COL 757 Model Centric Algorithm Design Problem Sheet 4

1. Let f_i be the frequency of element i in the stream. Modify the Mishra-Gries algorithm to show that for a stream of length m, one can compute quantities \hat{f}_i for each element i such that

$$f_i - \frac{m}{k} \le \hat{f}_i \le f_i$$

- 2. Given a stream with m data items and a threshold n/k for some integer k, what is the minimum sample size such that if there is an item q whose frequency exceeds n/k, there will be at least n_q copies of q in the sample with probability $\geq 2/3$.
 - You may assume that each element of the stream is being sampled with probability p independently (leading to an expected sample size of mp). Note that there can be k such items (exceeding the threshold), so you have to take care using the union bound. Calculate the minimum value of p using Chernoff bounds.
- 3. Recall the reservoir sampling algorithm described in the class. Prove by induction on i that after i steps, the random variable X is a uniformly chosen element from the stream $\{x_1, \ldots, x_i\}$.
- 4. Let Y_1, \ldots, Y_t be t i.i.d. random variables. Show that the variance of Z, denoted by $\sigma^2(Z)$, is equal to $\frac{1}{t} \cdot \sigma^2(Y_1)$.
- 5. Suppose E_1, \ldots, E_k are k independent events, such that each event occurs with probability at most 1/4. Assuming $k \ge 4 \log(1/\delta)$, prove that the probability that more than k/2 events occur is at most δ .
- 6. Let a_1, a_2, \ldots, a_n be an array of n numbers in the range [0, 1]. Design a randomized algorithm which reads only $O(1/\varepsilon^2)$ elements from the array and estimates the average of all the numbers in the array within additive error of $\pm \varepsilon$. The algorithm should succeed with at least 0.99 probability.
- 7. Consider a family of functions H where each member $h \in H$ is such that $h: \{0,1\}^k \to \{0,1\}$. The members of H are indexed with a vector $r \in \{0,1\}^{k+1}$. The value $h_r(x)$ for $x \in \{0,1\}^k$ is defined by considering the vector $x_0 \in \{0,1\}^{k+1}$ obtained by appending 1 to x and then taking the dot product of x_0 and x_0 and x_0 and x_0 and x_0 is 1 if this dot product is odd, and 0 if it is even). Prove that the family x_0 is three-wise independent.
- 8. Recall the setting for estimating the second frequency moment in a stream. There is a universe $U = \{e_1, \ldots, e_n\}$ of elements, and elements x_1, x_2, \ldots arrive over time, where each x_t belongs to U. Now consider an algorithm which receives **two** streams $-S = x_1, x_2, x_3, \ldots$ and $T = y_1, y_2, y_3, \ldots$ Element x_t and y_t arrive at time t in the two streams respectively. Let f_i be the frequency of e_i in the stream S and g_i be its frequency in T. Let G denote the quantity $\sum_{i=1}^n f_i g_i$.
 - As in the case of second frequency moment, define a random variable whose expected value is G. You should be able to store X using $O(\log n + \log m)$ space only (where m denotes the length of the stream).
 - Let $F_2(S)$ denote the quantity $\sum_{i=1}^n f_i^2$ and $F_2(T)$ denote $\sum_{i=1}^n g_i^2$. Show that the variance of X can be bounded by $O(G^2 + F_2(S) \cdot F_2(T))$.
- 9. You are given an array A containing n distinct numbers. Given a parameter ϵ between 0 and 1, an element x in the array A is said to be a near-median element if its position in the sorted (increasing order) order of elements of A lies in the range $[n/2 \epsilon n, n/2 + \epsilon n]$. Consider the following randomized algorithm for finding a near-median: pick t elements from t, where each element is picked uniformly and independently at random from t. Now output the median of these t elements. Suppose we want this algorithm to output a near-median with probability at least t = t , where t is a parameter between 0 and 1. How big should we make t? Your estimate on t should be as small as possible. Give reasons.