COL 757 Model Centric Algorithm Design
 Problem Sheet 1

1. (i) Given n elements and $n^{3 / 2}$ CRCW processors, show how to compute the minimum in $O(1)$ time.
(ii) Extend the previous idea to computing minimum of n elements in $O(1)$ time using $n^{1+\varepsilon}$ CRCW processors for any $0<\varepsilon<1$.
2. Show how to compute the minimum of n elements with n CRCW processors in $O(1)$ expected time using a randomized algorithm.
3. Given an array of n elements $a_{1}, a_{2} \ldots a_{n}$, the nearest smaller value of any element a_{i} is defined as arg $\min _{j>i}\left\{a_{j}<\right.$ $\left.a_{i}\right\}$. The all nearest value problem (ANSV) is to compute for each element a_{j}, its nearest smaller value.
(i) Design a linear time sequential algorithm for ANSV.
(ii) Design a polylog time $O(n)$ processors CRCW PRAM algorithm for ANSV problem.
4. (i) Show how to obtain a better processor-time bound for the two versions of the prefix computation. Recall that the first algorithm uses $n \log n$ processors and the second one uses n processors to obtain the same parallel time bound of $O(\log n)$.
(ii) Generalize the technique of clubbing k (a parameter between 1 and n) contiguous values, compute the prefix recursively and then generate the missing values as a function of k and n.
Verify if these algorithms can be done using EREW model.
5. Show how to sort n integers in the range $[1 . . \sqrt{n}]$ using \sqrt{n} processors in $O(\sqrt{n})$ parallel steps. Specify which PRAM model is used.
