COL 757 Model Centric Algorithm Design Problem Sheet 2

- 1. Given two sorted sequences A and B of n elements, design an $O(\log \log n)$ time optimal speed up merging algorithm in the PRAM model.
- 2. Consider the following algorithm to sort an $n \times n$ array of numbers. Assume for simplicity that $n = 2^k$.
 - Sort the four $n/2 \times n/2$ subarrays recursively according to some indexing scheme.
 - Rotate every alternate rows of the smaller subarrays by n/2 positions right/left
 - Run 3 iterations of shearsort

Prove that the above algorithm correctly sorts and analyze the parallel running time in some appropriate model.

- 3. Describe an optimal speed up algorithm for list ranking using the idea of *random mate* discussed in class. Choose an appropriate PRAM model to get a $O(\log n)$ time $n/\log n$ processors algorithm.
- 4. Analyze the following variation of the parallel connectivity algorithm. Each directed tree is contracted to a star following the hooking step. Instead of the adjacency matrix, use a list or array data structure to implement the algorithm using O(|E| + |V|) processors and polylog parallel time.
- 5. Consider a linear array of n processors p_i $1 \le i \le n$, that where initially processor p_i holds n_i packets. Moreover, $\sum_i n_i = n$, such that each processor is a destination of exactly one packet. Analyze the greedy routing algorithm with *furthest destination first* queue discipline for this problem giving rigorous and complete proofs.