
Lecture summary for Theory of Computation

Sandeep Sen1

January 8, 2015

1Department of Computer Science and Engineering, IIT Delhi, New Delhi 110016, India. E-
mail:ssen@cse.iitd.ernet.in

Contents

1 The notion of computation 3

2 Countable sets and cardinality based arguments 5

3 Language, strings, recognisers 7
3.1 Machine and States . 8
3.2 Crossing Sequence based arguments . 8

4 Finite Automaton and Non-Determinism 10
4.1 Relation between NFA and DFA . 11

5 Regular Expressions, and properties of regular languages 12
5.1 Properties of Regular languages . 12
5.2 How to prove a language is not regular . 13
5.3 Myhill Nerode Theorem . 13

6 CFL and PDA 15
6.1 Push Down Automaton (PDA) . 16
6.2 Equivalence of PDA and CFG . 17

7 An alternate view of TM as functions 19

8 Introduction to Computational Complexity 21
8.1 Definitions of Time and Space Complexity 21
8.2 Relation between Complexity Classes . 21
8.3 The Reachability Problem . 21

9 NP Completeness and Approximation Algorithms 23
9.1 Classes and reducibility . 24
9.2 Cook Levin theorem . 26
9.3 Common NP complete problems . 27

9.3.1 Other important complexity classes 27
9.4 Combating hardness with approximation . 28

1

9.4.1 Equal partition . 29
9.4.2 Greedy set cover . 30
9.4.3 The metric TSP problem . 31
9.4.4 Three colouring . 31
9.4.5 Maxcut . 32

2

Chapter 1

The notion of computation

What are computable functions ?
Starting from inputs, and using a finite number of well-defined, unambiguous and precise

rules we can transform it to the output. Sometimes, we also impose the additional constraint
of the individual transformation being efficient and the notion of successive transformations
is known as an algorithm.

It has been elusive and indeed tricky to define computable functions without referring
to a specific computing device or computational model.

On the other hand we can define precisely mathematically classes of functions that are
computable - the best known is the class of recursive 1 functions.

Over the years, we have come to accept Church-Turing thesis (it was Kleene who com-
bined the two seemingly different models) that equates computable functions with recursive
functions.

There are indeed functions that are non-recursive and therefore non-computable as a
consequence of CT thesis. The existence of such functions is proved by clever diagonalisation
construction where every recursive function is mapped to an integer and the set of (integral)
functions is known to much larger by an argument similar to Russel’s paradox.

These results were known much before commercial computers were built and were mo-
tivated by Hilbert’s quest for automated proofs (i.e. generate proofs using algorithms) and
solutions of hard computational problems like nullenstellansatz (simultaneous polynomial
equations). Göedel settled this problem of automated proofs in the negative by proving
his famous incompleteness theorem ruling out any such grand pursuits. Later, Matiyase-
vich showed that even the problem of Diophatine equations is not solvable and it may be
surprising that degree 4 and 9 variables suffice for this proof. Between 1931-39, following
the works of Gödel, Church, Rosser and Turing, the theory of computability was formally
recognized.

Central to establishing equivalence of powers of computational model is the notion of
reductions and simulations. These form the core proof techniques in this area. Reductions

1not to be confused with recurrence relations or recursive descriptions of functions that we are used to
in algorithms

3

between problems establish a partial ordering of the difficulty (or complexity) of solving
problems. Likewise, simulating a model by another also establish relative computational
powers of the models.

4

Chapter 2

Countable sets and cardinality
based arguments

Let A,B be infinite sets, then the following are equivalent

• There is a function f : A⇒ B such that f is 1-1.

• There is a function g : B ⇒ A such that g is onto.

When the above (equivalent) properties are satisfied then, we define a relation #(A) ≤ #(B)
which intuitively means that the number of elements in A doesn’t exceed the number of
elements in B.

For example if A ⊂ B then using f as the identity function #(A) ≤ #(B). So #(Z) ≤
#(R) where Z,R represent integers and reals respectively. If the function f is 1-1 and onto,
i.e., bijective, then #(A) = #(B). Intuitive we can pair up the elements of A,B, so that
we can claim that they have the same cardinality.

Further, if #(A) ≤ #(B) and #(A) 6= #(B), then #(A) < #(B), i.e., they have
different cardinalities.

Theorem 2.1 (Bernstein-Schroeder) If #(A) ≤ #(B) and #(B) ≤ #(A), then #(A) =
#(B).

The proof is non-trivial and omitted here.

Exercise 2.1 Show that #(Q) = #(Z) where Q is the set of rationals.

Exercise 2.2 If #(S1) ≤ #(Z) and #(S2) ≤ #(Z) for infinite sets S1 and S2 then #(S1) =
#(S2).

Theorem 2.2 (Russel’s paradox) Let S be any set and let 2S denote the powerset of S.
Then #(S) < #(2S).

5

Proof: Since the trivial function f(x) = {x}, x ∈ S is 1-1, #(S) ≤ #(2S). We will show
that there is no 1-1 function g : 2S ⇒ S by contradiction. Suppose there exists such a g.
Then define a subset T = {x ∈ S|x 6∈ g−1(x)} and x′ = g(T). We have now two possibilities

Case 1: x′ ∈ T : Then from the earlier definition of T , x′ 6∈ g−1(x′) = T .

Case 2 x′ 6∈ T : Then from the earlier definition x′ ∈ g−1(x′) = T .

Since both cases are not consistent, our assumption of the existence of g must be flawed. 2

6

Chapter 3

Language, strings, recognisers

Given a finite alphabet Σ, a string over Σ is finite ordered sequence of symbols from Σ. A
string can be thought of as an element of

Σ+ = Σ ∪ Σ× Σ ∪ Σ× Σ× Σ ∪ . . . infinite union

The number of symbols in a string w is called the length and will be denoted by |w|. A
special string of length 0 is denoted by ε and the set Σ∗ = Σ+ ∪ ε.

A language L is a subset of strings from Σ∗. Note that the possible number of languages
is the power set of Σ∗ that will be denoted by 2Σ∗

.
Note that both Σ∗ and 2Σ∗

are infinite sets but the latter has a larger cardinality (from
Russel’s paradox). It can be seen that Σ∗ is equinumerous with integers by first enumerating
the strings in order of their lengths and using lexicographic ordering with the same lengths.
Any program (say written in C) can be shown to be an element of Σ∗ for an appropriately
defined Σ. Any language like L can be also thought of as a function

χL(w) =

{
1 if w ∈ L
0 otherwise

which is called a characteristic function of L. Clearly there is a mismatch in cardinality
between the possible number of functions and the number of possible C programs. So, there
are languages for which we cannot write C programs ! Even for the ones that we can, we
try to classify them according to the difficulty of writing programmes. In a nutshell this
classification is the central problem in Theory of Computation. We will classify languages
(functions) in terms of the complexity of the computational models required to recognise
them. We will describe a hierarchy of machine modelsM1,M2 . . ., such thatMi is strictly
weaker than Mi+1 in terms of capability. We associate a language with the appropriate
class of machine required to recognise it.

7

3.1 Machine and States

Imagine a simple computing machine which has just just some minimal number of instruc-
tions (actually two suffices) required to write general programmes. It executes a finite length
program and uses some space S to store intermediate values during computation. It has
an infinite array of memory locations each of which can hold a fixed length integer. A pro-
gram counter keeps track of the instruction being executed.Initially the memory locations
m1,m2 . . .mn store the input of length n and after the termination of the program, the
memory location m0 contains the answer (this function may look somewhat restrictive but
it doesn’t affect our subsequent arguments). The working space S is mapped stating from
mn+1, i.e., the input is not modified. Each step of the computation executes exactly one
instruction of the program that could modify some memory location. At any instance, a
snapshot of the computation can be captured by the contents of some finite number of mem-
ory locations1, and the program counter. A computation is a finite sequence of snapshots
where successive snapshots follow from the previous one in accordance with the instruction
being executed.

What happens if we put a bound on S, i.e., it is not allowed to scale with the size of
the input n ?

Since the program doesn’t scale with input either, the possible number of snapshots can
be bounded by the possible memory contents of the space S which is also bounded if each
location holds a fixed amount of data2. Imagine that you enumerate the snapshots in a
sequence of computation steps. Can any snapshot be repeated ?

Given that the input is not modifiable, we only have a bounded number of snapshots
and therefore rather severely constrained. The class of languages that can be recognised
using bounded space is called Finite State Machines and is one of the most important class
of Languages in Computer Science applications. Readers may be warned that bounded does
not mean some apriori bound but that the space is not a function of the input-size.

3.2 Crossing Sequence based arguments

If the machine is not allowed to modify its tape contents then it is severely restricted in
terms of its computational power. This actually helps to rigorously prove limitations in
computational power. One common technique is the use of crossing sequences that gives a
simple way of bounding the number of possible configurations of the machine by some finite
number (which can be rather large).

The main observation about the computation is that the information carried across
the boundary of two cells, say i and i + 1 can be parameterized by the state. A crossing
sequence is a tuple of states Ci = (l1, r1, l2, r2 . . .) where lj , rj ∈ Q and lj (resp. rj) denotes
the state when the head is moving from left to right (and vice versa) over the entire period

1Since the computation is a finite process, the number of memory locations must be finite, i.e., S is finite.
2This has a technical subtlety as it implies that we cannot even count till n as logn bits are required for

that

8

of computation. Since there is no change in the tape-cell contents, the crossing sequence
characterises the computation that happens to the left and right of this boundary - in fact
it is kind of a fingerprint. Notice that if two boundaries have identical crossing sequences,
say Ci = Cj , then the computation will be identical - if one were to substitute the first i
cells with the first j cells or the block of cells to the right of i with the block of cells to the
right of j.

The total number of distinct crossing sequences is finite - Why ? Note that for a
terminating computation, none of the li’s (or ris) can repeat since that will lead to infinite
loops.

The other important observation about crossing sequences is that crossing sequences in
adjacent cells should be compatible or matching. Since the compatibility check can be done
locally on the basis of the state transition, one can construct a transition sequence from an
initial state for a given input string. If any of the transition sequences leads to acceptance,
then the string is accepted.

9

Chapter 4

Finite Automaton and
Non-Determinism

A (deterministic) Finite State Machine M is defined by a 5 tuple
Σ Finite alphabet
Q Finite set of states
δ : Q× Σ→ Q transition function
qo ∈ Q A unique initial state
F ⊂ Q Set of final states

The extension of δ for string is defined inductively as δ(q, wa) = δ(δ(q, w), a) where w ∈
Σ∗, a ∈ Σ. A string w ∈ Σ∗ is accepted by M , denoted by w ∈ L(M) iff δ(qo, w) ∈ F .

Many useful languages can be recognised by FA, like strings containing one or key words,
strings corresponding to valid decimal numbers etc.

An NFA is similar to DFA except that the transition function is more general as δ :
Q× Σ→ 2Q, i.e., it is mapped to a (non-empty) subset of Q. This can be thought of as

(i) The machine arbitrarily chooses one of the possible states1. (ii) The ma-
chine makes as many copies as the number of successive states and each of the
copies simultaneously follows a unique successor state and continues to pro-
cess the string. This ”spawning” could again happen for any non-deterministic
transitions.

The transition function can be extended to strings as follows:

δ(q, wa) = ∪r∈δ(q,w)δ(r, a)

Therefore, unlike a DFA, an NFA can be simultaneously in a cloud of possible states.
The recognition condition of a string w by a machine N is defined as follows:
w ∈ L(N) iff δ(qo, w)∩F 6= φ, i.e., one of the possible states at the end of the transition

is a final state. In other words, as long as one of the possible transition sequence leads to a

1not associated with any probability

10

final state, the string is accepted and not accepted if all paths end in non-final states. This
makes the NFA somewhat asymmetric in its behavior.

Exercise 4.1 What is the set of strings accepted by flipping the Final and non-final states
of DFA and NFA ?

4.1 Relation between NFA and DFA

There are certain advantages of designing with an NFA in terms of conceptualisation. For
example, think about all strings that must have a ”1” at the k-th position from the end.
A DFA needs to remember k latest inputs (and hence have about 2k states) whereas an
NFA can simply guess on a ”1” and verify (or fail) if it is not the k-th ”1” from right.
This NFA will have about O(k) states, i.e., it exponentially better. However, the physical
interpretations of NFA are not practical (either guessing or the spawning paradigm), so to
actually build a machine, we have to use the following mechanism.

Theorem 4.1 For every NFA N , we can construct a DFA M , such that L(M) = L(N).

The catch in this construction is the blow-up in the number of states that is unavoidable in
many cases (from the previous example). In fact, the state space of the equivalent DFA is
the power set 2Q where Q is the set of states of the NFA N .

The construction is such that the equivalent DFA simulates the NFA on any given input
string. Since the NFA can be a subset of states, say S ⊂ Q, the DFA is in state labelled
with {S} and the transition of the DFA is defined as δ′ : 2Q → 2Q. If {S1} is a state of the
DFA then δ′({S1}, a) = ∪s∈S1δ(s, a)2

The equivalence of the constructed DFA and the given NFA is based on the following
claim

Claim 4.1 For any state q ∈ Q, δ(q, w) = δ′({q}, w}) for all w ∈ Σ∗.

Proof follows by induction on |w|.
A similar result can be proved for a slightly version of NFA, namely NFA with ε tran-

sitions. In this NFA, the transitions are also defined for ε, like any regular symbol. An
ε-closure of a state q is defined as the set of states reachable from q using only ε transitions,
call it ε(q). This definition also a natural extension to ε(S) where S ⊂ Q. You can argue
that given an NFA N with ε transitions, we can construct an equivalent DFA M without ε
transitions by using a construction similar as described above and using the notion ε-closure
of states. For example, the initial state of M is the ε-closure of q0, the start state of N .

Exercise 4.2 Fill in the details and argue the equivalence formally.

2There is some abuse of notation since strictly speaking we need to curl and uncurl the set of states.

11

Chapter 5

Regular Expressions, and
properties of regular languages

A regular expression r over Σ is represents a set of strings (possibly infinite) denoted by
L(r) is defined as follows

(i) ε, φ, a are valid r.e. where a ∈ Σ.
(ii) If R1, R2 are valid r.e., then so are

(a) R1 +R2 representing L(R1) ∪ L(R2).
(b) R1 ·R2 representing concatenation.
(c) R∗1 representing ε ∪ L(R1) ∪ L(R2

1) ∪ L(R2
2)

(d) (R1) is regular (to limit the scope for use of other operators).

The class of languages that can be represented using (finite length) regular expressions is
called Regular Languages.

Theorem 5.1 A language L is regular iff there is a DFA accepting exactly the strings in
L.

The proof is based on showing that for every regular expression r, there is an NFA N such
that L(M) = L(r). The proof uses an NFA with ε transitions. Similarly, it can be shown
using a dynamic programming based construction that the language accepted by a DFA M
can be represented using a regular expression.

Note that the membership problem for r.e., namely given a string w and a r.e. r, verify
if w ∈ L(w) can be efficiently solved by reducing it to an acceptance test for the equivalent
DFA.

5.1 Properties of Regular languages

The regular languages are closed under

12

1. Union

2. Complementation

3. Intersection (follows from the previous two)

4. Kleene closure

5. Substitution : Each symbol a of the alphabet is replaced by La which is a regular
expression.

6. Homomorphism and Inverse homomorphism: It is a special kind of substitution
where each symbol is substituted by exactly one string (possibly over a different
alphabet).
The resulting language L′ = {w′ ∈ Σ∗| for some w ∈ Σ∗, w′ = F (w)} where F is the
substitution function.

Exercise 5.1 Prove formally that the r.e. obtained by substituting each a ∈ Σ by a
string in the r.e. for L is exactly the same language as defined above.

5.2 How to prove a language is not regular

Given a regular language L, consider any DFA M that accepts L. Suppose the number of
states of this DFA is n1. If we take a string z, |z| ≥ n, we can trace the state transitions
starting from the initial state, say, q0, qi1 , qi2 , . . . qin where qik = δ(qik−1

). In this sequence
of n+ 1 states, there must be at least one repeated state. Consider the first such repeated
state, say qij = qil , j < l, δ(qij , v) = qil , where v is a substring of z of length ≥ 1. Suppose
z = u · v ·w, then we can claim that the strings zi = u · vi ·w ∈ L as zi will end in the final
state of M for i ≥ 0. Moreover |u|+ |v| ≤ n.

In other words, we have found an infinite sequence of strings in L if L is regular given
a string that is sufficiently long.

To prove a given L is not regular, say it is the set of strings with equal number of 0’sand
1’s, we can use the following proof by contradiction. Suppose L is regular and consider
a string 0n1n where n is related to the previous proof. From our previous argument,
0n1n = u · v · w where v = 0i i ≥ 1 (recall that |u · v| ≤ n). Therefore u · w = 0n−i1n ∈ L
but it does not contain equal number of 0’s and 1’s. Therefore our assumption that L is
regular must be fallacious.

5.3 Myhill Nerode Theorem

For any language L, we define a relation RL over all strings in Σ∗ as follows

1Clearly the number of minimum state DFA for L has ≤ n states.

13

For all strings x, y ∈ Σ∗ , xRLy iff for all z ∈ Σ∗, either
(i) x · z and y · z both are in L or
(ii) x · z and y · z both are not in L

Exercise 5.2 Prove that RL is an equivalence relation.

Theorem 5.2 (Myhill-Nerode) RL is finite iff L is regular.

To prove this, we define a relation RM for a DFA M that recognises the language L.
Two strings x, y ∈ Σ∗ are related by RM iff δ(q0, x) = δ(q0, y). This is an equivalence
relation and has the property that for all z ∈ Σ∗, xRMy implies x · zRMy · z. This property
is called right extension invariant.
Claim If xRMy then xRLy.

Therefore the partitions induced by RM is a refinement of the partitions of RL and hence
the number of equivalence classes of RL is finite. This proves one direction of Myhill-Nerode
theorem. For the other direction, let us assume that RL has finite number of equivalence
classes. We define a DFA where the set of states correspond to the equivalence classes of
RL.
Claim For any partition of RL, either all strings are in L or all the strings are not in L.

Therefore we can define the final states of this machine. For the transition function, we
let [x] denote the partition of RL containing the string x. We define δ([x], a) = [x · a] for
a ∈ Σ. Notice that if [x] = [y], then we can prove [x · a] = y · a] as follows. Let z′ = a · z
for z ∈ Σ∗, then if xRLy, then x(az)RLy(az) or equivalently x · aRLy · a. By defining the
initial state as [ε], any string w ∈ L takes the machine to a final state [w].

Here are a couple of applications of the MN theorem

• To prove that a language L is non-regular by showing that RL has infinite parti-
tions.For example for L = {0i1i|i ≥ 1}, 0i and 0j , i 6= j are indistinct classes and
hence there are unbounded number of equivalence classes.

• There is a unique minimum state DFA (upto renaming of states).
Clearly any DFA for L has at least as many states as the number of partitions of RL
and from previous proof there is a DFA for L defined from the partitions of RL. The
states of any minimum state DFA can be mapped to the partitions of RL.

14

Chapter 6

CFL and PDA

A language is Context Free if it can be described using a Context Free Grammar that
consists of the following attributes

• Σ : the symbols of the language also called terminals

• V : variables also called non-terminals

• S : a special variable called the start symbol

• P : A set of production rules of the following format

A→ α

where A ∈ V and α ∈ (V ∪ Σ)∗.

The language generated by the grammar G, denoted by L(G) consists of strings w ∈ Σ∗

such that S → α1 → α2 . . . w. Instead we will use the notation
∗−→ to denote 1 or more

applications of the production rules.
The Context Free Language contains Regular Languages as proper subsets, i.e., there

are languages like 011i for which we can write a grammar. For any regular expression, we
can write a Context Free Grammar

Any given grammar G can be rewritten such that all production rules are of the form

1. Chomsky Normal Form (CNF)
A→ BC|a

where A,B,C ∈ V and a ∈ Σ

2. Greibach Normal Form (GNF)
A→ aV ∗

To accomplish the transformation,

15

• We eliminate useless symbols. These are variables that cannot derive any string or
cannot be derived from S.

• Remove ε productions, i.e. A→ ε.

• Remove unit productions, i.e. A→ B.

• Removing left-recursion, i.e., not have productions of the form

A→ Aα,α ∈ (V ∪ Σ)∗

The first variable on the right hand side cannot be the same as LHS

• Ordering of variables as X1, X2 . . . such that if

Xi → Xj(V ∪ Σ)∗

then j > i. For the highest numbered variable, all productions must begin with a
terminal symbol on the RHS.

The following simple observation is very useful to accomplish the above clean-up steps.

Claim 6.1 Let A→ α1Bα2, α1, α2 ∈ (V ∪ Σ)∗ and let B → β1, β2 . . . βk be all productions
of B. Then we can replace the production A→ α1Bα2 with

A→ α1β1α2| . . . α1βkα2

Exercise 6.1 Prove this rigorously, i.e. show that the two grammars (original and the
transformed) generate the same set of strings.

Given a CFG G in CNF, we can design an efficient algorithm for the membership
problem, i.e. Does w ∈ L(G), based on dynamic programming. This algorithm is known
as CYK in literature and runs in O(n3) steps where n = |w|. (Without CNF, designing an
efficient algorithm can be very challenging).

6.1 Push Down Automaton (PDA)

Intuitively, if we add an unlimited sized stack with a Finite Automaton, then we have
memory to recognise certain languages like 0i1i by accumulating some tokens corresponding
to 0’s and tallying with the number of 1’s. A Push Down Automaton (PDA) is characterized
by

• Σ : a finite input alphabet

• Γ : a finite stack alphabet containing a special bottom stack symbol Z0.

• Q: a finite set of states, containing a special initial state q0.

16

• δ : Q × {Σ ∪ ε} × Γ → 2Q × Γ∗, i.e. a mapping to a finite subset of Q × Γ∗. Here
Γ refers to the token on the stack top - it is either popped (results in ε) or some
tokens are added which is a string of Γ∗. Since there are several possibilities, the
machine is inherently non-deterministic. Also note that the machine can change the
stack without scanning the input symbol (i.e. on ε).

At any instance, the snapshot (also called instantaneous description or ID) of a PDA,
can be described in terms of a triple (q, x, β) where q ∈ Q is the current state, x ∈ Σ∗ is
prefix of the input that is scanned and β ∈ Γ∗ is the (entire) contents of the stack. We will
use the notation I1 ` I2 to denote a legal move from one ID to the next according to the
transition function of the PDA. There are two version of PDA

1. Accepts by final state: The machine Mf should be in a final state after the input is
scanned.
w ∈ L(Mf) iff (q0, w, Z0) `∗ (qf , ε, α)

2. Accepts by empty stack: The machine Me should have no tokens in the stack and the
end of the execution.
w ∈ L(Mf) iff (q0, w, Z0) `∗ (qi, ε, ε)

Claim 6.2 The two versions of the machines are equivalent in their capabilities, i.e., for
any language L either both kinds of machines can recognise it or it can’t be recognised by
either.

Exercise 6.2 Establish this rigorously by designing a simulation of one machine by the
other primarily with respect to the acceptance criteria.

6.2 Equivalence of PDA and CFG

The class of languages that can be recognised by PDA is exactly the class of CFL. For this,
we will prove the following claim.

Theorem 6.1 1. Given any CFL L in GNF G , we will design a PDA Me that accepts
using empty stack to recognise L.
2. Given a PDA Me that accepts using empty stack, we will describe a CFG G such that
L(G) = L(Me).

For the first construction, we will construct a one state PDA 1 that accepts the same
language. The idea is to mimic the left most derivation of any sentence starting from a
variable of the CFG. If A

∗−→ xα where x ∈ Σ∗ and α ∈ V ∗ then the machine M should be
in a configuration where the stack contains α (left most variable is on the top of the stack)
and should have scanned x from the input. By ensuring this, it follows as a corollary that
S
∗−→ w iff M accepts w using empty stack.

1Therefore all PDAs can be converted to a 1 state PDA

17

Constructing a grammar from a given PDA exploits the non-deterministic behaviour of
the machine crucially. We want to describe a grammar that generates a string (starting
from S) exactly when the machine accepts by empty stack. Like in the previous case, we
want the grammar to generate a sentence xα by left-most derivation when the machine has
scanned x and contains α in the stack. The situation is somewhat more complex since it is
not a single state machine. Therefore the final state (as well as the intermediate states) are
not known and we should allow for all possibilities. Eventually in the acceptance condition
by empty stack it doesn’t matter what the final state is as long as it is obtained using legal
transitions of the machine.

The variables of the grammar will mimic the moves of the machine and are denoted by
the triple [p,A, q] p, q ∈ Q A ∈ Γ. These triples capture the portion of the input string
scanned by the PDA starting in state p with A as the top of the stack till the time that A
is popped out. This can happen in one or more moves including the case that A is popped
in one step or by a sequence of pushes and pops - the state of the PDA at that juncture is
q. Since we do not know q, we cover for all possibilities of q ∈ Q. The invariant that we
want to ensure is that [p,A, q]

∗−→ x iff (p, x,A) `∗ (q, ε, ε).
The productions are defined on the basis of single moves of the PDA. If the machine is

in state q and the top of the stack is A ∈ Γ, and the symbol being scanned is a ∈ Σ∪ ε, the
machine can

• Pop : Then it must be the case that (p, a,A) contains (q, ε).
This yields the production [p,A, q]→ a.

• Push A is replaced with B1, B2 . . . Bk: Then [p,A, q] must be a composition of mul-
tiple moves of the machine where B1, B2, . . . Bk must be eventually popped. For
popping Bi after B1, B2 . . . Bi−1 have been popped, some portion of the input must
be scanned, say yi, so that

[p,A, q]
∗−→ w iff ∀i [qi, Bi, qi+1]

∗−→ yi , qk+1 = q

where w = a · y1 · y2 . . . yk and (p, a,A) contains (q1, B1B2 . . . Bk). Since we do not
know the intermediate states after popping of B1, B2 etc., we allow for all possible
choices qi ∈ Q. This is verified by the single pop moves for which we know the state
transitions and only those qi can be reached by composition of the single pop moves.2

2We do not try to compute explicitly which qi can be reached and let the leftmost derivation process
simulate the PDA moves.

18

Chapter 7

An alternate view of TM as
functions

The behavior of a TM can be interpreted in terms of computing a function in the following
manner - the input is the initial contents of the tape and the final content (if it stops) is
the end content of the tape. If the index of the TM is k then we denote the mathematical
function corresponding to the TM as fk and it is defined only for input x when the TM
actually halts on x. fk is called a partial recursive function. If the TM halts on all inputs,
then the function is called a total recursive function. This notion can be extended to n-
ary functions by encoding the input in some appropriate way. For example, a three input
function can be encoded as 000 . . . 00︸ ︷︷ ︸

x1

1 000 . . . 00︸ ︷︷ ︸
x2

1 000 . . . 00︸ ︷︷ ︸
x3

for the input (x1, x2, x3). Note

that the 1s are used as separators.
In many constructions involving partial recursive functions, we may have to apply a

function fi followed by fj to some input (similar to simulation of Turing machines using
Universal TM). Even though fi, fj may not be total recursive, we can define a total recursive
function compose such that

fcompose(i,j)(x) = fj(fi(x))∀x (7.0.1)

This follows by defining compose(i, j) as the code of a TM that runs TM represented by j
on the output of running the TM i on x. This equality holds for those x for which fj(fi(x))
is defined. If both fi, fj are total recursive then the equality holds for all x. In any case
compose(i, j) is always defined.

The following result is known as the Smn theorem.

Theorem 7.1 If g(x, y) is a partial recursive function, then there exists a total recursive
function σ such that

fσ(x)(y) = g(x, y) ∀x, y

Let M be a TM with index k compute g(x, y). Then, we create a TM Mx that first prefixes
the input (y) with x and then runs the TM for g. Thus it can be thought of as a composition

19

of two partial recursive functions and the previous equation can be used to complete the
proof.

fk(x, y) = g(Πx(y)) = fcompose(Πx,k)(y)

where Πx(y) = (x, y). Then σ(x) = compose(Πx, k) which is total recursive.

Theorem 7.2 (Recursion theorem) Let σ be a total recursive function, then there exists
an xo such that ∀x , fxo(x) = fσ(xo)(x).

Note that this is trivial for σ(x) = x but not so for other functions.
Let us define a function h(i, x) = ffi(i)(x) such that the TM given i, x first applies

(simulates) fi (the function corresponding to the i-th TM) on i. If fi(i) = j (i.e. if it is
defined) then run Mj on x. Note that fi may not be total recursive. From the Smn theorem,
there exists a total recursive function g(i) such that

fg(i)(x) = h(i, x) = ffi(i)(x) (7.0.2)

Let t be the code of a TM such that ft(x) = σ(g(x)) - t can be thought of as compose(g, σ)
in Equation 7.0.1. Moreover, ft is total recursive since it is the composition of total recursive
functions σ and g. Let x∗ = g(t). Then

fx∗(x) = fg(t)(x)

= fft(t)(x) from equation 7.0.2

= fσ(g(t))(x) from definition of ft(x)

= fσ(x∗)(x)

A fun application of recursion theorem is that there exists a TM such that when it is
started on an empty tape, it prints out its own code. Equivalently, there exists a C-language
program 1 that prints itself.

Hint: Use a function σ(i) = print(i) where print(i) is the code of a TM that writes out
i for any input (including blank tape).

1or any other programming language

20

Chapter 8

Introduction to Computational
Complexity

8.1 Definitions of Time and Space Complexity

8.2 Relation between Complexity Classes

8.3 The Reachability Problem

The membership problem for a non-deterministic Turing Machine can be thought of as a
graph reachability problem as follows. The vertices of the graph are the distinct IDs1. There
is a directed edge between vi and vj iff there is a legal move (depending on the transition
function of the Turing machine) from i-th ID to the j-th ID. Corresponding to a machine
M , we will denote this graph by G(M). For a given input w (and the corresponding initial
ID I0), the machine M accepts w iff there is a path in G(M) from vI0 to vf where f is some
final ID. In fact, the transitive closure of G(M) can be used a table lookup for membership
problem.

Note that G(M) can be quite large even if finite and it is usually not available explicitly.
However, given two vertices vi, vj , we can determine if there is an edge between them using
the knowledge of the transition function.

Observation 8.1 A non-deterministic TM can solve the s − t reachability problem using
log |V | space where V is the set of vertices. Here s and t are starting and terminating vertex.

The algorithm for this is intuitive as the machine guesses a path P = s = vo, v1, . . . vk = t
and verifies that it is a legal path by checking that every consecutive vertices on the path
is connected by an edge. The space is used to store the latest vertex in the path, i.e., the
path is guessed one vertex at a time.

The less obvious result is the complement of the reachability problem.

1If the machine is known to be space or time bounded then the graph is finite

21

Observation 8.2 A non-deterministic TM can solve the s − t non-reachability problem
using log |V | space where V is the set of vertices. Here s and t are starting and terminating
vertex.

The certificate of non-reachability is more subtle. For this we solve the restricted problem of
non-reachability in i steps, i.e., the shortest path between s and t exceeds i. By repeatedly
choosing i = 1, 2 . . . |V | − 1, we can solve the non-reachability problem. The storage for
the counter i itself takes log |V | space. We describe the procedure inductively - We try to
determine if t 6∈ R(s, i), where v ∈ R(s, i) iff the shortest path from s to v is ≤ i edges.
Using a NDTM, if we can guess v ∈ R(s, i) and verify that t 6= v for all v ∈ R(s, i), then
we are done. If we explicitly generate R(s, i), this could easily exceed O(log |V |) space, so
we will only keep a count of the set of vertices in R(s, i) that takes O(log |V |) space.

We generate the sequence of vertices (using a counter) or in some canonical ordering
and increment the counter for R(s, i), if the vertex belongs to the set. We stop when we
have generated all of them.

But how do we know if we have generated all of them ?
For this we will design a (non-deterministic) algorithm to generate |R(s, 1)|, |R(s, 2)| . . .

inductively. Suppose we have ni = |R(s, i)|. To generate ni+1, we use the previous algorithm
to generate a vertex v in some canonical ordering and verify if it is a neighbour of some
vertex in R(s, i)2 - if so, increment ni+1. To check the neighbourhood relation, we must
either have the graph available explicitly as input or we should be able to check it on the
fly from the implicit representation.

Note that the space required to generate ni+1 is that of two counters, ni, ni+1 plus two
sequences of vertices generated (in nested loops) in some canonical ordering. Since each of
them can be done using O(log |V |) space, the total space is logarithmic.

The above result is known as Immerman-Szelepcsenyi theorem
Remark Note that, we are avoiding direct computation of V −R(s, i) as there is no simple
certificate for non-reachability. Otherwise, we could check every vertex x as the predecessor
of t and rejected x, if x 6∈ E(s, i).

Theorem 8.1 The reachability problem can be solved in determnistic space O(log2 |V |).

This is also known as Savitch’s theorem where a clever recursive procedure is used that
reuses space for the different phases of the recursion. More specifically s t iff s x and
x t for some x ∈ V . Since the two subproblems are symmetric, space can be reused and

the best balance is obtained when x is a middle vertex in the s-t path. Namely, s
`−→ t iff

s
`/2−−→ x and x

`/2−−→ t for some x ∈ V . Note that ` = |V | − 1. The depth of recursion is at
most log |V | and each entry in the recursion stack is about O(log |V |) giving us the required
bound.

For undirected s-t connectivity problem, there is a simple algorithm based on random
walks that takes O(log |V |) space and recently this was derandomized that showed that s-t
connectivity problem is in DSPACE(log |V |) (due to Reingold).

2For this, the same procedure is used and we actually have ni available from induction

22

Chapter 9

NP Completeness and
Approximation Algorithms

Let C() be a class of problems defined by some property. We are interested in characterizing
the hardest problems in the class, so that if we can find an efficient algorithm for these, it
would imply fast algorithms for all the problems in C. The class that is of great interest
to computer scientists is the class P that is the set of problems for which we can design
polynomial time algorithms. A related class is NP, the class of problems for which non-
deterministic1 polynomial time algorithms can be designed.

More formally,
P = ∪i≥1C(TP(ni))

where C(TP(ni)) denotes problems for which O(ni) time algorithms can be designed.

NP = ∪i≥1C(TNP(ni))

where TNP() represent non-deterministic time. Below we formalize the notion of hardest
problems and what is known about the hardest problems. It may be noted that the theory
developed in the context of P and NP is mostly confined to decision problems, i.e., those
that have a Yes/No answer. So we can think about a problem P as a subset of integers as
all inputs can be mapped to integers and hence we are solving the membership problem for
a given set.

Exercise 9.1 Prove the following
(i) If P ∈ P then complement of P is also in P.
(ii) If P1, P2 ∈ P then P1 ∪ P2 ∈ P and P1 ∩ P2 ∈ P.

1We will define it more formally later. These algorithms have a choice of more than one possible transitions
at any step that does not depend on any deterministic factor.

23

9.1 Classes and reducibility

The intuitive notion of reducibility between two problems is that if we can solve one we
can also solve the other. Reducibility is actually an asymmetric relation and also entails
some details about the cost of reduction. We will use the notation P1 ≤R P2 to denote that
problem P1 is reducible to P2 using resource (time or space as the case may be) to problem
P2. Note that it is not necessary that P2 ≤R P1.

In the context of decision problems, a problem P1 is many-one reducible to P2 if
there is a many-to-one function g() that maps an instance I1 ∈ P1 to an instance
I2 ∈ P2 such that the answer to I2 is YES iff the answer to I1 is YES.

In other words, the many-to-one reducibility maps YES instances to YES instances and NO
instances to NO instances. Note that the mapping need not be 1-1 and therefore reducibility
is not a symmetric relation.

Further, if the mapping function g() can be computed in polynomial time then
we say that P1 is polynomial-time reducible to P2 and is denoted by P1 ≤poly P2.

The other important kind of reduction is logspace reduction and is denoted by

P1 ≤log P2.

Claim 9.1 If P1 ≤log P2 then P1 ≤poly P2.

This follows from a more general result that any finite computational process that uses space
S has a running time bounded by 2S . A rigorous proof is based on the Turing Machine
model with bounded number of states and tape alphabet.

Claim 9.2 The relation ≤poly is transitive, i.e., if P1 ≤poly P2 and P2 ≤poly P3 then
P1 ≤poly P3.

From the first assertion there must exist polynomial time computable reduction functions,
say g() and g′() corresponding to the first and second reductions. So we can define a
function g′(g)) which is a composition of the two functions and we claim that it satisfies
the property of a polynomial time reduction function from P1 to P3. Let x be an input to
P1, then g(x) ∈ P2

2 iff x ∈ P1. Similarly g′(g(x)) ∈ P3 iff g(x) ∈ P2 implying g′(g(x)) ∈ P3

iff x ∈ P1. Moreover the composition of two polynomials is a polynomial, so g′(g(x)) is
polynomial time computable.

A similar result on transitivity also holds for log-space reduction, although the proof is
more subtle since we cannot store the intermediate string and we have to generate this on
demand.

2This is a short form of saying that g(x) is an YES instance.

24

Claim 9.3 If Π1 ≤poly Π2 then
(i) If there is a polynomial time algorithm for Π2 then there is a polynomial time algorithm
for Π1.
(ii) If there is no polynomial time algorithm for Π1, then there cannot be a polynomial time
algorithm for Π2.

Part (ii) is easily proved by contradiction. For part (i), if p2(n) is the running time of Π2

and p1 is the time of the reduction function, then there is an algorithm for P1 that takes
p2(p1(n)) steps where n is the input length for P1.

A problem Π is called NP-hard under polynomial reduction if for any problem Π′ ∈
NP, Π′ ≤poly Π.

A problem is Π is NP-complete (NPC) if it is NP-hard and Π ∈ NP.
Therefore these are problems that are hardest within the class NP.

Exercise 9.2 If problems A and B are NPC, then A ≤poly B and B ≤poly A.

From the previous exercise, these problems form a kind of equivalent class with respect to
polynomial time reductions. However, a crucial question that emerges at this juncture is :
Do NPC problems actually exist ?. A positive answer to this question led to the development
of one of the most fascinating areas of Theoretical Computer Science and will be addressed
in the next section.

Here is actually a simple proof that NPC problems exist but this problem is somewhat
artificial as it uses the machine model explicity.

Let TMSAT = {< M,x, 1n, 1t > |∃u, |u| ≤ n and M accepts (x, u) in t steps }.

Here M is the code of a deterministic Turing Machine that runs on input x with advice
u. Note that since t is represented in unary, M runs in polynomial time given u3.
If a language L is in NP, there there must exist some u of length nα and t bounded
by nβ where α, β are constants. Therefore x ∈ L iff there exists an advice string (non-
deterministic choices) of length at most nα such that the Turing Machine ML accepts it
in time nβ. This implies that < ML, x, n

α, nβ >∈ TMSAT , i.e., any NP language can be
reduced to TMSAT .

So far, we have only discussed many-one reducibility that hinges on the existence of a many-
one polynomial time reduction function. There is another very useful and perhaps more
intuitive notion of reducibility, namely, Turing reducibility. The many-to-one reduction may
be thought of as using one subroutine call of P2 to solve P1 (when P1 ≤poly P2) in polynomial
time, if P2 has a polynomial time algorithm. Clearly, we can afford a polynomial number of
subroutine calls to the algorithm for P2 and still get a polynomial time algorithms for P1.
In other words, we say that P1 is Turing-reducible to P2 if a polynomial time algorithm for
P2 implies a polynomial time algorithm for P1. Moreover, we do not require that P1, P2 be
decision problems. Although, this may seem to be the more natural notion of reducibility,
we will rely on the more restrictive definition to derive the results.

3How much time does it take to simulate each of the t steps ?

25

9.2 Cook Levin theorem

Given a boolean formula in boolean variables, the satisfiability problem is an assignment of
the truth values of the boolean variables that can make the formula evaluate to TRUE (if
it is possible). If the formula is in a conjunctive normal form (CNF) 4, then the problem is
known as CNF Satisfiability. Further, if we restrict the number of variables in each clause
to be exactly k then it is known as the k-CNF Satisfiability problem. A remarkable result
attributed to Cook and Levin says the following

Theorem 9.1 The CNF Satisfiability problem is NP Complete under polynomial time re-
ductions.

To appreciate this result, you must realize that there are potentially infinite number of
problems in the class NP, so we cannot explicitly design a reduction function. Other than
the definition of NP we have very little to rely on for a proof of the above result. A detailed
technical proof requires that we define the computing model very precisely - it is beyond
the scope of this discussion. Instead we sketch an intuition behind the proof.

Given an arbitrary problem Π ∈ NP, we want to show that Π ≤poly CNF − SAT . In
other words, given any instance of Π, say IΠ, we would like to define a boolean formula
B(IΠ) which has a satisfiable assignment iff IΠ is a YES instance. Moreover the length of
B(IΠ) should be polynomial time constructable (as a function of the length of IΠ).

A computing machine is a transition system where we have

(i) An initial configuration
(ii) A final configuration that indicates whether or not the input is a YES or a
NO instance
(iii) A sequence of intermediate configuration Si where Si+1 follows from Si using
a valid transition. In a non-deterministic system, there can be more than one
possible transition from a configuration. A non-deterministic machine accepts a
given input iff there is some valid sequence of configurations that verifies that
the input is a YES instance.

All the above properties can be expressed in propositional logic, i.e., by an unquantified
boolean formula in a CNF. Using the fact that the number of transitions is polynomial, we
can bound the size of this formula by a polynomial. The details can be quite messy and
the interested reader can consult a formal proof in the context of Turing Machine model.
Just to give the reader a glimpse of the kind of formalism used, consider a situation where
we want to write a propositional formula to assert that a machine is in exactly one of the
k states at any given time 1 ≤ i ≤ T . Let us use boolean variables x1,i, x2,i . . . xk,i where
xj,i = 1 iff the machine is in state j at time i. We must write a formula that will be a
conjunction of two two conditions

4A formula, that looks like (x1 ∨ x2..) ∧ (xi ∨ xj ∨ ..) ∧ . . . (x` ∨ . . . xn)

26

(i) At least one variable is true at any time i:

(x1,i ∨ x2,i . . . xk,i)

(ii) At most one variable is true :

(x1,i ⇒ x̄2,i∧x̄3,i . . .∧x̄k,i)∧(x2,i ⇒ x̄1,i∧x̄3,i . . .∧x̄k,i) . . .∧(xk,i ⇒ x̄1,i∧x̄2,i . . .∧x̄k−1,i)

where the implication a⇒ b is equivalent to ā ∨ b.

A conjunction of the above formula over all 1 ≤ i ≤ T has a satisfiable assignment of xj,i
iff the machine is in exactly one state (not necessarily the same state) at each of the time
instances. The other condition should capture which states can succeed a given state.

We have argued that CNF − SAT is NP-hard. Since we can guess an assignment and
verify the truth value of the Boolean formula, in linear time, we can claim that CNF−SAT
is in NP.

9.3 Common NP complete problems

To prove that a given problem P is NPC, the standard procedure is to establish that

(i) P ∈ NP : This is usually the easier part.
(ii) CNF − SAT ≤poly P . We already know that any P ′ ∈ NP, P ′ ≤poly
CNF − SAT . So by transitivity, P ′ ≤poly P and therefore P is NPC.

The second step can be served by reducing any known NPC to P . Some of the earliest
problems that were proved NPC include (besides CNF-SAT)

• 3D Matching

• Three colouring of graphs

• Equal partition of integers

• Maximum Clique /Independent Set

• Hamilton cycle problem

• Minimum set cover

9.3.1 Other important complexity classes

While the classes P and NP hogs the maximum limelight in complexity theory, there are
many other related classes in their own right.

27

• co−NP A problem whose complement is in NP belongs to this class. If the problem
is in P, then the complement of the problem is also in P and hence in NP. In general
we can’t say much about the relation between P and co −NP. In general, we can’t
even design an NP algorithm for a problem in co −NP, i.e. these problems are not
efficiently verifiable. For instance how would you verify that a boolean formula is
unsatisfiable (all assignments make it false) ?

Exercise 9.3 Show that the complement of an NPC problem is complete for the class
co−NP under polynomial time reduction.

Exercise 9.4 What would it imply if an NPC problem and its complement are poly-
nomial time reducible to eachother ?

• PSPACE The problems that run in polynomial space (but not necessarily polynomial
time). The satisfiability of Quantified Boolean Formula (QBF) is a complete problem
for this class.

• Randomized classes Depending on the type of randomized algorithms (mainly Las
Vegas or Monte Carlo) , we have the following important classes

– RP : Randomized Polynomial class of problems are characterized by (Monte
Carlo) randomized algorithms A such that

If x ∈ L⇒ Pr[A accepts x] ≥ 1/2
If x /∈ L⇒ Pr[A accepts x] = 0

These algorithms can err on one side.

– BPP When a randomized algorithm is allowed to err on both sides

If x ∈ L⇒ Pr[A accepts x] ≥ 1/2 + ε
If x /∈ L⇒ Pr[A accepts x] ≤ 1/2− ε

where ε is a fixed non zero constant.

– ZPP Zero Error Probabilistic Polynomial Time : These are the Las Vegas kind
that do not have any errors in the answer but the running time is expected
polynomial time.

One of the celebrated problems, involving randomized algorithms is

BPP ⊂ NP?

9.4 Combating hardness with approximation

Since the discovery of NPC problems in early 70’s , algorithm designers have been wary of
spending efforts on designing algorithms for these problems as it is considered to be a rather

28

hopeless situation without a definite resolution of the P = NP question. Unfortunately, a
large number of interesting problems fall under this category and so ignoring these problems
is also not an acceptable attitude. Many researchers have pursued non-exact methods based
on heuristics to tackle these problems based on heuristics and empirical results 5. Some of
the well known heuristics are simulated annealing, neural network based learning methods ,
genetic algorithms. You will have to be an optimist to use these techniques for any critical
application.

The accepted paradigm over the last decade has been to design polynomial time algo-
rithms that guarantee near-optimal solution to an optimization problem. For a maximiza-
tion problem, we would like to obtain a solution that is at least f · OPT where OPT is
the value of the optimal solution and f ≤ 1 is the approximation factor for the worst case
input. Likewise, for minimization problem we would like a solution no more than a factor
f ≥ 1 larger than OPT . Clearly the closer f is to 1, the better is the algorithm. Such
algorithm are referred to as Approximation algorithms and there exists a complexity theory
of approximation. It is mainly about the extent of approximation attainable for a certain
problem.

For example, if f = 1 + ε where ε is any user defined constant, then we way that the
problem has a Polynomial Time Approximable Scheme (PTAS). Further, if the algorithm is
polynomial in 1/ε then it is called FPTAS (Fully PTAS). The theory of hardness of approx-
imation has yielded lower bounds (for minimization and upper bounds for maximization
problems) on the approximations factors for many important optimization problems. A
typical kind of result is that Unless P = NP we cannot approximate the set cover problem
better than log n in polynomial time.

In this section, we give several illustrative approximation algorithms. One of the main
challenges in the analysis is that even without the explicit knowledge of the optimum solu-
tions, we can still prove guarantees about the quality of the solution of the algorithm.

9.4.1 Equal partition

Given n integers S = {z1, z2 . . . zn}, we want to find a partition S1, S − S1, such that
|
(∑

x∈S1
x
)
−
(∑

x∈S−S1
x
)
| is minimized. A partition is balanced if the above difference is

zero.
Let B =

∑
i zi and consider the following a generalization of the problem, namely, the

subset sum problem. For a given integer K ≤ B, is there a subset R ⊂ S such that the
elements in R sum up to K.

Let S(j, r) denote a subset of {z1, z2 . . . zj} that sums to r - if no such subset exists then
we define it as φ (empty subset). We can write the following recurrence

S(j, r) = S(j−1, r−zj)∪zj if zj is included or S(j−1, r) if zj is not included or φ not possible

Using the above dynamic programming formulation we can compute S(j, r) for 1 ≤ j ≤ n
5The reader must realize that our inability to compute the actual solutions makes it difficult to evaluate

these methods in in a general situation.

29

and r ≤ B. You can easily argue that the running time is O(n · B) which may not be
polynomial as B can be very large.

Suppose, we are given an approximation factor ε and let A = dnε e so that 1
A ≤ ε/n. Then

we define a new scaled problem with the integers scaled as z′i = b zi
z/Ac and let r′ = b r

z/Ac
where z is the maximum value of an integer that can participate in the solution 6.

Let us solve the problem for {z′1, z′2 . . . z′n} and r′ using the previous dynamic program-
ming strategy and let S′o denote the optimal solution for the scaled problem and let So be
the solution for the original problem. Further let C and C ′ denote the cost function for the
original and the scaled problems respectively. The running time of the algorithm is O(n ·r′)
which is O(1

εn
2). We would like to show that the cost of C(S′o) is ≥ (1− ε)C(So). For any

S′′ ⊂ S
C(S′′) · n

εz
≥ C ′(S′′) ≥ C(S′′) · n

εz
− |S′′|

So
C(S′o) ≥ C ′(S′o)

εz

n
≥ C ′(So)

εz

n
≥
(
C(So)

n

εz
− |So|

) εz
n

= C(So)− |So|
εz

n
The first and the third inequality follows from the previous bound and the second inequality
follows from the optimality of S′o wrt C ′. Since C(So) ≥ z|So|

n and so C(S′o) ≥ (1− ε)C(So)

9.4.2 Greedy set cover

Given a ground set S = {x1, x2 . . . xn} and a family of subsets S1, S2 . . . Sm Si ⊂ S, we
want to find a minimum number of subsets from the family that covers all elements of S. If
Si have associated weights C(), then we try to minimize the total weight of the set-cover.

In the greedy algorithm, we pick up a subset that is most cost-effective in terms of the
cost per unchosen element. The cost-effectiveness of a set U is defined by C(U)

U−V where V ⊂ S
is the set of elements already covered. We do this repeatedly till all elements are covered.

Let us number the elements of S in the order they were covered by the greedy algorithm
(wlog, we can renumber such that they are x1, x2 . . .). We will apportion the cost of covering

an element e ∈ S as w(e) = C(U)
U−V where e is covered for the first time by U . The total cost

of the cover is =
∑

iw(xi).

Claim 9.4

w(xi) ≤
Co

n− i+ 1
where Co is the cost of an optimum cover.

In iteration i, the greedy choice is more cost effective than any left over set of the optimal
cover. Suppose the cost-effectiveness of the best set in the optimal cover is C ′/U ′, i.e.

C ′/U ′ = min
{
C(Si1

)

Si1
−S ,

C(Si2
)

Si2
−S . . .

C(Sik
)

Sik
−S

}
where Si1 , Si2 . . . Sik forms a minimum set cover. It

follows that

C ′/U ′ ≤ C(Si1) + C(Si1) + . . . C(Si1)

(Si1 − S) + (Si2 − S) + . . . (Sik − S)
≤ Co
n− i+ 1

6It is a lower bound to the optimal solution - for the balanced partition, it is the maximum integer less
than B/2.

30

So w(xi) ≤ Co
n−i+1 .

Thus the cost of the greedy cover is
∑

i
Co

n−i+1 which is bounded by Co · Hn. Here

Hn = 1
n + 1

n−1 + . . . 1.

Exercise 9.5 Formulate the Vertex cover problem as an instance of set cover problem.
Analyze the approximation factor achieved by the following algorithm. Construct a maximal
matching of the given graph and consider the union C of the end-points of the matched
edges. Prove that C is a vertex cover and the size of the optimal cover is at least C/2. So
the approximation factor achieved is better than the general set cover.

9.4.3 The metric TSP problem

If the edges of the graph satisfies triangle inequality, i.e., for any three vertices u, v, w C(u, v) ≤
C(u,w) +C(w, v), then we can design an approximation algorithm for the TSP problem as
follows.

Metric TSP on graphs
Input: A graph G = (V,E) with weights on edges that satisfy triangle inequality.

1. Find a Minimum Spanning Tree T of G.

2. Double every edge - call the resulting graph E′ and construct an Euler tour T .

3. In this tour, try to take shortcuts if we have visited a vertex before.

Claim 9.5 The length of this tour no more than twice that of the optimal tour.

MST ≤ TSP , therefore 2 ·MST ≤ 2 · TSP . Since shortcuts can only decrease the tour
length (because of the triangle inequality), the tour length is no more than twice that of
the optimal tour.

9.4.4 Three colouring

We will rely on the following simple observation. If a graph is three colourable, its neigh-
bourhood must be triangle free (or else the graph will contain a four-clique) i,e,, it must be
2 colourable,

Observation 9.1 A graph that has maximum degree ∆ can be coloured using ∆+1 colours
using a greedy strategy.

Use a colour that is different from its already coloured neighbours.
Given a 3-colourable graph G = (V,E), separate out vertices that have degrees ≥

√
n

- call this set H. Remove the set H and its incident edges and denote this graph by
G′ = (V ′, E′). Note that G′ is 3-colourable and all vertices have degrees less than

√
n

31

and so from our previous observation, we can easily colour using
√
n + 1 colours. Now,

reinsert the the vertices of H and use an extra |H| colours to complete the colouring. Since
|H| ≤

√
n, we have used at most 2

√
n colours.

It is a rather poor approximation since we have used significantly more colours than
three. However, it is known that unless P = NP, any polynomial time colouring algorithm
will use Ω(nε) colours for some fixed ε > 0.

9.4.5 Maxcut

Problem Given a graph G = (V,E), we want to partition the vertices into sets U, V − U
such that the number of edges across U and V −U is maximized. There is a corresponding
weighted version for a weighted graph with a weight function w : E → R.

We have designed a polynomial time algorithm for mincut but the maxcut is an NP-
hard problem. Let us explore a simple idea of randomly assigning the vertices to one of the
partitions. For any fixed edge (u, v) ∈ E, it either belongs to the optimal maxcut or not
depending on whether u, v belong to different partitions of the optimal maxcut Mo. The
probability that we have chosen the the right partitions is at least half. Let Xe be a random
0-1 variable (also called indicator random variables) that is 1 iff the algorithm choses it
consistently with the maxcut. The expected size of the cut produced by the algorithm is

E[
∑
e

w(e) ·Xe] =
∑
e

w(e) · E[Xe] ≥Mo/2

Therefore we have a simple randomized algorithm that attains a 1
2 apprximation.

Exercise 9.6 For an unweighted graph show that a simple greedy strategy leads to a 1
2

approximation algorithm.

32

