capacity, and even if we could store all this data,
answering queries on them will take too much time. Similar problems arise in the
case of analyzing web-traffic, data generated by large sensor networks, etc.

A

... ...x x x x x1 2 3 t m

Figure 14.1: The algorithm A receives input xt at time t, but has limited space.

In the data streaming model, we assume that the data is arrive as a long stream
x1, x2, . . . , xm, where the algorithm receives the element xi at step i (see Figure 14.1).
Further we assume that the elements belong to a universe U = {e1, . . . , en}. Note that

188

the stream can have the same element repeated multiple times1. Both the quantities
m and n are assumed to be very large, and we would like our algorithms to take
sub-linear space (sometimes, even logarithmic space). This implies that the classical
approach where we store all the data and can access any element of the data (say, in
the RAM model) is no longer valid here because we are not allowed to store all of the
data. This also means that we may not be able to answer many of the queries exactly.
Consider for example the following query – output the most frequent element in the
stream. Now consider a scenario where each element arrives just once, but there is
one exceptional element which arrives twice. Unless we store all the distinct elements
in the stream, identifying this exceptional element seems impossible. Therefore, it is
natural to make some more assumptions about the nature of output expected from
an algorithm. For example, here we would expect the algorithm to work only if
there is some element which occurs much more often than other elements. This is
an assumption about the nature of the data seen by the algorithms. At other times,
we would allow the algorithm to output approximate answers. For example, consider
the problem of finding the number of distinct elements in a stream. In most practical
settings, we would be happy with an answer which is a small constant factor away
from the actual answer.

In this chapter, we consider some of the most fundamental problems studied in
the streaming data model. Many of these algorithms will be randomized. In other
words, they will output the correct (or approximate) answer with high probability.

14.2 Finding frequent elements in stream

In this section, we consider the problem of finding frequent elements in a stream. As
indicated in above, this happens to be a very useful statistic for many applications.
The notion of frequent elements can be defined in many ways:

• Mode : The element (or elements) with the highest frequency.

• Majority: An element with more than 50% occurrence – note that there may
not be any element.

• Threshold: Find out all elements that occur more than f fraction of the
length of the stream, for any 0 < f ≤ 1. Finding majority is a special case with
f = 1/2.

1There are more general models which allow both insertion and deletion of an element. We will
not discuss these models in this chapter, though some of the algorithms discussed in this chapter
extend to this more general setting as well.

189

Procedure Finding Majority of n elements in Array a

1 count← 0 ;
2 for i = 1 to n do
3 if count = 0 then

maj ← a[i] (* initalize maj *)

4 if maj = a[i] then
5 count← count+ 1

else
6 count← count− 1 ;

7 Return maj ;

Figure 14.2: Boyer-Moore Majority Voting Algorithm

Observe that the above problems are hardly interesting from the classical algo-
rithmic design perspective because they can be easily reduced to sorting. Designing
more efficient algorithms requires more thought (for example, finding the mode). Ac-
complishing the same task in a streaming environment with limited memory presents
interesting design challenges. Let us first review a well known algorithm for Majority
finding among n elements known as the Boyer-Moore Voting algorithm. Recall that a
majority element in a stream of length m is an element which occurs more than m/2
times in the stream. If no such element exists, the algorithm is allowed to output
any element. This is always acceptable if we are allowed to scan the array once more
because we can check if the element output by the algorithm is indeed the majority
element. Therefore, we can safely assume that the array has a majority element.

The algorithm is described in Figure Finding Majority of n elements in Array a.
The procedure scans the array sequentially 2 and maintains one counter variable. It
also maintains another variable maj which stores the (guess for) majority element.
Whenever the algorithm sees an element which identical to the one stored in maj,
it increases the counter variable, otherwise it decreases it. If the counter reaches 0,
it resets the variable maj to the next element. It is not obvious why it returns the
majority element if it exists.

As mentioned above, we begin by assuming that there is a majority element,
denoted by a. We need to show that when the algorithm stops, the variable maj is
same as a. The algorithm tries to prune elements without affecting the majority.
More formally, we will show that at the beginning each step t (i.e., before arrival
of xt), the algorithm maintains the following invariant: let St denote the multi-set

2Often we will think of the stream as a long array which can be scanned once only. In fact, there
are more general models which allow the algorithm to make a few passes over the array.

190

consisting of the elements xt, xt+1, . . . , xm and count many copies of the element maj.
We shall prove that for all time t, a will be the majority element of St. This statement
suffices because at the end of the algorithm (when t = m+ 1), St will be a multi-set
consisting of several copies of the element maj only. The invariant shows that a will
be the majority element of St, and so, must be same as the variable maj.

We prove this invariant by induction over t. Initially, St is same as the input
sequence, and so, the statement follows by the definition of a. Suppose this fact is
true at the beginning of step t. A key observation is that if there is a majority of a
set of elements, it will remain a majority if some other element is deleted along with
an instance of the majority element. Indeed if m1 > m/2 then m1 − 1 > (m− 2)/2.
So, if xt happens to be different from maj, we decrement count. This means that St+1

is obtained from St be removing xt and one copy of maj. Since these two elements
are different, the observation above shows that the majority element does not change.
So, a continues to be the majority element of St+1. The other case is when xt happens
to be same as maj. Here, the set St+1 is same as St – we replace xt be one more copy
of maj. So the invariant holds trivially. This shows that the invariant holds at all
time, and so, the algorithm outputs the majority element.

Another alternate argument is as follows. The total number of times we decrease
the count variable is at most the number of times we increase it. Therefore, we can
decrease it at most m/2 times. Since the majority variable appears more than m/2
times, it has to survive in the variable maj when the algorithm stops.

This idea can be generalized to finding out elements whose frequency is more than
n
k for any integer k. Observe that there can be at most k − 1 elements. So instead
of one counter, we shall use k − 1 counters. When we scan the next element, we
can either increment the count, if there exists a counter for the element or start a
new counter if number of counters used is less than k − 1. Otherwise, we decrease
the counts of all the existing counters. If any counter becomes zero, we discard that
element and instead assign a counter for the new element. In the end the counters
return the elements that have non-zero counts. As before, these are potentially the
elements that have frequencies at least n

k and we need a second pass to verify them.
The proof of correctness is along the same lines as the majority. Note that there

can be at most k − 1 elements that have frequencies exceeding n
k , i.e., a fraction 1

k .
So, if we remove such an element along with k− 1 distinct elements, it still continues
to be at least 1

k fraction of the remaining elements – n1 >
n
k ⇒ n1 − 1 > n−k

k .
The previous algorithms have the property that the data is scanned in the order

it is presented and the amount of space is proportional to the number of counters
where each counter has logn bits. Thus the space requirement is logarithmic in the
size of the input.

191

Procedure Algorithm for threshold

1 cur : current element of stream ;
S: current set of elements with non-zero counts, |S| ≤ k ;

2 if cur ∈ S then
3 increment counter for cur
else

if |S| < k then
4 Start a new counter for cur, update S

else
5 decrement all counters ;
6 If a counter becomes 0 delete it from S

7 Return a[maj ind] ;

Figure 14.3: Mishra-Gries streaming algorithm for frequent elements

14.3 Distinct elements in a stream

The challenging aspect of this problem is to count the number of distinct elements d
in the input stream with limited memory s, where s ≪ d. If we were allowed space
comparable to d, then we could simply hash the elements and the count the number
of non-zero buckets. Uniformly sampling a subset of elements from the stream could
be misleading. Indeed, if some elements occur much more frequently than others,
then multiple occurrence of such elements would be picked up by the the uniform
sample and it doesn’t provide any significant information about the number of distinct
elements.

Instead we will hash the incoming elements uniformly over a range, [1, n] such
that if there are k distinct elements then they will be roughly n/k apart. If g is
the gap between two consecutive hashed elements, then we can estimate k = n/g.
Alternately, we can use the position of the first hashed position as as estimate of g.
This is the underlying idea behind the algorithm given in Figure 14.4. The algorithm
keeps track of the smallest value to which an element gets hashed (in the variable Z).
Again, the idea is that if there are d distinct elements, then the elements get mapped
to values in the array which are roughly p/d apart. So, the reciprocal of Z should be
a good estimate of d/p.

This procedure will be analyzed rigorously using the property of universal hash
family family discussed earlier. The parameter of interest will be the expected gap
between consecutive hashed elements. Our strategy will be to prove that the Z lies
between k1p/d and k2p/d with high probability, where k1 and k2 are two constants.

192

Procedure Finding the number of distinct elements in a stream S(m,n)

1 Input A stream S = {x1, x2 . . . xm} where xi ∈ [1, n] ;
2 Suppose p is a prime in the range [n, 2n]. Choose 0 ≤ a ≤ p− 1 and

0 ≤ b ≤ p− 1 uniformly at random ;
3 Z ←∞ ;
4 for i = 1 to m do
5 Y = (a · xi + b) mod p ;
6 if Y < Z then

Z ← Y

7 Return ⌈ pZ ⌉ ;

Figure 14.4: Counting number of distinct elements

It will then follow that the estimate p/Z is within constant factor of d.
Let Zi = (a · xi + b) mod p be the sequence of hashed values from the stream.

Then we can claim the following.

Claim 14.1 The numbers Zi , 1 ≤ i ≤ m are distributed uniformly at random in the
range [0, p− 1] and are also pair-wise independent , viz., for i ̸= k

Pr[Zi = r, Zk = s] = Pr[Zi = r] · Pr[Zk = s] =
1

p2

Proof: For some fixed i0 ∈ [0, p− 1] and x ∈ [1, n], we want to find the probability
that x is mapped to i0. So

i0 ≡ (ax+ b) mod p

i0 − b ≡ ax mod p

x−1(i0 − b) ≡ a mod p

where x−1 is the multiplicative inverse of x in the multiplicative prime field modulo p
and it is unique since p is prime3. For any fixed b, there is a unique solution for a. As
a is chosen uniformly at random, the probability of this happening is 1

p for any fixed
choice of b. Therefore this is also the unconditional probability that x is mapped to
i0.

For the second part consider i0 ̸= i1. We can consider x ̸= y such that x, y are
mapped respectively to i0 and i1. We can write the simultaneous equations similar
to the previous one. [

x 1
y 1

]
·
[
a
b

]
≡p

[
i0
i1

]

3By our choice of p, x ̸≡ 0 mod p

193

The 2× 2 matrix is invertible for x ̸= y and therefore there is a unique solution cor-
responding to a fixed choice of (i0, i1). The probability that a, b matches the solution
is 1

p2 as they are chosen uniformly at random. ✷

Recall that d denotes the number of distinct elements in the stream. We will show
the following.

Claim 14.2 For any constant c ≥ 2,

Z ∈
[p

cd
,
cp

d

]
with probability ≥ 1− 2

c

Proof: Note that if Z = p/d, then the algorithm returns d which is the number
of distinct elements in the stream. Since Z is a random variable, we will only be
able to bound the probability that it is within the interval

[
p
cd ,

cp
d

]
with significant

probability implying that the algorithm with return an answer in the range [p/c, pc]
with significant probability. Of course, there is a risk that it falls outside this window
and that is the inherent nature of a Monte Carlo randomized algorithm.

First we will find the probability that Z ≤ s− 1 for some arbitrary s. For sake of
ease of notation, assume that the d distinct elements are x1, x2, . . . , xd. Let us define
a family of indicator random variables in the following manner

Xi =

{
1 if (axi + b) mod p ≤ s− 1
0 otherwise

So the total number of xi that map to numbers in the range [0, s− 1] equals
∑d

i=1Xi

(recall that we assumed that x1, . . . , xd are distinct). Let X =
∑d

i=1Xi and we
therefore have

E[X] = E[
∑

i

Xi] =
∑

i

E[Xi] =
∑

i

Pr[Xi = 1] = d · Pr[Xi = 1] =
sd

p

The last equality follows from the previous result as there are s (viz., 0, 1 . . . s − 1)
possibilities for xi to be mapped and each has probability 1

p .
If we choose s = p

cd for some constant c, then E[X] = 1/c. From Markov’s
inequality, Pr[X ≥ 1] ≤ 1

c , implying that with probability greater than 1− 1/c no xi

will be mapped to numbers in the range [0, ⌈ p
cd⌉].

For the other direction, we will will Chebychev inequality, which requires comput-
ing the variance of X , which we shall denote by σ2(X). We know that

σ2[X] = E[(X − E[X])2] = E[X2]− E2[X]

194

Since X =
∑d

i=1Xi, we can calculate (assume that all indices i and j vary from 1 to
d)

E[X2] = E[(
∑

i=1

Xi)
2
]

= E[
∑

i=1

X2
i +

∑

i ̸=j

Xi ·Xj]

= E[
∑

i

X2
i] + E[

∑

i ̸=j

Xi ·Xj]

=
∑

E[X2
i] +

∑

i ̸=j

E[Xi] · E[Xj]

which follows from linearity of expectation and pairwise independence of Xi and Xj
4.

So the expression simplifies to d · s
p + d(d− 1) · s2

p2 . This yields the expression for

σ2(X) =
sd

p
+

d(d− 1)s2

p2
− s2d2

p2
=

sd

p
· (1− s

p
≤ sd

p

For s = cp
d , the variance is bounded by c. From Chebychev’s inequality, we know

that for any random variable X ,

Pr[|X − E[X]| ≥ t] ≤ σ2(X)

t2

Using t = E[X] = sd
p = c, we obtain Pr[|X − E[X]| ≥ E[X]] ≤ c

c2 = 1
c . The event

|X − E[X]| ≥ E[X] is the union of two disjoint events, namely

(i) X ≥ 2E[X] and
(ii) E[X]−X ≥ E[X], or X ≤ 0

Clearly, both events must have probability bounded by 1
c and specifically, the second

event implies that the probability that none of the N elements is mapped to the
interval [0, cp

d] is less than
1
c . Using the union bound yields the required result. ✷

So the algorithm outputs a number that is within the range [dc , cd] with probability
≥ 1− 2

c .

4This needs to be rigorously proved from the previous result on pairwise independence of (Xi, Xj)
being mapped to (i0, i1). We have to technically consider all pairs in the range (1, s− 1).

195

14.4 Frequency moment problem and applications

Suppose the set of elements in a stream S = {x1, . . . , xm} belong to a universe
U = {e1, . . . , en}. Define the frequency fi of element ei as the number of occurrences
of ei in the stream S. The kth frequency moment of the stream is defined as

Fk =
n∑

i=1

fk
i .

Note that F0 is exactly the number of distinct elements in the stream. F1 counts the
number of elements in the stream, and can be easily estimated by keeping a counter
of size O(logm). The second frequency moment F2 captures the non-uniformity in
the data – if all n elements occur with equal frequency, i.e., m/n (assume that m is
a multiple of n for the sake of this example), then F2 is equal to m2/n; whereas if
the stream contains just one element (with frequency m), then F2 is m2. Thus, larger
values of F2 indicate non-uniformity in the stream. Higher frequency moments give
similar statistics about the stream – as we increase k, we are putting more emphasis
on higher frequency elements.

The idea behind estimating Fk is quite simple : suppose we sample an element
uniformly at random from the stream, call itX . SupposeX happens to be the element
ei. Conditioned on this fact, X is equally likely to be any of the fi occurrences of ei.
Now, we observe how many times ei occurs in the stream for now onwards. Say it
occurs r times. What can we say about the expected value of rk ? Since ei occurs fi
times in the stream, the random variable r is equally likely to be one of {1, . . . , fi}.
Therefore,

E[rk] = 1

fi

i∑

j=1

jk.

Looking at the above expression, we see that E[rk − (r − 1)k] = 1
fi

· fk
i . Now, we

remove the conditioning on X , we see that

E[rk − (r − 1)k] = E[rk − (r − 1)k|X = ei] Pr[X = ei] =
1

fi
· fk

i · fi
m

=
1

m
· Fk.

Therefore, the random variable m(rk − (r − 1)k) has expected value as Fk.
The only catch is that we do not know how to sample a uniformly random element

of the stream. Since X is a random element of the stream, we want

Pr[X = xj] =
1

m
,

for all values of j = 1, . . . , m. However, we do not know m in advance, and so cannot
use this expression directly. Fortunately, there is a more clever sampling procedure,

196

called reservoir sampling, described in Figure Combining reservoir sampling with the
estimator for Fk. Note that at iteration i, the algorithm just tosses a coin with
probability of Heads equal to 1/i. We show in the exercises that at any step i, X is
indeed a randomly chosen element from {x1, . . . , xi}.

We now need to show that this algorithm gives a good approximation to Fk with
high probability. So far, we have only shown that there is a random variable, namely
Y := m(rk − (r − 1)k), which is equal to Fk in expectation. But now, we want to
compute the probability that Y lies within (1 ± ε)Fk. In order to do this, we need
to estimate the variance of Y . If the variance is not too high, we can hope to use
Chebychev’s bound. We know that the variance of Y is at most E[Y 2]. Therefore,
it is enough to estimate the latter quantity. Since we are going to use Chebychev’s
inequality, we would like to bound E[Y 2] in terms of E[Y 2], which is same as F 2

k . The
first few steps for estimating E[Y 2] are identical to those for estimating E[Y] :

E[Y 2] =
n∑

i=1

E[Y 2|X = ei] · Pr[X = ei] =
n∑

i=1

m2 · E[(rk − (r − 1)k)2|X = ei] ·
fi
m

=
n∑

i=1

mfi ·
1

fi

fi∑

j=1

(jk − (j − 1)k)2 = m ·
n∑

i=1

fi∑

j=1

(jk − (j − 1)k)2. (14.4.1)

We now show how to handle the expression
∑fi

j=1(j
k − (j − 1)k)2. We first claim

that
jk − (j − 1)k ≤ k · jk−1.

This follows from applying the mean value theorem to the function f(x) = xk. Given
two points x1 < x2, the mean value theorem states that there exists a number θ ∈
[x1, x2] such that f ′(θ) = f(x2)−f(x1)

x2−x1
. We now substitute j − 1 and j for x1 and x2

respectively, and observe that f ′(θ) = kθk−1 ≤ kxk−1
2 to get

jk − (j − 1)k ≤ k · jk−1.

Therefore,

fi∑

j=1

(jk−(j−1)k)2 ≤
fi∑

j=1

k ·jk−1 ·(jk−(j−1)k) ≤ k ·fk−1
i

fi∑

j=1

(jk−(j−1)k) = k ·fk−1
⋆ ·fk

i ,

where f⋆ denotes maxni=1 fi. Substituting this in (14.4.1), we get

E[Y 2] ≤ k ·m · fk−1
⋆ Fk.

Recall that we wanted to bound E[Y 2] in terms of F 2
k . So we need to bound m · fk−1

⋆

in terms of Fk. Clearly,

fk−1
⋆ = (fk

⋆)
k−1
k ≤ F

k−1
k

k .

197

In order to bound m, we apply Jensen’s inequality to the convex function xk to get

(∑n
i=1 fi
n

)k

≤
∑n

i=1 f
k
i

n
,

which implies that

m =
n∑

i=1

fi ≤ n1−1/k · F 1/k
k .

Combining all of the above inequalities, we see that

E[Y 2] ≤ k · n1−1/k · F 2
k .

If we now use Chebychev’s bound, we get

Pr[|Y − Fk| ≥ εFk] ≤
E[Y 2]

ε2F 2
k

≤ k/ε2 · n1−1/k.

The expression on the right hand side is (likely to be) larger than 1, and so this does
not give us much information. The next idea is to further reduce the variance of Y
by keeping several independent copies of it, and computing the average of all these
copies. More formally, we maintain t i.i.d. random varaibles Y1, . . . , Yt, each of which
has the same distribution as that of Y . If we now define Z as the average of these
random variables, linearity of expectation implies that E[Z] remains Fk. However,
the variance of Z now becomes 1/t times that of Y (see exercises).

Therefore, if we now use Z to estimate Fk, we get

Pr[|Z − Fk| ≥ εFk] ≤
k

t · ε2 · n1−1/k.

If we want to output an estimate within (1± ε)Fk with probability at least 1− δ, we
should pick t to be 1

δε2 · n1−1/k. It is easy to check that the space needed to update
one copy of Y is O(logm+logn). Thus, the total space requirement of our algorithm
is O

(
1
δε2 · n

1−1/k · (logm+ log n)
)
.

14.4.1 The median of means trick

We now show that it is possible to obtain the same guarantees about Z, but we need
to keep only O

(
1
ε2 · log

(
1
δ

)
· n1−1/k

)
copies of the estimator for Fk. Note that we have

replaced the factor 1/δ by log (1/δ) . The idea is that if we use only t = 4
ε2 · n1−1/k

copies of the variable Y in the analysis above, then we will get

Pr[|Z − Fk| ≥ εFk] ≤ 1/4.

198

Procedure Reservoir Sampling

1 X ← x1 ;
2 for i = 2 to m do
3 Sample a binary random variable ti, which is 1 with probability 1/i ;
4 if ti = 1 then
5 X ← xi

6 Return X

Procedure Combining reservoir sampling with the estimator for Fk

1 X ← x1, r ← 1 ;
2 for i = 2 to m do
3 Sample a binary random variable ti, which is 1 with probability 1/i ;
4 if ti = 1 then
5 X ← xi, r ← 1

6 else

7 if X = xi then
r ← r + 1 ;

8 Return m
(
rk − (r − 1)k

)
;

Figure 14.5: Estimating Fk

199

Although this is not good enough for us, what if we keep several copies of Z (where
each of these is average of several copies of Y) ? In fact, if we keep log(1/δ) copies of
Z, then at least one of these will give the desired accuracy with probability at least δ
– indeed, the probability that all of them are at least εFk far from Fk will be at most
(1/2)log(1/δ) ≤ δ. But we will not know which one of these copies is correct! Therefore,
the plan is to keep slightly more copies of Z, say about 4 log(1/δ). Using Chernoff
bounds, we can show that with probability at least 1− δ, roughly a majority of these
copies will give an estimate in the range (1± ε)Fk. Therefore, the median of all these
copies will give the desired answer. This is called the “median of means” trick.

We now give details of the above idea. We keep an array of variables Yij, where
i varies from 1 to ℓ := 4 log(1/δ) and j varies from 0 to t := 2

ε2 · n1−1/k. Each row
of this array (i.e., elements Yij, where we fix i and vary j) will correspond to one
copy of the estimate described above. So, we define Zi =

∑t
j=1 Yij/t. Finally, we

define Z as the median of Zi, for i = 1, . . . , ℓ. We now show that Z lies in the range
(1± ε)Fk with probability at least 1− δ. Let Ei denote the event: |Zi − Fk| ≥ εFk.
We already know that Pr[Ei] ≤ 1/4. Now, we want to show that the number of such
events will be close to ℓ/4. We can use Chernoff bound to prove that the size of the
set {i : Ei occurs} is at most ℓ/2 with at least (1− δ) probability (see exercises).

Now assume the above happens. If we look at the sequence Zi, i = 1, . . . , ℓ, at
least half of them will lie in the range (1 ± ε)Fk. The median of this sequence will
also lie in the range (1 ± ε)Fk for the following reason: if the median is (say) above
(1 + ε)Fk, then at least half of the events Ei will occur, which is a contradiction.
Thus, we have shown the following result:

Theorem 14.1 We can estimate the frequency moment Fk of a stream with (1± ε)
multiplicative error with probability at least 1−δ using O

(
1
ε2 · log

(
1
δ

)
· n1−1/k

)
·(logm+

log n) space.

14.4.2 The special case of second frequency moment

It turns out that we can estimate the second frequency moment F2 using logarithmic
space only (the above result shows that space requirement will be proportional to√
n). The idea is again to have a random variable whose expected value is F2, but

now we will be able to control the variance in a much better way. We will use the
idea of universal hash functions. We will require binary hash functions, i.e., they
will map the set U = {e1, . . . , en} to {−1,+1}. Recall that such a set of functions
H is said to be k-universal if for any set S of indices of size at most k, and values
a1, . . . , ak ∈ {−1,+1},

Pr
h∈H

[∧i∈Sxi = ai] =
1

2|S|
,

200

where h is a uniformly chosen hash function from H . Recall that we can construct
such a set H which has O(nk) functions, and a hash function h ∈ H can be stored
using O(k log n) space only. We will need a set of 4-universal hash functions. Thus,
we can store the hash function using O(logn) space only.

The algorithm for estimating F2 is shown in Figure Second Frequency Moment. It
maintains a running sum X – when the element xt arrives, it first computes the hash
value h(xt), and then adds h(xt) to X (so, we add either +1 or −1 to X). Finally, it
outputs X2. It is easy to check that expected value of X2 is indeed F2. First observe
that if fi denotes the frequency of element ei. then X =

∑n
i=1 fi · h(ei). Therefore,

using linearity of expectation,

E[X2] =
n∑

i=1

n∑

j=1

fifjE[h(ei)h(ej)].

The sum above splits into two parts: if i = j, then h(ei)h(ej) = h(ei)2 = 1; and if
i ̸= j, then the fact that H is 4-universal implies that h(ei) and h(ej) are pair-wise
independent random variables. Therefore, E[h(ei)h(ej)] = E[h(ei)] · E[h(ej)] = 0,
because h(ei) is ±1 with equal probability. So

E[X2] =
n∑

i=1

f 2
i = F2.

As before, we want to show that X2 comes close to F2 with high probability. We need
to bound the variance of X2, which is at most E[X4]. As above, we expand take the
fourth power of the expression of X:

E[X2] =
n∑

i,j,k,l=1

fifjfkflE[h(ei)h(ej)h(ek)h(el)].

Each of the summands is a product of 4 terms – h(ei), h(ej), h(ek), h(el). Con-
sider such a term. If an index is distinct from the remaining three indices, then
we see that its expected value is 0. For example, if i is different from j, k, l, then
E[h(ei)h(ej)h(ek)h(el)] = E[h(ei)]E[h(ej)h(ek)h(el)] (we are using 4-universal prop-
erty here – any set of 4 distinct hash values are mutually independent). But E[h(ei)] =
0, and so the expected value of the whole term is 0. Thus, there are only two cases
when the summand need not be 0: (i) all the four indices i, j, k, l are same – in this
case E[h(ei)h(ej)h(ek)h(el)] = E[h(ei)4] = 1, because h(ei)2 = 1, or (ii) exactly two
of i, j, k, l take one value and the other two indices take another value – for exam-
ple, i = j, k = l, but i ̸= k. In this case, we again get E[h(ei)h(ej)h(ek)h(el)] =

201

Procedure Second Frequency Moment

1 X ← 0, h← uniformly chosen ±1 hash function from a 4-universal family. ;
2 for i = 1 to m do
3 X ← X + h(xi)

4 Return X2

Figure 14.6: Estimating F2

E[h(ei)2h(ek)2 = 1. Thus, we can simplify

E[X4] =
n∑

i=1

f 4
i +

n∑

i=1

∑

j∈{1,...,n}\{i}

f 2
i f

2
j ≤ 2F 2

2 .

Thus we see that the variance of the estimator X2 is at most 2E[X2]2. Rest of the
idea is the same as in the previous section.

Exercises

Exercise 14.1 Let fi be the frequency of element i in the stream. Modify the Mishra-
Gries algorithm (Figure Algorithm for threshold) to show that for a stream of length
m, one can compute quantities f̂i for each element i such that

fi −
m

k
≤ f̂i ≤ fi

Exercise 14.2 Recall the reservoir sampling algorithm described in Figure Combin-
ing reservoir sampling with the estimator for Fk. Prove by induction on i that af-
ter i steps, the random variable X is a uniformly chosen element from the stream
{x1, . . . , xi}.

Exercise 14.3 Let Y1, . . . , Yt be t i.i.d. random variables. Show that the variance of
Z, denoted by σ2(Z), is equal to 1

t · σ
2(Y1).

Exercise 14.4 Suppose E1, . . . , Ek are k independent events, such that each event
occurs with probability at most 1/4. Assuming k ≥ 4 log(1/δ), prove that the proba-
bility that more than k/2 events occur is at most δ.

Exercise 14.5 Let a1, a2, . . . , an be an array of n numbers in the range [0, 1]. Design
a randomized algorithm which reads only O(1/ε2) elements from the array and esti-
mates the average of all the numbers in the array within additive error of ±ε. The
algorithm should succeed with at least 0.99 probability.

202

Exercise 14.6 Consider a family of functions H where each member h ∈ H is such
that h : {0, 1}k → {0, 1}. The members of H are indexed with a vector r ∈ {0, 1}k+1.
The value hr(x) for x ∈ {0, 1}k is defined by considering the vector x0 ∈ {0, 1}k+1

obtained by appending 1 to x and then taking the dot product of x0 and rmodulo 2
(i.e., you take the dot product of x0 and r, and hr(x) is 1 if this dot product is odd,
and 0 if it is even). Prove that the family H is three-wise independent.

Exercise 14.7 Recall the setting for estimating the second frequency moment in a
stream. There is a universe U = {e1, . . . , en} of elements, and elements x1, x2, . . .
arrive over time, where each xt belongs to U . Now consider an algorithm which
receives two streams – S = x1, x2, x3, . . . and T = y1, y2, y3, Element xt and yt
arrive at time t in the two streams respectively. Let fi be the frequency of ei in the
stream S and gi be its frequency in T . Let G denote the quantity

∑n
i=1 figi.

• As in the case of second frequency moment, define a random variable whose
expected value is G. You should be able to store X using O(logn+ logm) space
only (where m denotes the length of the stream).

• Let F2(S) denote the quantity
∑n

i=1 f
2
i and F2(T) denote

∑n
i=1 g

2
i . Show that

the variance of X can be bounded by O(G2 + F2(S) · F2(T)).

Exercise 14.8 You are given an array A containing n distinct numbers. Given a
parameter ϵ between 0 and 1, an element x in the array A is said to be a near-median
element if its position in the sorted (increasing order) order of elements of A lies in
the range [n/2−ϵn, n/2+ϵn]. Consider the following randomized algorithm for finding
a near-median : pick t elements from A, where each element is picked uniformly and
independently at random from A. Now output the median of these t elements. Suppose
we want this algorithm to output a near-median with probability at least 1− δ, where
δ is a parameter between 0 and 1. How big should we make t? Your estimate on t
should be as small as possible. Give reasons.

203

