
COL 702, Tutorial Sheet 4

1. Graph theory
(i) Show that in any graph there are at least two vertices of the same degree.
(ii) Given a degree sequence d1, D2 . . . dn such that

∑
i di = 2n− 2 , construct a tree whose vertices

have the above degrees.
(iii) Show that in a complete graph of six vertices where edges are colored red or blue, there is either
a red or a blue triangle.

2. Given a directed acyclic graph, that has maximal path length k, design an efficient algorithm that
partitions the vertices into k + 1 sets such that there is no path between any pair of vertices in a set.

3. A directed graph is Eulerian if the in degree equals out degree for every vertex. Show that an
Eulerian graph admits a tour where every edge is visited exactly once. Design an efficient (linear
time) algorithm to find such a tour.

4. Find a maximum subgraph of G = (V,E) that has degrees of each vertex is at least k.

5. Describe an efficient algorithm to find the girth of a given undirected graph. The girth is defined as
the length of the smallest cycle.

6. Prove that subgraph returned by Dijkstra’s algorithm (or Bellman Ford) is a directed tree rooted at
source with n− 1 edges.

7. Given a directed acyclic graph, design a linear time algorithm for computing a SSSP in O(|V |+ |E|)
time.

8. Let A be an n × n adjacency matrix of a directed graph G = (V,E) with Ai,i = 0. We define a
operation B = A⊕A as follows

Bi,j = min
1≤k≤n

{ai,k + ak,k}

Note the similarity with normal matrix multiplication where we use × and + instead of + and min.
(i) Prove that Bi,j equals the shortest path of at most 2 edges between vertex i and vertex j.
(ii) Prove that B = A⊕ A⊕ . . . ` times⊕ A stores the shortest path with at most ` edges between
i and j in Bi,j

(iii) Design a fast algorithm to compute A` under the operation ⊕

9. Given a graph G with negative weights (no negative cycles), we want to transform it to another
equivalent graph G′ that preserves the shortest paths of G but doesn’t contain any negative weights.
(i) If we add to all edges a weight greater than the largest negative weight, will shortest paths be
preserved ?
(ii) Let d(v) be equal to the shortest path distance to v from source vertex s. Suppose we add to
every edge (u, v), the weight d(u)− d(v), i.e. the new weight w′(u, v) = w(u, v) + d(u)− d(v). Then
show that

(a) w′(u, v) ≥ 0
(b) Between all pairs of vertices x, y, for two distict paths P1 and P2, w(P1) ≥ w(P2) iff
w′(P1) ≥ w′(P2).

10. Modify Bellman-Ford algorithm so that you can find the second shortest path from a source vertex to
all other vertices. The second shortest path must differ from the shortest path by at least one edge
but it can have the same weight as the shortest path. You should be able to rigorously justify the
correctness of your algorithm.

1

