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Abstract

The following pages contain preliminary version of the lectures and problems on
Discrete Structures. The notes are likely to contain errors, in particular typographic.
I will endeavour to update this every week.



Chapter 1

Preliminaries

A set is a collection of objects. The objects of a set are called members or elements.
Two sets are equal iff they have the same members. Usually we do not count repeated
elements more than once - when we do they are called multisets. Sets may contain
finite or infinite number of elements. A set that does not have any element is called
empty and is denoted by ¢. Some common set identities are

e Idempotency

e Commutativity

Associativity

e Distributivity

Absorption
e De Morgan’s Laws

The power set of a set A is the collection of all distinct subsets of A (including
phi) and is denoted by 24. A partition of A is a collection of subsets A;, Ay ... such
that U;A; = Aand A;NA; = ® for all ¢ # 5.

1.1 Relations and Functions

A Cartesian product of two sets A and B denoted by A x B is the set of all ordered
pairs (a,b) with a € A and b € B. A binary relation R is a subset of A x B.
The definitions for Cartesian product and relations have natural extensions to k-fold
Cartesian product and k-ary relation.



Definition 1.1.1 A relation R C A x A is reflexive if for all a € A, (a,a) € R.
A relation is symmetric if (b,a) € R whenever (a,b) € R. A relation is anti-
symmetric if (b,a) € R then (a,b) ¢ R. A relation is transitive if (a,c¢) € R
whenever (a,b) € R and (b,c) € R.

Definition 1.1.2 A binary relation that is reflexive, symmetric and transitive is
called a equivalence relation.

A binary relation that is reflexive, antisymmetric and transitive is called a partial
order.

A partial order is a total order if for every pair of distinct elements a, b, either (a, b)
or (b,a) belongs to the partial order.

We often use the notation a ~ b to denote that a, b are related under the equiv-
alence relation ~. For a € S, the set of elements [a] = {x € S|z ~ a} is called the
equivalence class of a.

Theorem 1.1.3 The equivalence classes of an equivalence relation on a set S con-
stitute a partition of S.

Proof: Since a ~ a, a € [a]. If [a] and [b] are two distinct equivalence classes where
b ¢ [a], we must show that [a]|N[b] = ¢. Suppose ¢ € [a]N[b], then a ~ ¢ and ¢ ~ b and
therefore from transitivity a ~ b. This implies that b € [a] which is a contradiction.
O

A function f is defined from a set of objects called domain to another set called range
or co-domain. Intuitively, f associates for each element of the domain a unique
element of range. Often we represent a function by f : A — B and f(a) to denote
the element (of the range) to which a € A is mapped by f. Sometimes f(a) is called
the image of a (under f) or a as the inverse image of f. The definition of a function
also naturally extends to k-ary functions, i.e., f has k arguments. Another view is to
think of A as a set of ordered £ tuples.

Definition 1.1.4 A function f : A — B is onto if each element of B is an image
of at least one element of A. f is one-to-one if for two distinct a,d’, f(a) # f(a').
A function f is a bijection if it is one-to-one and onto.

Bijections are especially useful for counting problems, For example, if we can find
a bijection between (finite) sets A and B, then the number of elements in A equal
that in B. The use of one-to-one functions are even more useful for comparing the
number of elements in infinite sets.



1.2 Counting and comparing infinite sets

The motivating question for this topic is ” Are there more reals numbers than rationals
?” Both sets R (set of Real numbers) and Q (the set of rationals are infinite sets, so
how can we distinguish between the sizes of these sets. Similarly, we may want to
find the compare the set of integers with rationals.

Definition 1.2.1 Two sets A and B are called cardinally equivalent, iff there is a
bijective function f: A — B and this will be denoted by #(A) = #(B).

Example 1.2.2 : Let A be a finite non-empty set, then there exists a unique
integer n such that A is cardinally equivalent to {1,2,...n}. Then we say that A has
n elements.

Example1.2.3 : Let E be the set of even positive integers. Then #(E) = #(Z™")
where Z* is the set of all positive integers using the function f : #(E) — #(Z")
where f(n) = n/2. This function is bijective, so intuitively the number of integers is
the same as the number of even integers.

Definition 1.2.4 A set S is countably infinite iff #(S) = #(Z™). A set is countable
iff S is finite or countably finite.

Theorem 1.2.5 Fvery subset of a countable set is countable. A countable union of
a countable set is countable.

Proof: For the first part, renumber the integers whose images are in the subset (i.e.
the subsequence of {1,2...n}). For the second part, simply construct a sequence
that traverses the subsequences ”diagonally.” O

Lemma 1.2.6 The set of reals, R is uncountable.

Definition 1.2.7 If there exists an surjective (onto) function f : A — B, then
#(A) < #(B). Equivalently there is an injective (1-1) mapping g : B — A.
If #(4) < #(B) and #(A) # #(B), then #(4) < £(B).

Example1.2.8 : If A C B, then #(A) < #(B). Consider the subsequence of the
identity map(it is an onto map).

Theorem 1.2.9 If S any set then #(S) < #(2%), i.e. there is no bijection between
a set and its powerset.



1.3 Principle of Induction

One of the most useful proof techniques in discrete structures is the principle of
induction. There are two well known (equivalent) formulations of this. To distinguish
between these we will give them different names.

Principle of Mathematical Induction

Let P(i) denote a predicate that is defined for an integer i. If P(0) is true
and for all i, P(i + 1) is true whenever P(7) is true, then P(i) is true for
all integers 1.

Principle of Complete Induction

Let P(i) denote a predicate that is defined for an integer i. If P(0) is true
and for all i P(i+1) is true whenever P(j) is true for all j < 4, then P ()
is true for all integers i.

Remark Although these are equivalent, we will find the second form easier to apply
in most situations.

Problem Set
1. Let S = {(z,y)|z,y are reals}. If (a,b) and (c, d) belong to S, define (a, b) R(c, d)

if a® + b? = ¢? + d?. Prove that R is an equivalence relation.

2. Let S be the set of real numbers. If a,b € S, define a ~ b if @ — b is an integer.
Show that ~ is an equivalence relation.

3. Let S be a set of integers. If a,b € S, let aRb, if a-b > 0. Is R an equivalence
relation on S? How about the relation R’ where aR'b if a + b is even 7

4. Give examples of relations that are

e reflexive and symmetric but not transitive
e reflexive and transitive but not symmetric

e symmetric and transitive but not reflexive
5. Show that for every positive integer n, show that 22*~! is divisible by 3.

6. Show that for every positive integer n and every real number . (cos + isin6)"
cos nb + isinnf.

7. Fundamental Theorem of Arithmetic Every integer greater than 1 is a
prime or a product of primes and the product is unique up to the order of the
factors. Prove the existence part using induction.

8. Show that the set Q x Q is countable.



Chapter 2

Basic Counting

2.1 Permutation and Combinations

A fundamental problem involving discrete structures is counting the number of ob-
jects/events satisfying some property. This includes the possibility if such a subset
exists at all (existence problem). A more difficult version is choosing the best according
to some criterion, namely optimization.

Two elementary rules are extensively used for counting, namely the Addition
Principle and the Multiplication principle.

Definition 2.1.1 [Addition Principle| If one event can occur in m ways and another
in n ways then there are m + n ways in which one of the two events can occur.

Note that the two events cannot occur simultaneously.

Definition 2.1.2 [Multiplication Principle] If one event can occur in m ways and
another event can occur in n, independently of each other, then there are m x n ways
in which both events can occur.

Example2.1.3 :  To choose two books of different languages among 5 books in
Latin, seven books in Greek and 10 books in Sanskrit, there are 5x7+5x10+7x10 =
155 ways since there are 5x 7 ways to choose a Latin and a Greek book (multiplication
principle), 5 x 10 ways to choose a Latin and a Sanskrit book and 7 x 10 ways to
choose a Greek and a Sanskrit book. Finally, we must choose only one of the pairs,
so the answer follows from the Addition principle.

It is not difficult to formally prove the two principles. We can use inducion in the
following manner to prove the Addition Principle.
Induction Hypothesis For m of events of type 1 and 7 events of type 2, i > 0, the



number of events of either type is m + i.

Proof: By induction on ¢. The base case is clearly true, i.e. when there are no events
of type 1. Suppose it is true for k events of type 2, namely there are m + k eents.
When there are k + 1 events of type 2, then there are two distinct possiblities - either
k + 1st event occurs or it doesn’t. Theefore, by invoking the induction hypothesis,
the total number of possibiliies is n + k + 1. O

Similarly one can prove the Multiplication Principle as well as the following gen-
eralizations given in exercises.

Definition 2.1.4 [Permutation and Combination| A permutation of n distinct
objects is an arrangement or ordering of the n objects. An r-permutation of n
distinct objects is an arrangement using r out of the n objects. An r-combination
of n distinct objects is an unordered selection (subset) of size r.

We will denote r-permutation and r-combination of n objects by P(n,r) and C(n,r)
respectively.

From the multiplication principle, we obtain

P(n,2) =n(n—1) P(n,3)=n(n—-1)(n—2)
P(n,n)=n(n—-1)(n—-2)...1 = n! (n factorial)
Pn,r)=nn-1)...(n—r+1) = (n’_L—'T)'

To obtain a formula for r-combination, we will make use of an indirect technique.
For every distinct r-subset, there are P(r,r) distinct arrangements. Let us number
the distinct r-permutations in some order say I1, I1, ... II; where ¢t = P(n,r). We can
group them in a way such that each group corresponds to a distinct r-subset. From
the previous observation, each group has P(r,r) members. Therefore

_ P(n,n) n!
P(r,r)  (n—r)xr!

Caveat We could have invoked multiplication principle, but we have to be careful
about setting up the events appropriately. One of the most common pitfalls of count-
ing problems is the temptation of applying the formulae carelessly. The formulae are
usually simple but one must be careful about the applicability in a specific situation.

2.2 Distribution problems

The problem of counting the number of ways to distribute r objects in n cells shows
up in different contexts and is also referred to as occupancy problems. Let us consider



the following cases depending on distinguishable and distinguishable objects. The
cells are distinct and can be numbered as Cy,Cy...C,.

We will first consider the distinguishable objects case and further separate out
the situations where there can be at most one object per cell or the unrestricted
case (any number). In the unrestricted case, there are n choices for every ball and
since these are independent, the number of possibilities is n" from the multiplication
principle. In the restricted case, i.e. at most one object per cell, suppose r < n.
Any distribution corresponds to an arrangement of r labels from the set {1,2...n},
namely, the labels of the occupied cells, where the i-th label indicates the placement
of the i-th object. This is clearly P(n,r). If n < r, then each distribution corresponds
to an arrangement of n labels from the set {1,2,...7}, namely the objects that are
alloted to cells C ...C,. This is the same as P(r,n).

If the objects are indistinguishable, then in the unrestricted case, two distribu-
tions are equivalent, if the number of objects in each cell remains same (although the
labels of the balls may be different). Each configuration can be described as a vector
(21,2, ...2,) where z; denotes the content of the i-th cell. Moreover Y ! z; = 7.
Consider n — 1 markers and look at any configuration of r balls and n — 1 markers.
Interpret the number of objects between the j and j 4+ 1st marker as the content of
the j-th cell (make appropriate adjustments for the end markers). Notice that by per-
muting the (indistinguishable) markers among themselves and the (indistinguishable)
objects among themselves the cell-contents do not change. So the number of distinct
distributions (where two distributions are different if they differ in one or more cell
contents) is given by PIET(L"_JZJ_IiT)L:;_T{)T) = C(n+r—1,r). The above argument can be
made more rigorous by invoking the Addition and Multiplication Principles.

In the restricted case (at most one per cell), the corresponding formulae for r < n
is C'(n, 7). Let us formalise the arguments since these have a very intuitive connections
with the corresponding figures of the distinguishable case. Let us consider the set of
distinct distributions for the distinguishable objects when r» < n. As noted above,
these can be represented as strings of length r over the labels {1,2...n}. Two
strings sq, S2. .. s, and s}, S5 . . . s, represent identical distribution for indistinguishable
objects if one can be permuted into the other, i.e., they contain the same labels.
Therefore, we can group the strings into equivalence classes, where a class corresponds
to strings over the same labels.

Claim 2.2.1 The number of classes is equal to the number of distribution of indis-
tinguishable objects. Moreover each class contains exactly r! strings.

Proof: Since the set of labels are different for two classes, the number of possible
distributions is not less than the number of classes. Moreover, each distribution
corresponds to set of labels, so the number of distribution cannot exceed the number
of classes. Therefore they are equal. (Basically z < y and y < z implies z = y).

7



For the second part of the claim, note that each distinct permutation of (a fixed set
of) labels represent a different distribution for distinguishable objects. O

From the above claim it follows that the number of distributions for distinguishable
objects equals 7! times the number of distributions for indistinguishable objects. This
gives us the required result as P(n,r) = C(n,r) x rl

A new situation emerges if we fix the number of each type of objects (as opposed
to having an unlimited number of each object). Suppose we have r; objects of type
1, such that Zf r; < n. Note that the r; objects are indistinguishable. Then the
possible distributions is equal to

n!

C(nyry,roy...TK) =
(ni71, 72 k) r! X el X Lol X (n—1y — 1oL mg)!
This follows from the observation that for the r; objects of type 1, the number of
choices for placements is C(n, r1), for object 2, the number of choices is C'(n —r1,73)
and so on. The result follows from the Multiplication principle.

Remark 2.2.2 Note that the value of the above expression does not depend on the
order in which the types are chosen.

Problem Set

1. If there are k events E1, Fs ... Ey, where E; has n; possibilities then show that

e There are n; + ny...n, ways in which one of F; can occur.

e There are n; X ny ...ng ways in which all the events can occur (if they are
independent of each other).

2. Show that C'(n,r) =C(n—1,r—1)+C(n—1,7).
Instead of applying the formula, you may want to argue using the addition
principle. Consider all distinct subsets that contain a fixed object and those
subsets that do not contain this fixed object. The above is an example of
a recurrence equation that will be addressed later in the course. The above
identity can be used to derive a formula for C'(n, r) thus inverting the process.

3. In how many ways can you choose r objects out of n different kinds where there
are unlimited number of objects of each type ?

4. How many ways are there to place two identical queens on an 8 x 8 chess board
so that the queens are not in a common row, column or diagonal.



10.

11.

12.

13.

14.

15.

16.

17.

How many different rectangles can be drawn on an 8 x 8 chess board (rectangles
can have lengths 1 through 8 and two rectangles are different if they contain a
different subset of squares).

. What is the probability that a 4-digit telephone number has one or more re-

peated digits ?

. There are six French books, eight Russian books, and five different Spanish

books. How many ways are there to arrange the books in a row with all books
of the same language consecutively arranged ?

. How many ways are there to assign 10 students to 10 out of 20 sections ?

A man has n friends and invites a different subset of four of them to his house
for a year (365 nights). How large must n be ?

What is the probability that the difference between the largest and the smallest
numbers is k£ in a subset of four different numbers chosen from 1 to 20 ( 3 <
kE<19)7?

How many points of intersection are formed by the chords of an n-gon (a regular
polygon with n sides) assuming that no three chords meet at a common point ?
How many line segments are formed by the intersections - note that if a chord
has k intersection points then it has k£ + 1 segments.

How many integer solutions are there to the equation x; + x9 + 23 + x4 = 12 |
with z; > 0 7 How many solutions are there with z; > 1 ?

In how many ways can you distribute 20 distinct flags into 12 distinct flagpoles
if in arranging the flags on the poles, the order from the ground up makes a
difference 7

In how many ways can you distribute r identical balls into n distinct boxes with
the first m boxes collectively containing at least s balls ?

Eleven scientists are working on a secret project. They wish to lock up the
documents in a cabinet such that the cabinet can be opened if and only if six
or more scientists are present. What is the smallest number of locks required ?
What is the smallest number of keys that each scientist must carry ?

In how many ways can three numbers be selected from the numbers 1,2...300
such that their sum is divisible by 3 7

Show that (k!)! is divisible by (k)!* "',

9



18.

19.

20.

A binary string is a sequence of 0’s and 1’s. How many binary strings of length
n contain an even number of 0’s 7 If strings are over the alphabet {0, 1,2}, then
show that the number of strings where 0 appears an even number of times is
(3" +1)/2.

A boolean function can be represented using a tabular form where all the n-digit
binary numbers are listed along with the function values. How many boolean
functions are possible ?

A self-dual boolean function is a table which remains unchanged if all the 0’s
and 1’s are swapped. How many self-dual boolean functions are there ?

A symmetric boolean function is one that remains unchanged for any permuta-

tion of the n input columns. How many symmetric boolean functions are there
‘?

A system consists of four identical particles. The total energy in the system is
4F, where F, is a positive constant. Each of the particles can have an energy
level equal to kF, ( k = 0,1..4). A particle with energy kE, can occupy one
of the k? + 1 distinct energy states at that energy level. How many different
configurations (in terms of energy states occupied by the particles) can the
system have ?

10



Chapter 3

Introduction to Graphs

A graph G = (V, E) consists of a finite set V' of vertices and a set E of edges which are
ordered pairs of vertices. Schematically, we represent graphs using a set of points that
denote vertices and edges by an arc joining the two defining vertices with an arrow
indicating the ordering of the vertices. An undirected graph doesn’t have directions
associated with an edge. If we think about the edges as roads connecting vertices
then in the undirected case we can traverse the edge in either direction where as the
(directed) graph is like one-way streets. Unless stated otherwise a graph will be used
to imply the undirected version.

There are several generalization of the basic definition. If the set of edges form a
multiset, i.e., some edges have multiple instances, then it is a multigraph. One way
to represent a multigraph is to label the edges with an integer denoting the number
of occurrences of the edge. This may be regarded as a weighted graph, where each
edge has an associated (integral) weight. In some cases, we will allow weights to be
arbitrary real numbers.

A more complicated structure is a hypergraph where the edges correspond to ar-
bitrary subsets of vertices (and not necessarily pairs of vertices). The choice of a
certain class of graphs depends on the application.

Graphs can be used to model very complex problems and some of the most intu-
itive examples are problems related to communication networks. A flowchart can be
thought of as a graph where the nodes represent instructions and the edges indicate
the flow of control.

3.1 Representation of graphs

Graphs can be represented as a list of edges associated with every vertex. If there
are m = |FE| edges and n = |V| vertices then the size of the representation is roughly

11



m+n (Why ?).

Another representation is using matrices of dimensions n x n. If Ag is the matrix
corresponding to graph G = (V, E), then A, ; = 1if (4,j) € E and 0 otherwise. Here
we are assuming that the vertex set is {1,2,...n}. The size of this representation is
n? irrespective of the number of edges.

The motivation for having a good representation of graphs is to use computer
programs for solving graph problems. The above two representations can be easily
converted into appropriate data-structures.

3.2 Reachability in graphs

The neighbourhood of a vertex v € V is the set of vertices W C V such that for all
w € W, (v,w) € E. The number of vertices in the neighbourhood N(v) of a vertex
v is called the degree of v.

Definition 3.2.1 A path is a sequence of vertices (z1, s . ..xx) such that z;, ;1 is
an edge of the graph. A path is simple if there is no repetition of vertices. If x; = x;,
then the path is called a cycle.

3.2.1 Tours and cycles

A cycle that visits every vertex exactly once is called a Hamiltonian cycle. It is an
extremely hard algorithmic problem to detect if a Hamiltonian cycle exists.

A cycle that visits every edge exactly once is called a Euler’s path. Historically,
the origin of the problem is known as the Konigsberg bridge problem. Two islands
and two banks of the river Pregel were connected by seven bridges (see Figure ?7 )
and the problem is to make a tour passing through every bridge exactly once. Euler
gave a very simple necessary and sufficient condition for such a tour to be feasible,
namely every vertex should be of even degree. In the case of directed graphs, the
equivalent condition is that for every vertex, the indegree equals the outdegree.

3.2.2 Connectivity

One of the basic problems in graphs is connectivity, namely if there exists a path
between every pair of vertices. We will assume that a vertex is connected to itself.

Definition 3.2.2 A set of vertices C' form a connected component if for every
u,v € C there is a path from u to v. Moreover for all x ¢ C, C U {z} is not a

12



connected component, i.e. C' is maximal. If C' includes all vertices in the graph, then
the underlying graph is connected.

Remark Note that for directed graphs, a path of u to v is not the same as a path
from v to u.

There are several algorithms for verifying if a given graph is connected, the most
notable being Depth First Search and Breadth First Search. Among other conse-
quences of these search techniques, they produce Spanning Forest, which is a special
kind of a sub-graph.

Definition 3.2.3 A subgraph S = (W, F) of a graph G = (V, E) is graph such
that W C V and F' C E. A subgraph is a tree if it is connected and removal of any
one edge disconnects some pairs of vertices, i.e. it is a minimal connected graph. A
set of disjoint trees is called a forest.

Lemma 3.2.4 The number of edges in a tree, m is related to the number of vertices
n by the formula m =n — 1.

Corollary 3.2.5 If there are k trees in a forest with m edges and n vertices then
m=n—k.

Lemma 3.2.6 In a tree, there is a unique path between every pair of vertices.

Remark This is equivalent to saying that there are no cycles in a tree.

3.2.3 k-connectivity
A measure of how well-connected a graph is related to the following question -
Does the graph remain connected if any subset of k£ vertices is removed ?

This is clearly motivated by the problem of node-failures in a communication network
where we may have to find alternate routes. The same question can be posed with
respect to a set of edges.

Definition 3.2.7 A graph is k vertex-connected if removal of any k — 1 vertices
does not disconnect the graph. A graph is k edge-connected if the graph remains
connected after removing any set of £ — 1 edges.

A classic theorem on k-connectivity can be stated as follows

Theorem 3.2.8 (Menger) Let s and t be distinct vertices of a graph G. Then the
minimal number of vertices that must be removed to separate s from t is the mazimum
number of vertex-disjoint paths between s and t.

13



Remark The same holds true for edge-disjoint paths and edge-connectivity. The
minimum number of vertices (edges) that must be removed to disconnect a graph is
called the vertex (edge) connectivity of the graph and is usually denoted by x ().

3.3 Some special classes of graphs

A graph is called bipartite, if its vertices can be partitioned into two sets Vi, V5, such
that there there are no edges between the vertices in V7 (respectively V5).

Lemma 3.3.1 A graph is bipartite if and only if all the cycles are of even length.

A matching in a graph G = (V) E) is subset M C FE such that no two edges
share an endpoint. A matching M is mazimal is there is no matching M’ such that
M C M'. A matching is mazimum id there is no larger matching. A matching is
perfect if all vertices are matched.

Let M be a matching. A path P is called an M-alternating path if its edges
alternate between edges in M and E—M. An M-alternating path is an M-augmenting
path if P starts and ends with vertices that are not matches in M.

Theorem 3.3.2 (Berge) M is mazimum iff there is no augmenting path.

In a bipartite graph, if all the vertices in V; are matched then these vertices are
saturated.

Theorem 3.3.3 (Hall) In a bipartite graph G = (V1UVs, E), there exists a matching
that saturates all vertices in Vi iff for all S C Vi, |N(S)| > |S| where N(S) is the set
of all vertices in Vo that are connected to S by edges in E.

A graph is planar if it can be drawn on a plane without the edges crossing. (Strictly
speaking, if the graph can be embedded on the sphere without edges crossing). It
is known that every planar graph has a straight line embedding (i.e. all edges are
straight line segments).

Lemma 3.3.4 (Euler’s formula) If G is a connected planar graph, then any plane
graph embedding of G that has v vertices, e edges, and r regions satisfies v+r—e = 2.

A very elegant theorem due to Kuratowsky, gives a necessary and sufficient con-
dition for a graph to be planar.

Theorem 3.3.5 (Kuratowski) A graph is planar iff it doesn’t contain any subgraph
homeomorphic to K; (the complete graph on five vertices) or Ks 3 (complete bipartite
graph on 6 vertices).
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Definition 3.3.6 A colouring of a graph assigns colours to vertices such that no
two adjacent vertices have the same colour. The minimal number of colours required
for a graph G is called the chromatic number and is usually denoted by x(G). An
edge-colouring of a graph is a colouring of the edges such that no two edges that are
incident on the same vertex get the same colour.

Clearly bipartite graphs are two colourable. One of the classic colouring theorems
concern planar graphs.

Theorem 3.3.7 (four-colour theorem) FEvery planar graph is 4-colourable.

There are many natural problems that can be modelled as graph coloring.
Example 3.3.8 : In a school each teacher has to teach a certain number of
classes and each class must be taught by a certain number of teachers. The obvious
constraints about scheduling the classes is that a teacher cannot teach two classes
simultaneously and a class cannot be taught by two teachers. We are interested in
scheduling the classes in a way that takes minimum number of hours (the duration
of a lecture). It is not difficult to see that a valid scheduling corresponds to colouring
the edges. So the answer to this problem is the minimum number of colours required.
The following is an important result on edge-colouring.

Theorem 3.3.9 (Vizing’s Theorem) If the mazimum degree of a graph is d, then
we need d or d+ 1 colours to colour the edges.

3.4 Problem Set

1. In a graph that has exactly two vertices of odd degree, there is a path connecting
these vertices.

2. Prove or disprove
The union of any two distinct paths (not necessarily simple) joining two vertices
contains a cycle.

3. A graph is connected if and only if for any partition V into two subsets V; and
V5, there is an edge joining a vertex in V; with a vertex in V5.

4. In a connected graph, any two longest paths have a point in common.

5. It a graph G is not connected, then the complement of G, G is connected.
(G = (V,E), where (v,w) € Eiff (v,w) ¢ E)

6. If 0 is the minimum degree of a vertex and x and A are the vertex and edge
connectivity, show that kK < A <.
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10.

11.

12.

13.

14.

15.

16.

Show that any graph has two vertices of equal degree.

Show that d; < dy < ...d, is the degree sequence of a tree iff d; > 1 and

Show that a tree is 2-colourable.

Let G = (V, E) be a directed graph A. A covering is a partition of the arcs
and in paths and cycles such that £ = U; E; where E; is a path or a cycle and
E,NE; = ¢ for i # j. A covering minimum £ is called a minimal covering.
Prove that if the graph is a directed connected Euler graph then it has a unique
minimal cover, namely the Euler cycle.

Hint: First show that the cover can contain only cycles and then show that it
has exactly one cycle (by merging cycles).

A connected graph has an Euler circuit if and only if it can be partitioned into
simple cycles.

There are n teams in a round-robin tournament. Show that they can be ordered
according to their winning records such that each team immediately precedes a
team that it has beaten. (This ordering is not unique).

Eleven students plan to have dinner together for several days. They will be
seated in a round table and the plan calls for each student to have different
neighbors each day. How many days are needed 7

If a graph has maximum degree d then show that it can be coloured using d + 1
colours. Also show that if a graph has O(|V|) edges then it can be coloured
using O(v/V) colours.

Show that the vertices of any graph can be partitioned into two sets such that
for every vertex, the set of neighbours is equally distibuted into the two groups.

If every vertex has degree at least |V'|/2 then there is a simple cycle consisting
of all vertices.
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Chapter 4

Counting techniques

The basic methods of counting using permutations and combinations are sometimes
not adequate or are too complex to apply in many situations. There are many tech-
niques that have been developed for specific problems which have grown from ad hoc
to fairly general principles. We discuss three such techniques in this chapter - namely
pigeon-hole, principle of inclusion and exclusion and one of the most successful
in recent years called the probabilistic method.

4.1 The pigeon hole principle

It is based on a very simple observation that if more than n items are distributed in
n pigeon-holes then at least one of them will have more than one item.
Example4.1.1 : At least two vertices in a graph have the same degree. (Exercise
problem in previous chapter)

Since there are n vertices and all the degrees must be in the range [1,2...n — 1], at
least two vertices must fall in the same value of the range.

A lot of geometric packing problems fall under this category.

Example4.1.2 :  Show that five points cannot be placed in an unit square such
that every pair is at least unit distance apart.

A very common usage of this principle is that if the weighted sum of n items is w
then no more than a % of them can exceed k times the average weight (k is a positive
integer). This is often known as Markov’s inequality for expectation.

A classic application of the pigeon-hole is to the following problem also known as
the Erdos-Szekeres theorem.

Theorem 4.1.3 In any sequence of more than (r — 1) - (s — 1) different numbers
there is an increasing subsequence of v terms or a decreasing subsequence ofs terms

17



or both. Roughly speaking, in a sequence of length n there is an increasing or a
decreasing subsequence of length [\/n].

Proof For each number n; of the sequence, let us label with (x;,y;) which are the
lengths of the largest increasing/decreasing subsequence beginning/ending at n;. If
there is no increasing/decreasing subsequence of length r/s, 1 < z; < r — 1 and
1 <y; <s—1. Since there are more than (r — 1) - (s — 1) numbers, some pair must
be repeated - say z; = z; and y; = y; for j > 4. If n; <n; then z; > x;, else y; > y;.

4.2 Principle of Inclusion and Exclusion

This is easier to understand in terms of sets of objects. It is very easy to show that
for sets X and Y
XUY|=|X|+|Y|-|XNnY]|

In general suppose there are N objects that have various properties numbered
{1,2,...k} (for convenience). Each object has none or many of these properties. Let
N; be the number of objects with property ¢ and Ng be the number of objects that
have properties S C {1,2,...k}. If we use Ny to denote the number of objects that
have none of the properties then

No=N — (Z N;) + (Z Nij) — (Z Nijp) oo+ (=1)"Nigax
i irj i,k

The proof of this can be worked out along the following lines. If an object does
not satisfy any of the properties, then it contributes exactly 1 to both sides. Consider
an object that satisfies exactly r > 1 properties. Then it contributes —r to the first
summation, C(r,2) to the second summation, (—1)'C(r,4) to the i-th summation.
Therefore it is

1-C(n,0)+C(n,2)...(-1)F =0

which is exactly what it contributes to the left hand side.
Example4.2.1 :  Euler’s totient function Let m be a positive integer whose
distinct prime factors are p;, ps . ..p,. Then the number of integers that are relatively
prime to m (i.e. no common factors other than 1) is

oty =m (1) (1-5) - (1-7-)

Example4.2.2 :  Show that the number of permutations of {1,2,...n} such that
for all 4, 7 does not map to the position i (also called derangement) is

1 1 1
(= — = .. (=1)"=
n! (2! 3!...( 1) n!)
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4.3 The probabilistic method

Consider an experiment where there are a number of possible outcomes that we call
the sample space. An event corresponds to a subset of the sample-space S; that is
it corresponds to some outcomes of the sample-space. Historically Laplace defined
probability of an event E as

Probability of E = @
S|
where |.| denotes the number of outcomes. This definition is applicable where all
outcomes are equally likely. The above formula can be used to count the number of
outcomes of F if we know the probability. This method is particularly useful when
we are interested in a bound on |E| rather than the exact count which is harder to
obtain.

The notions of independent events and conditional probability are very useful in
this regard. We give a very brief account of the basics of probability theory at the
end of this chapter.

We motivate the use of the probabilistic method with the following problem.
Given six people, where every pair of persons either know eachother or they are
strangers, show that there always exists a set of three people who are mutually known
or mutually strangers.

We do a case analysis from the perspective of any of the six persons (say person
1), he knows at least three others or doesn’t know at least three persons among the
remaining five. Consider the case that he knows three (the other case is symmetric),
say X, Y, Z, we can easily argue that either X, Y, Z are mutually strangers or at least
two among them know eachother (and of course know person 1).

The above problem can be posed as an equivalent problem in edge colouring,
where in Kg, if we two colour the edges, then there is a monochromatic (all edges
with same colour) triangle. The drawback with the previous solution is that it is very
difficult to argue similar properties with somewhat larger number of vertices, even
10, using case analysis. You can try to convince yourself by trying to showw that in
K3 there is a monochromatic K.

We now show the application of a new method based on probabilistic arguments.
Example4.3.1 :  Let R(k,t) be the minimal n such that when complete graph
K, is edge coloured using blue and red colours, either there is a red K; or a blue K.
Using case analysis, one can show that K3 contains either a red triangle or a blue
triangle.
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For larger values of n, case analysis becomes intractable. Here is an alternate
argument. Suppose we colour the edges of K, red and blue choosing each colour with
equal probability. So the sample space consists of all possible colourings of K,,. The
probability that a set S of k vertices is monochromatic is py = W corresponding
to the two colours. The probability that any of the C'(n, k) K} are monochromatic is
less than ) pi - C(n, k)-. (Note that the probability of the union of events is no more
that than the sum of the probabilities of the individual events). If this probability is
less than 1, it implies that among the sample space of all possible colourings of K,
there exists some colouring where all the C(n, k) cliques are not monochromatic,
ie. R(k,k) > n.

Our next example is an important problem in graph theory. A dominating set U
of an undirected graph G = (V, E) is a subset U C V such that every vertex has a
neighbour in U. The problem of computing a minimum cardinality dominating set
is very hard (algorithmically intractable. But we can prove some interesting bounds
using the probabilistic method.

Example4.3.2 : If the minimum degree of a graph is §, then there is a dominating
set of size at most n - (1 4 log(d +1))/(6 + 1).

Pick every vertex independently with probability p = log(d +1)/(d + 1) and let X
denote this sample. Let Y be the set of vertices in V' that do not have a neighbour in
X. The probability that a vertex v does not have a neighbour in X is the probability
g that neither v nor any of the 6 neighbours were picked in the sample which is

(1—1log(d +1)/(6 +1))°*!

So the expected size of Y is ng expected size of X is np and using the linearity of
expectation E[X + Y] = n(p+ ¢q) which works out to be < n-(1+log(d+1))/(5+1).
This means that there is some choice of X for which there is a dominaing set (X UY)
of the required size. In fact we can claim something stronger that by choosing the
vertices randomly the probability that the dominating set exceeds twice the stated
bound is less than half (Markov’s inequality).

4.4 Problem Set

1. There are n letters which have corresponding n envelopes. If the letters are put
blindly in the envelopes, show that the probability that none of the letters goes
into the right envelope tends to % as n tends to infinity.

2. How many 1-1 functions exist between {1,2,...m}to{ 1,2, ...n } (for n > m)
?

20



10.

11.

For n < m, show that the number of onto functions is given by

n™ —Cn,1)(n—1"+Cn,2)(n—2)"...(~1)""'C(n,n — 1)1

. There are 10 pairs of shoes in a closet. In how many ways can eight shoes be

chosen such that no pair is chosen 7 Exactly one pair is chosen ?

. Given n + 1 different positive integers < 2n, show that there exists a pair that

adds upto 2n + 1.

Prove that in any n + 1 integers there will be a pair which differs by a multiple
of n. Using this or otherwise show that there exists some subset of n arbitrary
positive integers that whose summation is a multiple of n.

Given an equilateral triangle 7', show that it is not possible to cover 7" with

three circles each of diameter less than %

Show that in a planar graph G = (V, E), there is a constant « < 1 (independent
of the number of vertices or edges) such that there are at least a|V| vertices of
degree less than 12.

Show that among 23 people, the probability that all their birthdays are distinct
is less than 0.5. Assume that for each person all birthdays are equally likely.
Remark You can think of this as a probabilistic analogue of the pigeon-hole
for which there had to be 367 persons to guarantee (with probability 1) that
there was some common birthday. In literature this is known as the birthday
paradox.

. What is probability that when 50 balls are thrown into 100 bins that these fall

into 10 or less bins ?

What is the probability that when you throw m balls in n bins, that (at least)
one of the bins is unoccupied ?

Consider the experiment of tossing a fair coin till two heads or two tails appear
in succession.

(i) Describe the sample space.

(ii) What is the probability that the experiment ends with an even number of
tosses ?

(iii) What is the expected number of tosses ?
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12.

13.

14.

15.

16.

17.

18.

19.

A chocolate company is offering a prize for anyone who can collect pictures of
n different cricketers, where each wrap has one picture. Assuming that each
chocolate can have any of the pictures with equal probability, what is the ex-

pected number of chocolates one must buy to get all the n different pictures
?

In a temple, thirty persons give their shoes to the caretaker who hands back
the shoes at random. What is the expected number of persons who get back
their own shoes.

Imagine that you are lost in a new city where you come across a crossroad.
Only one of them leads you to your destination in 1 hour. The others bring you
back to the same point after 2,3 and 4 hours respectively. Assuming that you
choose each of the roads with equal probability, what is the expected time to
arrive at your destination ?

Gabbar Singh problem Given that there are 3 consecutive blanks and three
consecutive loaded chambers in a pistol, and you start firing the pistol from a
random chamber, calculate the following probabilities. (i) The first shot is a
blank (ii) The second shot is also a blank given that the first shot was a blank
(iii) The third shot is a blank given that the first two were blanks.

A gambler uses the following strategy. The first time he bets Rs. 100 - if he wins,
he quits. Otherwise. he bets Rs. 200 and quits regardless of the result. What
is the probability that he goes back a winner assuming that he has probability
1/2 of winning each of the bets.

What is the generalization of the above strategy ?

Three prisoners are informed by the jailor that one of them will be acquited
without divulging the identity. One of the prisoners requests the jailor to divulge
the identity of one of the other prisoner who won’t be acquited. The jailor
reasons that since at least one of the remaining two will not be acquited, reveals

the identity. However this makes this prisoner very happy. Can you explain this
?

Show that R(s,g) > (s—1)-(g—1)+1 using explicit construction, i.e. describe
a colouring on K, _1).(g-1)-

Verify that R(k, k) > 2*/2 using the probabilistic method. Note that this is a
much superior bound compared to the previous problem.
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20. Let W (k) be the least n such that if the set {1,2,...n} is two-coloured, there
exists a monochromatic arithmetic progression of £ terms. Show that W (k) >
2F/2 ysing the probabilistic method.

4.5 Some basics of probability theory

The sample space €2 may be infinite with infinite elements that are called elementary
events. For example consider the experiment where we must toss a coin until a head
comes up for the first time. A probability space consists of a sample space with a
probability measure associated with the elementary events. The probability measure
Pr is a real valued function on events of the sample space and satisfies the following

1. Forall ACQ,0<Pr[4] <1
2. PrjQ] =1
3. For mutually disjoint events E1, Ey ... ,Pr{U;E;] = >, Pr[E;]

Sometimes we are only interested in a certain collection of events (rather the entire
sample space)a, say F. If F' is closed under union and complementation, then the
above properties can be modified in a way as if F' = ().

The principle of Inclusion-Exclusion has its counterpart in the probabilistic world,
namely

Lemma 4.5.1

PriU;E] =Y Pr[E] - > PrE;NEj]+ > PrE;NE;NE...

1<j 1<j<k

Definition 4.5.2 A random wvariable (r.v.) X is a real-valued function over the
sample space, X : 2 — R. A discrete random wvariable is a random variable whose
range is finite or a countable finite subset of R.

The distribution function Fx : R — (0,1] for a random variable X is defined as
Fx(z) < Pr[X = z]. The probability density function of a discrete r.v. X, fx is given
by fx(z) =Pr[X = z].

The ezpectation of a r.v. X, denoted by E[X]| =) xz-Pr[X =z|.

A very useful property of expectation, called the linearity property can be stated
as follows

Lemma 4.5.3 If X and Y are random variables, then

E[X +Y]=E[X]+ E]Y]
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Remark Note that X and Y do not have to be independent !

Definition 4.5.4 The conditional probability of E; given Es is denoted by Pr[E; |E,]
and is given by
PI‘[El N EQ]

PI'[EQ]
assuming Pr[E,] > 0.

Definition 4.5.5 A collection of events {E;|i € I} is independent if for all subsets
SclI
Pr[NiesEi] = Mies Pr[Ej]

Remark F; and E, are independent if Pr[F;|Es] = Pr[E)].

The conditional probability of a random variable X with respect to another random
variable Y is denoted by Pr[X = x|Y = y] is similar to the previous definition with
events F, Fy as X = x and Y = y respectively. The conditional expectation is defined
as

EX|)Y =y]= ZPrx X =z|Y =y
The theorem of total expectation that can be proved easily states that

E[X]=) EIX|Y =y
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Chapter 5

Recurrences and generating
functions

Given a sequence ay, as...a, (i.e. a function with the domain as integers), a compact
way of representing it is an equation in terms of itself, a recurrence relation. One of
the most common examples is the Fibonacci sequence specified as a,, = a,_1 + a,,_»
forn > 2 and ay = 0, a; = 1. The values ag, a; are known as the boundary conditions.
Given this and the recurrence, we can compute the sequence step by step, or better
still we can write a computer program. Sometimes, we would like to find the general
term of the sequence. Very often, the running time of an algorithm is expressed as
a recurrence and we would like to know the explicit function for the running time to
make any predictions and comparisons. A typical recurrence arising from a divide-
and-conquer algorithm is
oy = 2a, + CN

which has a solution a, < 2¢n[log,n]. In the context of algorithm analysis, we are
often satisfied with an upper-bound. However, to the extent possible, it is desirable
to obtain an exact expression.

Unfortunately, there is no general method for solving all recurrence relations. In
this chapter, we discuss solutions to some important classes of recurrence equations.
In the second part we discuss an important technique based on generating functions
which are also important in their own right.

5.1 An iterative method - summation

As starters, some of the recurrence relations can be solved by summation or guessing
and verifying by induction.
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Example 5.1.1 : The number of moves required to solve the Tower of Hanoi
problem with n discs can be written as

ap, =2a, 1+1
By substituting for a,, ; this becomes
an, = 2%, o +2+1
By expanding this till a;, we obtain
a,=2"tag +2" 2+ ... +1

This gives a,, = 2" — 1 by using the formula for geometric series and a; = 1.
Exampleb5.1.2 :  For the recurrence

asp, = 20, +cCn

we can use the same technique to show that as, = >, _,log, n2'n/2" - c + 2na,.
Remark We made an assumption that n is a power of 2. In the general case, this may
present some technical complication but the nature of the answer remains unchanged.
Consider the recurrence

T(n)=2T(n/2])+n
Suppose T(xz) = cxlog,x for some constant ¢ > 0 for all x < n. Then T(n) =
2¢|n/2] logy|n/2|+n. Then T(n) < enlogy(n/2)+n < cnlogyn—(cn)+n < cnlogyn
for ¢ > 1.

A very frequent recurrence equation that comes up in the context of divide-and-
conquer algorithms (like mergesort) has the form

T(n) =aT(n/b)+ f(n) a,b are constants and f(n) a positive monotonic function

Theorem 5.1.3 For the following different cases, the above recurrence has the fol-
lowing solutions

o If f(n) = O(n'°& =€) for some constant €, then T(n) is ©(n'°& ),

o If f(n) = O(n'°&9) then T(n) is O(n'°8%logn).

o If f(n) = O(n'°8 ") for some constant ¢, and if af(n/b) is O(f(n)) then T(n)
is O(f(n)).
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Example 5.1.4 : What is the maximum number of regions induced by n lines
in the plane ? If we let L, represent the number of regions, then we can write the
following recurrence

Ln SLn,1+TL L0:1

Again by the method of summation, we can arrive at the answer L, = @ + 1.
Exampleb5.1.5 :  Let us try to solve the recurrence for Fibonacci, namely

Fo=F,1+F,_o F=0 F=1

If we try to expand this in the way that we have done previously, it becomes unwieldy
very quickly. Instead we ”guess” the following solution

Fo= = (¢ = ¢")

V5
where ¢ = (1+2‘/5) and ¢ = (1_2‘/3). The above solution can be verified by induction.

Of course it is far from clear how one can magically guess the right solution. We shall
address this later in the chapter.

5.2 Linear recurrence equations
A recurrence of the form
Colr + C10r—1 + Co0r—9 ... + Cxar_i = f(r)

where ¢; are constants is called a linear recurrence equation of order k. Most of
the above examples fall under this class. If f(r) = 0 then it is homogeneous linear
recurrence.

5.2.1 Homogeneous equations

We will first outline the solution for the homogeneous class and then extend it to the
general linear recurrence. Let us first determine the number of solutions. It appears
that we must know the values of a1, as...a; to compute the values of the sequence
according to the recurrence. In absence of this there can be different solutions based
on different boundary conditions. Given the £ boundary conditions, we can uniquely
determine the values of the sequence. Note that this is not true for a non-linear
recurrence like
a>+a,_1=>5 withay=1
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This observation (of unique solution) makes it somewhat easier for us to guess some
solution and verify.

Let us guess a solution of the form a, = Aa™ where A is some constant. This may
be justified from the solution of Example 5.1. By substituting this in the homogeneous
linear recurrence and simplification, we obtain the following equation

coak—}-clak_l...—l—ck =0

This is called the characteristic equation of the recurrence relation and this degree
k equation has k roots, say «aq, as . ... If these are all distinct then the following is
a solution to the recurrence

a,® = Ajof + Ayal + ... Agal;

which is also called the homogeneous solution to linear recurrence. The values of
Ay, As ... Ay can be determined from the £ boundary conditions (by solving & simul-
taneous equations).

When the roots are not unique, i.e. some roots have multiplicity then for mul-
tiplicity m, o™, na™, n?a™...n™ o™ are the associated solutions. This follows from
the fact that if o is a multiple root of the characteristic equation, then it is also the
root of the derivative of the equation.

5.2.2 Inhomogeneous equations

If f(n) # 0, then there is no general methodology. Solutions are known for some

particular casess known as particular solutions. Let a%h) be the solution by ignorin
f(n) and let o’ be a particular solution then it can be verified that a, = a\” + a
is a solution to the non-homogeneous recurrence.

The following is a table of some particular solutions

d a constant B

dn Bin+ By

dTL2 B2n2 + Bl’I’L + BO
ed", e, d are constants Bd"

Here B, By, By, By are constants to be determined from initial conditions. When
f(n) = fi(n) + fo(n) is a sum of the above functions then we solve the equation
for fi(n) and fa(n) separately and then add them in the end to obtain a particular
solution for the f(n).
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5.3 Generating functions

An alternative representation for a sequence ai,as...a; is a polynomial function
a1z +asx?+. . .a;z'. Polynomials are very useful objects in mathematics, in particular
as ”placeholders.” For example if we know that two polynomials are equal (i.e. they
evaluate to the same value for all z), then all the corresponding coefficients must
be equal. This follows from the well known property that a degree d polynomial
has no more than d distinct roots (unless it is the zero polynomial). The issue of
convergence is not important at this stage but will be relevant when we use the
method of differentiation.

Example 5.3.1 : Consider the problem of changing a Rs 100 note using notes
of the following denomination - 50, 20, 10, 5 and 1. Suppose we have an infinite
supply of each denomination then we can represent each of these using the following
polynomials where the coefficient corresponding to z* is non-zero if we can obtain a
certain sum using the given denomination.

Pi(z)=a2"+az' +2° +...

Ps
Py
Pyy(z) = 2° + 2 + 20 + 250 4 ...

r)=2"+2° + 20 + 2+ ..
r)=2"+20+ 20+ 2%+ .

(
(

Pyo(z) = 2® + 20 + 2" + 20 4 .

For example, we cannot have 51 to 99 using Rs 50,s0 all those coefficients are zero.
By multiplying these polynomials we obtain

P(‘/E) = EO + Elx + EQCUQ —+ ... Eloo.'L'lOO —+ ... E'Z,’IJZ

where F; is the number of ways the terms of the polynomials can combine such that
the sum of the exponents is 100. Convince yourself that this is precisely what we are
looking for. However we must still obtain a formula for F;o or more generally E;,
which the number of ways of changing a sum of :.

Note that for the polynomials P, Ps ... Psy, the following holds

P.(1—2")=1 fork=1,5,..50 giving
1

P@) = i =) =200 = o)1 = 27)

We can now use the observations that ﬁ =14+22+2%... and % =

1+2%2+23.... So the corresponding coefficients are related by B, = A, + B,,_5 where

29



A and B are the coefficients of the polynomials ﬁ and m Since A, =1,
this is a linear recurrence. Find the final answer by extending these observations.
Let us try the method of generating function on the Fibonacci sequence.

Example5.3.2 :  Let the generating function be G(z) = Fy + Fix + Fyx? ... F,a"
where F} is the i-th Fibonacci number. Then G(z) — 2G(z) — 22G(z) can be written

as the infinite sequence
F0+(F1—FQ)Z+(F2—F1—F0)22+...(E+2—E+1 —E)ZZ+2+:Z

for Fy = 0, F; = 1. Therefore G(z) = —2%—. This can be worked out to be

1—z—22"

1 1 1
G(Z):%<1—¢z_1—¢‘sz>
Wherquzl—qﬁ:%(l—\/g).

5.3.1 Binomial theorem

The use of generating functions necessitates computation of the coefficients of power
series of the form (1 + z)® for |x| < 1 and any «. For that the following result is very
useful - the coefficient of 2% is given by

a-(a—1)...(a—k+1)

Clk) = —F =11

This can be seen from an application of Taylor’s series. Let f(z) = (1 + z)®. Then
from Taylor’s theorem, expanding around 0 for some z,

f(z):f(O)—i-zf'(O)—i—a-z—i-zQL(O)—l- zkm

2! k!
= f(0)+1+22w

Therefore (1 + 2)* =Y >0, C(«, i)z* which is known as the binomial theorem.

+...Cla, k) + ...

5.4 Exponential generating functions
If the terms of a sequence is growing too rapidly, i.e. the n-th term exceeds z" for

any 0 < x < 1, then it may not converge. It is known that a sequence converges iff
the sequence \an|l/ " is bounded. Then it makes sense to divide the coefficients by a
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rapidly growing function like n!. For example, if we consider the generating function
for the number of permutations of n identical objects
P P2 P
Gz)=1+ 1!z+ o7 P
where p; = P(i,7). Then G(z) = e*. The number of permutations of r objects when
selected out of (an infinite supply of) n kinds of objects is given by the exponential
generating function (EGF)

T

b1 b2 o " . nT __ = n T
(1+iz+§z ) =e —ZF.’E
Example5.4.1: Let D, denote the number of derangements of n objects. Then it
can be shown that D,, = (n—1)(Dy,_1+D;,_52). This can be rewritten as D,—nD,, | =
—(Dp1 — (n — 2)D,_,. Iterating this, we obtain D, —nD,_; = (—1)""*(Dy — 2D).
Using Dy = 1, Dy = 0, we obtain

Dp —nDp_y = (-1)"% = (-1)".

Multiplying both sides by fz—T, and summing from n = 2 to co, we obtain

If we let D(x) represent the exponential generating function for derangements, after
simplification, we get

D(xz) — Dix — Dy — z(D(z) — Do) = e % — (1 — )

or D(z) = e’

-z

5.5 Recurrences with two variables
For selecting r out of n distinct objects, we can write the familiar recurrence
C(n,r)=C(n—1,r—1)+C(n—1,r)

with boundary conditions C(n,0) =1 and C(n,1) = n.
The general form of a linear recurrence with constant coefficients that has two
indices is

Cn,'ran,r + Cn,rfla'n,'rfl + ... Cnfk,'ranfk,'r cee 00,1'0/0,7" +...= f(na 7”)
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where C; ; are constants. We will use the technique of generating functions to extend
the one variable method. Let

— T
A()(.’E) = Qp,0 + ap,1% + ... Qo,rT

T
Al(.’I)') = a1,0 + a11% —+ ... a1,T

T
Ap(z) = ano+ a1+ ... QpyT

Then we can define a generating function with Ag(x), A1(x)Asz(x) ... as the sequence
- the new indeterminate can be chosen as y.

Ay(z) = Ao(z) + Ai(2)y + As(2)y” ... Ap(2)y"
For the above example, we have

F,(z) =C(n,0) +C(n, )z + C(n,2)x> +...C(n,r)z" + ...

iC(n, ryz’ = iC(n —-1,r=1z" + iC(n —1,r)x"
r=0 r=1 r=0

F.(z) = C(n,0) =zF,_1(z) + F,—1(z) = C(n —1,0)
Fu(z) = (1 +2)Fy ()
or F,,(z) = (1+2)"C(0,0) = (1 4+ )" as expected.

5.6 Probability generating functions

The notion of generating functions have useful applications in the context of proba-
bility calculations also. Given a non-negative integer-valued discrete random variable
X with Pr[X = k] = py, the probability generating function (PGF) of X is given by

o
Gx(z) = Zpizi =po+pizt...p2 ...
i=0

This is also known as the z-transform of X and it is easily seen that Gx(1) =1 =
> ;pi- The convergence of the PGF is an important issue for some calculations
involving differentiation of the PGF. For example,

dG)((Z)
dz

E[X] = 2 =1
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The notion of ezpectation of random variable can be extended to function f(X)
of random variable X in the following way

BIf (0] = Y pf (X = )

Therefore, PGF of X is the same as F[z*X]. A particularly useful quantity for a
number of probabilistic calculations is the Moment Generating Function (MGF)
defined as

Mx () = E[eX)
Since x202 kok
X0 _
etV =1+ X0+ 5 + ... o
E[X*pk
M0 =1+ B{xp .

from which E[X*] also known as higher moments can be calculated. There is also
a very useful theorem known for independent random variables Y7, Y;... Y. If Y =
Yi+Y,+...Y, then

My (0) = My, (0) - My, () - ... My, (0)

i.e., the MGF of the sum of independent random variables is the product of the
individual MGF’s.

5.6.1 Probabilistic inequalities

In many applications, especially in the analysis of randomized algorithms, we want to
guarantee correctness or running time. Suppose we have a bound on the expectation.
Then the following inequality known as Markov’s inequality can be used.

Markov’s inequality

1
Pr[X > kE[X]] < z (5.6.1)
Unfortunately there is no symmetric result.

If we have knowledge of the second moment, then the following gives a stronger
result
Chebychev’s inequality

Pr(X — B[X])® > ] <

2
‘77 (5.6.2)

where o is the variance, i.e. E*[X]— E[X?.
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With knowledge of higher moments, then we have the following inequality. If
X = Y 'x; is the sum of n mutually independent random variables where z; is
uniformly distributed in {-1 , +1 }, then for any § > 0,
Chernoff bounds

Pr[X > A] < e E[eM] (5.6.3)

If we choose A = A/n, the RHS becomes e2*/2".

5.7 Problem Set

1.

Find a recurrence for the number of ways a frog can jump n stairs if each step
covers either 1 or 2 or 3 stairs.

Find a recurrence for the number of n-digit binary sequences with no consecutive
1’s. Repeat the same for ternary sequences.

Find a recurrence for the number of n digit ternary sequences in which no 2
appears anywhere to right of any 1.

Find a recurrence for te number of ways to pick £ objects with repetition from
n types.

. Find a recurrence relation for the number of permutatins of the first n integers

such taht each integer differs by one (except for teh first) from some integer to
the left of it in the permuation.

Find a recurrence for computing the number of spanning trees in the ”ladder”
graph with n rungs (2n vertices).

Gossip is spread among 7 people via telephone. Specifically, in a conversation
between A and B, A tells B all the gossip he has heard and B does the same.
Let a, denote the number of calls among r people such taht the gossips will be
known to everyone and write a recurrence for a,.

Let a, denote the number of partitions of a set of r elements. Show that
T
api1 = ZC(T‘, i)a;
i=0

where ay = 1.

Let a, denote the number of subsets of the set {1,2,...r} that do not contain
two consecutive numbers. Determine a,.
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10.

11.

12.

13.

14.

In predicting future discoveries of oil, the assumptin is that the teh amount
discovered next year will be average of te amount discovered this year and the
last year. Write a recurrence for a,, and solve it.

In a singles tournament, 2n players are paired off in n matches and f(n) is the
number of ways in which this is done. Write a recurrence for f(n) and solve it.

If F;, is the n-th Fibonacci number, find a simple expression for F} + Fy +... F},
which invoves F}, for only one p.

Consider a variation of the Tower of Hanoi problem where we have to move
disks from A to B such that no disk can be moved directly from A to B. What
is the minimum number of moves.

What is the number of distict spanning trees of complete graph ? (Two distinct
spanning trees will have different edge sets).

Solution We will prove that it is n®~2, n > 2, which was first proved by Cayley.
We will first prove the following claim The number of spanning trees with degree
sequence (dy,dy...d,) =

(n—2)!
di —Uldy —11...d, — 1!

where the degree sequence corresponds to i-th vertex having degree d;.

Proof: basis for n=2, it is 1.

Suppose it is true upto m—1 > 2. Given a tree on m nodes, we know that there
is at least one vertex of degree one, say v; and it is connected to vertex v;. If
we pluck out v;, then we are left with a m —1 vertices and degree of v; is d; — 1.
We can now apply the inductive hypothesis to the graph with m — 1 nodes, i.e.,
T d(::,?’ )' T Since the degree 1 node can be attached to any of the vertices,
we have the same number of trees for each of the m—1 edges. We are in essence,
looking at the degree 1 vertices attached to all possible nodes - v1tov,,—1 and
by addition principle we can add then up. Notice that the degree sequnces are
different in each case. If more than one vertex has degree 1 connected to v,
note that it suffices to consider any one of them, since there is only one way
that can be connected. Summing over all instances of d; we obtain

(m — 3)!
Z (di =D (de— 1Y) ... (di = 2!)..(dj — 1)...

d;>1
Multiplying by numerator and denominator d; — 1, we obtain

(m—2)!-(d; — 1)
dy—1ldy — 11...d; — 11
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15.

Summing over all degree sequences

dl—lldg—l' dz—Q'(d]—l)

d;>1

Since Y .(d; — 1) =2(m —2) + 1 — (m — 1) = m — 2, the induction proof is
complete. O

Now we add up the previous bounds over all degree sequences to obtain

Z (n—S)’d,—l
y G =y — 11 di = 20.(d; — 1)

d1,d221,d1+d2...dn:2(’n—

This is a multinomial which gives us n"2.

What is the average root-leaf distance of an oriented rooted tree with n nodes
7

Proof: The path length can be viewed as lengths of internal path I (concerning
internal nodes) and external path E (pertaining to the leaf nodes). We can
write £ = I 4+ 2n where n is the number of internal nodes including the root
node since there are two external nodes for every terminal internal node. We
will make use of a two dimensional recurrence

— — b, n
z) = E = E by pwPz
n,p=>0

where b, , is the number of binary trees with n nodes and internal path length

P.
For example (by brute force calculation)

B(w,2) =1+ 2z + 2wz’ + (w® +4w®)2® + . ..

Clearly B(1,z) = generating function for number of (oriented) trees with n
nodes.

bn,p = Z bk,rbl,s

k+l=n—1;r+s+n—1=p

It follows that 2B*(w,wz) = Bwz) — 1.
By taking the partial deriuvative wrt z we obtain

22B(w, wz)(By(w,wz) + 2B, (w,wz)) = By,(w, 2)
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Let H(z) is the generating function for the total internal path length with n
nodes, then

H(z) = By(1,2) = thz"

Moreover H(z) = 2zB(z) = (H(z)+2B'(z).) Using the formula for B(z) (Cata-
lan numbers),
1 1 1—-2
H(z) = S (.
(2) 1-4z =z (sqrtl —4z )

3n+1
h, =4" — C(2n,
n+1 (2n,m)
The average value of total internal path length is h, /b, and average value of
path length of a node is h,, /nb,. The asymptotic value of this is \/7n—3+O(1).

O

giving
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Chapter 6

Modular Arithmetic

In this chatper, we will discuss some useful properties of numbers when calculations
are done modulo n, where n > 0. In the context of computer science, n is usually a
power of 2 since representation is binary.

6.1 Divisibility
Definition 6.1.1 An integer b is divisible by an integer a (a # 0), if there is an
integer x such that b = ax. This will be denoted by alb.

We begin by formalising some elementary observations about integer division.
Theorem 6.1.2 1. alb implies a|bc for any integer c.

2. alb and b|c implies alc.

3. alb and a|c implies albx + cy.

4. if m # 0 then alb = ma|mb.

Theorem 6.1.3 (Divison Algorithm) Given integers a and b with a > 0, there
exist unique integers g and r such that b=qa+1r, 0 <r < a.

Definition 6.1.4 The gcd of two numbers a and b is the largest among the common
divisors of @ and b. If this is 1 then a, b are relatively prime.

The following properties of ged(x,y) are known
Theorem 6.1.5 1. If c is a common divisor of a,b, then c|gcd(a,b).

2. ged(z,y) = min{azx + by} where x,y are integers, such that ax + by > 0.
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3. m- ged(a, b) = ged(ma, mb).

4. If ged(a, m) = ged(b,m) = 1 then ged(ab,m) = 1.
5. If clab and gcd(b, c) = 1 then c|a.

6. gcd(a,b) = ged(a,b — ga)for any q

The beginning of number theory goes back to Euclid’s algorithm that exploited
some of the properties of divisibility to compute the gecd of two integers.From property
6, it follows that to fing ged of a and b we can find ged of a and b-qa(repeatedly). If
a|b,then clearly a is the ged, so that can be used as a terminating case. Computing ¢
can be done using the division algorithm which is how Euclid’s algorithm works. In
addition, it also computes numbers z and y such that gcd = az + by. For this, we
maintain an invariant that az; 4+ by; = r; where r; is the remainder in the i-th iteration
with initial values £y = 1 and yy = 0. And this is what is known as Extended Euclid’s
algorithm. The correctness of the algorithm follows from induction.

Prime numbers (with no divisors other than 1 and the number itself) are extremely
important in number theory.

Theorem 6.1.6 (Fundamental Theorem of Arithmetic)
Every positive integer can be expressed as product of primes and this factorization is
unique except for the order of the prime factors.

Proof: We know that if p|q;go where p is prime then either p|a or p|b or both. O

The fact that number of primes is infinite was given in an elegant proof of Euclid.
Extending his argument it can be shown that there are arbitrary gaps between two
primes. The prime number theorem says that among the first n integers there are
very nearly - prime numbers.

6.2 Congruences

Definition 6.2.1 If an integer m, not zero, divides the difference a — b, we say that
a is congruent to b modulo m and is denoted by a = b(modm).

(Since m|(a — b) is equivalent to —m|(a — b), we will always assume that m > 0.)
The following properties follow from the definition.

Theorem 6.2.2 1. a = b(modm) is the same as a — b = 0(modm).

2. a = b(modm) and b = c(modm) implies a = c¢(modm). (transitive - infact
= (modm) is an equivalence relation).
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3. If a = b(modm) and ¢ = d(modm) then az + cy = bx + dy(modm)
4. If a = b(modm) and ¢ = d(modm), then ac = bd(modm)
5. If a = b(modm) and d|m, d > 0, then a = b(modd).

The degree of a polynomial (with integral coefficients) modulo m is the highest
power of x for which the coeffient is non-zero modulo m. For f(z) = agz™ + a1z ! +
...y, if f(u) = 0(modm) then we say that u is a solution of the congruence f(x) =
0(modm). Tt is known that

Theorem 6.2.3 If a = b(modm), then f(a) = f(b)(modm)

An important problem is the solution of congruences and in particular linear (degree
1) congruence. Any such congruence has the form

ax = b(modm)

For the special case that ged(a, m) = 1, we have a solution z; = a?™~1b, where ¢(m)
is the totient function (defined by Euler). It is the number of integers less than m
that are relatively prime to m (if m is prime then ¢(m) = m — 1). This follows from
the following theorem of Euler.

Theorem 6.2.4 If gcd(a,m) = 1, then a®™ = 1(modm).

Another way of viewing the solution is to multiply both sides by a number a ! such
that a - a™' = 1(modm). We have the following equivalent of cancellation laws

Theorem 6.2.5 1. If ax = ay(modm) and gcd(a,m) = 1(modm) then x =
y(modm).

2. ax = ay(modm) iff x = y(modgch”Tm)). (generalization)

The remaining solutions (when ged(a, m) = 1) are of the form z; + jm for any integer
j. In other words there is a unique solution modulo m. For the other case (when a
and m are not relatively prime), the solutions are described by the following theorem.

Theorem 6.2.6 Let g = ged(a,m). Then ax = b(modm) has no solutions if g does
not divide b. If g|b, it has g solutions x = (b/g)xo +t(m/g), t=0,1...9 — 1, where
xg 1s any solution of (a/g)x = 1(mod(m/g)).

Algorithmically, in both cases, we can use the (extended) Euclid’s algorithm to
compute x1 or xg.

An alternate method is to solve a set of simultaneous congruences by factorising
m = Hle ps = Hle m; where m; = p{’. Since m; are relatively prime in pairs,

5 =
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it can be shown that solving the congruence az = b(modm) is the same as solving
the congruences ax = b(modm;) simultaneously for all 7. Suppose the individual
congruences have solutions

ax; = b(modm;)

Then these can be combined using a result called Chinese Remaindering Theorem.

Theorem 6.2.7 The common solution is given by

*om
Ty = E —b;x;
mj; 7

g=1""

where b; is given by solutions to (m/m;)b; = 1(modm;).

6.3 Problem Set

1. Prove that an integer is divisible by 9 iff the sum of its digits is divisible by 9.

2. Prove that an integer is divisible by 11 iff the difference between the sum of the
digits in the odd places and the sum of the digits in the even places is divisible
by 11.

3. Give an easy test for divisibility by 7.

4. If p is a prime > 5, then prove that it divides infinitely many of the integers
9,99,999,9999 ...

5. For what integer values of n, 2" + 1 is divisible by 3 7
6. Is any prime of the form 3k+1 is of the form 6k+1 ?Justify.

7. Prove that if 2" 4+ 1 is a prime then n is power of 2 and if 2" — 1 is a prime then
n is a prime.

8. Prove that there can be arbitrary gaps between two consecutive primes.

9. Given any positive integer k,prove that there are k-consecutive integers divisible
by a square> 1.

10. Given n > 2,prove that there exists a prime p such that n < p < nl.

11. A positive integer is said to be a square-free if it is product of distinct primes. What
is the largest number of consecutive square-free positive integers 7
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12.

13.

14.

15.
16.

17.
18.
19.

20.

Find the ged of 2613 and 2171 by Euclidean algorithm.

Find two integers x and y such that gcd(841,160)=841x+160y.Are these x and
y unique?

Find x and y such that

(a) 2432 +198y =9
(b) 71z — 50y =1
(c) 6z +10y+ 152 =1

For what integer values of d,exist two integers x and y such that 21z + 35y = d?

Find all the solutions to the congruences

(a) 13z = 4(mod25)
(b) 5z = 2(mod26)

(c) 9z = 12(mod15)
(d) 6z = 3(mod210

Solve 17x = 9mod276 ,by using Chinese Remainder Theorem.
Find an integer x such that19z = 103mod900 and10z = 511 mod 841.

Find all integers that give the remainder 1,2,4 when divided by 3,5,4 respec-
tively.

When eggs in a basket are taken out 2,5,9,23 at a time,there remain respectively
1,3,7,19 eggs.Find the smallest number of eggs in the basket.
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Chapter 7

Application of probability:
Information and Coding theory

7.1 Quantifying information

Information is central to solving problems and designing algorithms. The efficiency
of algorithms is basically defined by how quickly it can gather information about
the input. Although the term information is mostly used in an abstract descriptive
sense, there exists a formal characterization of the term which was first defined in the
context of designing and transmitting codes.

The amount of information is identified with the element of uncertainity. A state-
ment doesn’t convey any information if we already knew (or deduced) the contents.
A generalization of this is associating probability Pr(E) of an event E with the infor-
mation I(E) it conveys.

1. If Pr(F) is 1, then (it is certain) I(E) = 0.
2. If Pr(E) = 0 then I(F) = oc.
3. If Pr(E,) < Pr(E,), then I(E)) > I(Ey).

4. If Ey and E, are independent, i.e., Pr(E;NEy) = Pr(E,)-Pr(E,), then knowing
about one doesn’t divulge any information about the other. So I(E; N E)

should be I(E,) + I(Es).
Therefore I(E) = logb(%) is a natural choice that satisfies all the above
properties and the base b is chosen to be 2 because of technical convenience. A very

useful quantity is the expected amount of uncertainity called entropy. For example,
a coin that has a probability p of heads and g(= 1 — p)of tails has entropy

plog(1/p) + qlog(1/q)

44



and it can be verified that this is maximised when p = ¢ = 1/2 and equals 0 when
the outcome is certain (p =0 or p = 1).
For a general probability space 2 = (E1, Fs ... E,), the entropy is defined as

n

Z =pilog(1/pi), pi =Pr(E)

i=1

The entropy of a discrete random variable X is similarly defined

H(X)= ZPI(X =) - log(1/ Pr(X =)

One can verify easily that entropy is maximised when all events are equally likely
(maximum uncertainity).

7.2 Codes

Given a finite set of symbols X, a coding of this is a function from X to strings finite
set of strings over a (usually) small set of alphabet ¥. For example X = {1,2,3,4}
can be mapped to {0,10,110, 111} over alphabet 3 = {0,1}. The length of a code is
the number of symbols in the string. A sequence of symbols from X is encoded as
the concatenation of the codes for the sequence of the symbols. For example 132 will
be encoded as 011010. The set of all strings over a finite alphabet S will be denoted
by S+

A code is uniquely decipherable if the mapping X — X7 is a 1-1 function, i.e. every
string from X is mapped to a unique string in X*. In other words, these strings can
be decoded unambiguously.

A code is called a prefix code, if no codeword is a prefix of another codeword.
Clearly a prefix code is uniquely decipherable. The above example is a prefix code.
The following result characterizes the uniquely decipherable codes very elegantly.

Theorem 7.2.1 (Kraft-McMillan) For any uniquely decipherable code over {0, 1},
the lengths of the codewords must satisfy

22—“ <1
1

where l; is the length of the i-th codeword. Moreover, if a given set of codewords satisfy
the above inequality, then there exists a prefix code with these codeword lengths.

We will only prove the first part for prefix codes. We can represent the prefix code
using a trie where each leaf node corresponds to a codeword. If the maximum length
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of a codeword is h, then it follows that the number of leaves of a complete binary tree
of depth h is greater than the number of leaf nodes of the subtrees rooted at each of
the nodes corresponding to the codewords. In particular,

Z 2h—li < 2h

%

which when divided by 2" gives us the required inequality.
If we are given the probability of occurence of each symbol in X, then the expected
length of a code is defined as
> Pr(z) - i(z) (7.2.1)
zeX
where [(z) is the length of the codeword of . An important problem in designing
codes is to minimize the expected codelength. Intuitively, we should choose a smaller
codeword for a symbol that has a larger probability. Also it should satisfy the previous
theorem, since we are interested in U.D. code.
Let J(li,lo...ly) =Y ;pi - li + XD, 27" where X denotes Langrange’s multiplier.
Differentiating with respect to each [;, we get the following equations for each i

pi—A24%In2=0

This yields 27% = p;/(An2) and using Y ,27% = 1, we obtain A = 1/In2, given
>.;Pi = 1. Substituting this value in the previous equation, we have an interesting
result, namely 27% = p; or [; = [—log,p;]. Without the integrality condition it
satisfies KraftMcMillan’s inequality and more importantly the expected code length
of a code is lower bounded by the the entropy. Therefore, the entropy or the quantity
of information is an important determinant for minimizing average codelength or
more generally determines if data can be compressed.

There is a fairly simple and efficient algorithm for designing optimal code, namely
Huffman code.

7.2.1 Huffman code

If we have prior knowledge of the probability of the frequency of all symbols, then
we can design codes that are optimal in the sense of equation 7.2.1. If p; is the
probability of occurence of a;, then choose the smallest two symblos p;s,say p; and
pr- Also associate a probability py + p; to it. Make them leaf nodes of a new node
b, and assign a probability p; + pr to b, . Repeat his procedure with the symbols
{ai,as...a,} and we termnate when there is only node. By assigning labels 0 abd 1
to the left and right branch, we obtain codes for all the symbols a;. We are leaving
the proof of correctness to the reader as an exercise.
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Note Although Huffman coding is near optimal, it does not adapt to local changes,
and consequenly the Ziv-Lempel scheme is more compact which uses a sliding window
method to encode, Consider a scenario where the text consists of a large number of a’s
followed by b’s etc. Clearly the adaptive scheme will be superior to Huffman although
Huffman’s encoding is globally optimal.

7.3 Relative information

If X and Y are two random variables with pdf Pr(X = z;) = p; and Pr(Y = y;) = ¢j,
then the joint entropy of X, Y

1
ZPI = T _yj)logPr(X—x~Y—y-)
- 4 - J)

It follows from the above definition that if X, Y are independent, i.e., Pr(X = z;,Y =
y;) = Pr(X = ;) Pr(Y = y;) then the reader can verify easily that

H(X,Y)=H(X)+H(Y)

The marginal entropy of X is the entropy of the distribution Pr(X|Y = y;), i.e

1
H(X|Y = Pr(X = z;|Y = ;)1
e D i) o ==
Can it happen that H(X|Y =y,;) > H(X) ?
The conditional entropy of X given Y is the expectation of the marginal entropy
over all values of YV

1
H(X|Y) = E[H(X|Y =y,] = ZPr y;) ZPI(X:mi|Y:yj)logPr(X:x'|Y:yj)

Theorem 7.3.1 (Chain rule of entropy)
H(X,Y)=H(X)+H(Y|X)=HY)+ HX|Y)

The relative entropy or Kullback-Leibler distance between two distributions p, ¢ of
a random variable X

D1 (pllq) = sz

so it is not symmetric.
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Theorem 7.3.2 (Gibb’s inequality)

Dkr(pllg) >0

Proof We will apply Jensen’s inequality which is given by E[f(X)] < f(E(X) for
any random variable X and convez function f! The inequality is reversed for concave
functions like log.

Let X = p;/¢;- Then from Jensen’s inequality and the fact that log is a concave

function we obtain
> “pilog(ai/pi) < log(> (i - 4:/p:))

K3

By negating both sides and noting that the RHS is 0, we obtain

Zpi lOg (pz)

(g:)
An useful application of Gibb’s ineuality is in the proof of the following useful in-
equality

>=0.

Corollary 7.3.3
H(X]Y) < H(X)

i.e. uncertainity can only decrease with more information. Therefore
HX,)Y)<HX)+H(Y)
where equality holds if X and Y independent.

Proof We can show that H(X) — H(X|Y) > 0 using the previous definitions. The
following is a very important result that we will exploit repeatedly.

Theorem 7.3.4 It follows that if Z = f(X1,Xs3...X,) then

H(Z) < H(X)) + H(Xy) ... H(X,)

Proof:
H(f(X)) =~ _Pr[f(X) = a]logPr[f(X) = ]

H(X)=-) PrX =a]logPr[X =a]=-)_ Y  Pr[X =a]logPr[X = 1]

a z:f(z)=a

LA function f(z) is convex if for all 71,75 and 0 < A < 1, f(Az1 +(1—=Az2) < Af(21)+(1=X) f(z2).
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Now compare term by term:
—Pr[f(X) = a]log Pr[f(X) = a] versus — )
Using the concavity of the function logx :

v:f(z)=a PTX = 2] log Pr[X = z].

S (PrX = 2]/ Pr[f(X) = a) log Pr{X = a])
z:f(z)=a

<Y log( 3 (Pr[X = a]/Pr[f(X) = a]) Pr{X = a])

z:f(z)=a

< log( Z Pr[X = z]) =logPr[f(X) =a] since Pr[X =z|/Pr[f(X) =a] < 1.
z:f(z)=a

By negating both sides of each term and then summing over all terms, we obtain the
desired result.
O

Example7.3.5 : [fake coin problem | Suppose we are given n coins and one of
them is counterfeit. We are told that counterfeit has a different weight and we are
allowed to use a simple balance. How many weighings are necessary ?
For instance if it is 3 coins, then we can identify using at most 2 weighings. In
the beginning, the entropy is H(1/n.1/n...1/n) > logn. Each weighing can have 3
outcomes - right > / < left, or right equals left. Hence we can get atmost log 3 bits
of information. This implies that at least llzzg weighings are necessary.
We leave it as an exercise about how close we can come to this figure to actually
identify the fake coin.

Our next example is the well known result of sorting.
Example 7.3.6 :  If we want to sort n elements, i.e., permute them into a non-
decresing order. If all permutations are equally likely, then the information content is
logn!. In a comparison, the number of outcomes is two implying that the entropy is
log2 = 1. If the minimum number of comparisons is m, then H(f(X1, Xs... X)) >
log(n!) where X; are random variables corresponding to each comparison. From
theorem 7.3.4 H(X,) + H(X; ... H(X,,) > log(n!) which implies m = Q(nlogn).
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Chapter 8

Sorting and Searching

8.1 Skip Lists - an alternative to balaced BST

Skip-list is a data structure introduced by Pugh [?] as an alternative to balanced
binary search trees for handling dictionary operations on ordered lists. The underlying
idea is to substitute complex book-keeping information used for maintaining balance
conditions for binary trees by random sampling techniques. It has been shown by
Pugh [?] that, given access to random bits, the ezpected search time in a skip-list of
n elements is O(logn) ' which compares very favourably with balanced binary trees.
Moreover, the procedures for insertion and deletion are very simple which makes this
data-structure a very attractive alternative to the balanced binary trees.

Since the search time is a stochastic variable (because of the use of randomization),
it is of considerable interest to determine the bounds on the tails of its distribution.
Often, it is crucial to know the behavior for any individual access rather than a chain
of operations since it is more closely related to the real-time response.

8.1.1 Review of Skip-lists

We briefly review the basic data-structure proposed by Pugh. This data-structure is
maintained as a hierarchy of sorted linked-lists. The bottom-most level is the entire set
of keys S. We denote the linked list at level 7 from the bottom as L; and let |L;| = N;.
By definition Ly = S and |Ly| = n. For all0 <4, L; C L;_; and the topmost level, say
level k£ has constant number of elements. Moreover, correspondences are maintained
between common elements of lists I; and L;_;. For a key with value F, for each level
i, we denote by T; a tuple (l;,r;) such that l; < F < r; and l;,r; € L;. We call this
tuple straddling pair (of E) in level i.

!Note that all logarithms are to base 2 unless otherwise mentioned.
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The search begins from the topmost level L, where T}, can be determined in
constant time. If [, = F or r, = F then the search is successful else we recursively
search among the elements [ly, 7¢] () Lo. Here [lg, 7] denotes the closed interval bound
by I, and 7. This is done by searching the elements of L, ; which are bounded by
l, and r,. Since both Iy, 7, € Li_1, the descendence from level k to k — 1 is easily
achieved in O(1) time. In general, at any level ¢ we determine the tuple 7; by walking
through a portion of the list L;. If [; or r; equals E then we are done else we repeat
this procedure by descending to level ¢ — 1.

In other words, we refine the search progressively until we find an element in S
equal to E or we terminate when we have determined (ly, 7). This procedure can
also be viewed as searching in a tree that has variable degree (not necessarily two as
in binary tree).

Of course, to be able to analyze this algorithm, one has to specify how the lists
L; are constructed and how they are dynamically maintained under deletions and
additions. Very roughly, the idea is to have elements in i-th level point to approxi-
mately 2° nodes ahead (in S) so that the number of levels is approximately O(logn).
The time spent at each level 7 depends on [l;11,7:11] () L; and hence the objective is
to keep this small. To achieve these conditions on-line, Pugh [?] uses the following
elegant method. The nodes from the bottom-most layer (level 0) are chosen with
probability p (for the purpose of our discussion we shall assume p = 0.5) to be in the
first level. Subsequently at any level 7, the nodes of level 7 are chosen to be in level
7+ 1 independently with probability p and at any level we maintain a simple linked
list where the elements are in sorted order. If p = 0.5, then it is not difficult to verify
that for a list of size n, the expected number of elements in level 7 is approximately
n/2¢ and are spaced about 2¢ elements apart. The expected number of levels is clearly
O(logn), (when we have just a trivial length list) and the expected space requirement
is O(n).

To insert an element, we first locate its position using the search strategy described
previously. Note that a byproduct of the search algorithm are all the 7;’s. At level
0, we choose it with probability p to be in level L;. If it is selected, we insert it in
the proper position (which can be trivially done from the knowledge of 77), update
the pointers and repeat this process from the present level. Deletion is very similar
and it can be readily verified that deletion and insertion have the same asymptotic
run time as the search operation. So we shall focus on this operation.

8.1.2 Analysis

To analyze the run-time of the search procedure, we look at it backwards, i.e., retrace
the path from level 0. The search time is clearly the length of the path (number of
links) traversed over all the levels. So one can count the number of links one traverses
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before climbing up a level. In other words the expected search time can be expressed
in the following recurrence (from [?] )

Ck)=(1-p(A+Ck)+p(1+C(k-1))

where C(k) is the expected cost for climbing k levels. From the boundary condition
C(0) = 0, one readily obtains C'(k) = k/p. For k = O(logn), this is O(logn). The
recurrence captures the crux of the method in the following manner. At any node of
a given level, we climb up if this node has been chosen to be in the next level or else
we add one to the cost of the present level. The probability of this event (climbing
up a level) is p which we consider to be a success event. Now the entire search
procedure can be viewed in the following alternate manner. We are tossing a coin
which turns up heads with probability p - how many times should we toss to come up
with O(logn) heads ? Each head corresponds to the event of climbing up one level in
the data structure and the total number of tosses is the cost of the search algorithm.
We are done when we have climbed up O(logn) levels (there is some technicality
about the number of levels being O(logn) but that will be addressed later). The
number of heads obtained by tossing a coin N times is given by a Binomial random
variable X with parameters N and p. Using Chernoff bounds from Theorem ??, for
N =15logn and p = 0.5, Pr[X < 1.5logn] < 1/n? (using e = 9/10 in equation 1).
Using appropriate constants, we can get rapidly decreasing probabilities of the form
Pr[X < clogn] < 1/n® for ¢,a > 0 and « increases with ¢. These constants can be
fine tuned although we shall not bother with such an exercise here.
We thus state the following lemma.

Lemma 8.1.1 The probability that access time for a fixed element in a skip-list data
structure of length n exceeds clogn steps is less than O(1/n?) for an appropriate
constant ¢ > 1.

Proof We compute the probability of obtaining fewer than & (the number of levels
in the data-structure) heads when we toss a fair coin (p = 1/2) clogn times for some
fixed constant ¢ > 1. That is, we compute the probability that our search procedure
exceeds clogn steps. Recall that each head is equivalent to climbing up one level
and we are done when we have climbed k levels. To bound the number of levels, it
is easy to see that the probability that any element of S appears in level 7 is at most
1/2', i.e. it has turned up 7 consecutive heads. So the probability that any fixed
element appears in level 3logn is at most 1/n. The probability that & > 3logn is
the probability that at least one element of S appears in L3joz,. This is clearly at
most n times the probability that any fixed element survives and hence probability
of k exceeding 3logn is less than 1/n?.

Given that £ < 3logn we choose a value of ¢, say ¢y (to be plugged into equation 1
of Chernoff bounds) such that the probability of obtaining fewer than 31logn heads in
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co logn tosses is less than 1/n2. The search algorithm for a fixed key exceeds cylogn
steps if one of the above events fail; either the number of levels exceeds 3logn or we
get fewer than 3logn heads from cqlogn tosses. This is clearly the summation of the
failure probabilities of the individual events which is O(1/n?). O.

Theorem 8.1.2 The probability that the access time for any arbitrary element in
skip-list exceeds O(logn) is less than 1/n* for any fized o > 0.

Proof: A list of n elements induces n + 1 intervals. From the previous lemma,
the probability P that the search time for a fixed element exceeding clogn is less
than 1/n?. Note that all elements in a fixed interval [ly, 7] follow the same path in
the data-structure. It follows that for any interval the probability of the access time
exceeding O(logn) is n times P. As mentioned before, the constants can be chosen
appropriately to achieve this. O

It is possible to obtain even tighter bounds on the space requirement for a skip list
of n elements. From Pugh [?] it is known that the expected space is O(n). Moreover
it is clear that it does not exceed O(nlogn) with probability 1 — 1/n? (no element
survives more than O(logn) levels with this probability from the previous lemma).
One can obtain a much stronger bound by viewing the entire skip list structure as a
stochastic experiment each node corresponds to a Bernoulli trial that turns up heads
(similar to obtaining the obtaining the query bound). Each element is replicated
till the the trial turns up tails. Since there are n elements, the number of nodes
corresponds to the number of Bernoulli trials required to obtain n tails. This is
a negative binomial distribution and one can use Chernoff bounds (Theorem ?7?)
directly to obtain the following result.

Theorem 8.1.3 For any constant o > 0, the probability of the space exceeding 2n +
a-n, s less than expﬂ(_azn).

8.2 Trieps : Randomized Search Trees

The class of binary (dynamic) search trees is perhaps the first introduction to non-
trivial data-structure in computer science. However, the update operations, although
asymptotically very fast are not the easiest to remember. The rules for rotations
and the double-rotations of the AVL trees, the splitting/joining in B-trees and the
color-changes of red-black trees are often complex, as well as their correctness proofs.
The Randomized Search Trees (also known as randomized trieps) provide a practical
alternative to the Balanced BST. We still rely on rotations, but no explicit balancing
rules are used. Instead we rely on the magical properties of random numbers.

The Randomized Search Tree (RST) is a binary tree that has the keys in an in-
order ordering. In addition, each element is assigned a priority (Wlog, the priorities

93



are unique) and the nodes of the tree are heap-ordered based on the priorities. Si-
multaneously, the key values follow in-order numbering. It is not difficult to see that
for a given assignment of priorities, there is exactly one tree. If the priorities are
assigned randomly in the range [1, N| for N nodes, the expected height of the tree is
small. This is the crux of the following analysis of the performance of the RSTs.

Let us first look at the way search time using a technique known as backward
analysis. For that we (hypothetically) insert the N elements in a decreasing order
of their priorities and then count the number of elements that () can see during the
course of their insertions. This method (of assigning the random numbers on-line)
makes arguments easier and the reader must convince himself that it doesn’t affect
the final results. () can see an element Nj; if there are no previously inserted elements
in between.

Lemma 8.2.1 The tree constructed by inserting the nodes in order of their priorities
(highest priority is the root) is the same as the tree constructed on-line.

Lemma 8.2.2 The number of nodes @) sees is exactly the number of comparisons
performed for searching Q). In fact, the order in which it sees corresponds to the

search path of Q).

Theorem 8.2.3 The expected length of search path in RST is O(Hy) where Hy is
the N-th harmonic number.

In the spirit of backward analysis, we pretend that the tree-construction is being
reversed, i.e. nodes are being deleted starting from the last node. In the forward
direction, we would count the expected number of nodes that () sees. In the reverse
direction, it is the number of times @)’s visibility changes (convince yourself that
these notions are identical). Let X; be a Bernoulli rv that is 1 if @ sees N; (in
the forward direction) or conversely ’s visibility changes when N; is deleted in the
reverse sequence. Let X be the length of the search path.

X =) X
EX]=E))_X]=)_ E[X]

We claim that E[X;] = % Note that the expectation of a Bernoulli variable is the
probability that it is 1. We are computing this probability over all permutations of
N being equally likely. In other words, if we consider a prefix of length 4, all subsets
of size i are equally likely. Let us find the probability that X; = 1, conditioned on
a fized subset N* C N. Unconditioning is easy if probability that X; = 1 does not
depend on N itself. So, given a fixed N*, all N*=! are equally likely, so the probability
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that X; = 1 is the probability that one of the (maximum two) neighboring elements
was removed in the reverse direction. The probability of that is less than % which
is independent of any specific N'. So, the unconditional probability is the same
as conditional probability - hence F[X;] = % The theorem follows as >, F[X;] =
23", % = O(Hy).

The X;’s defined in the previous proof are independent but not identical. So, we
can apply Chernoff-Hoeffding bounds to to obtain strong tail-estimates for deviation
from the expected bound. From Theorem 77 , it follows that

Theorem 8.2.4 The probability that the search time exceeds 2logn comparisons in
a randomized triep is less than O(1/n).

A similar technique can be used for counting the number of rotations required for
RST during insertion and deletions. Backward analysis is a very elegant technique
for analyzing randomized algorithms, in particular in a paradigm called randomized
incremental construction.

8.3 Lower bounds for searching and sorting

We often take for granted that the best time to search in a set of IV elements is
O(log N), namely. by using a binary search kind of procedure. Of course we have
seen that hashing allows us to search in O(1) expected time for any subset of the
universe. We will now give a formal argument that when the uiverse is very large,
Q(logn) probes are indeed necessary.

For this we will make use of a Ramsey-kind of theorem that generalises it to more
than two colours.

Theorem 8.3.1 For any k,t,r, tere exists a finite number R(k,r,t) such that for a
set S, |S| > R(k,r,t), if we colour the family of r element subsets of S, then there
exists a set k > r such that all its r-element subsets have the same colour.

By choosing k£ = 2n — 1,r = n .t = n!, we conclude that all n-element subsets of
2n elements with the same order type have the same colour (which denotes an order
type). We shall now show that given a fixed ordered type we will need at least logn
comparisons for searching in a table of n elements. Let f(n.m) denote the minimum
number of probes (usually comarisons) regired to search for an element in a sorted
table of size n and an universe of size m. In particular we will show it for m = 2n—1.
Basis n = 2, m= 3 . we can show by case analysis that at least two probes are
required. Let it be true for all n < n, (and m = 2n — 1. For n = n,. Suppose the
first probe is at position p, p < [n,/2]. Let the element be p. So the key can be
anywhere between [n,/2] and n,. Therefore after one probe, the table can contain
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any of the p+1,...2-n, — 1 elements in the remaining n, — p positions. Therefore
the inductive hypothesis can be invoked giving at least 1 + log(|n,/2] + 1) probes.

Lemma 8.3.2 f(2,3) > 2
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Chapter 9

Universal Hashing

9.1 Notations

e Universe : U
e Set of elements : S also |S| =n

e Hash locations : {0,1,...,m — 1} usually, n > m

9.2 Collision

If x,y € U are mapped to the same location by a hash function A.

on(z,y) {(1) ho(txh)erzw?s(ey)’x#y
on(z,8) = > ou(z,y)

yeS

Hash by chaining: The more the collision the worse the performance. Look at a
sequnce O1(x2), Oo(22), ..., Op(z,) where O; € {Insert, Delete, Search} and z; € U
Let us make the following assumptions

1. |h7Y(%)| = |p~1(¢")| where i,4' € {0,1,...,m — 1}

2. In the sequence, z; can be any element of &/ with equal probability.
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Claim: Total expected cost = O((1+ B)n) where 3 = I (load factor).

Proof: Expected cost of (k + 1)th operation = expected number of elements in
location <1+ k(- L) assuming all the previous operations were Insert.

So total expected cost < >, 1+ 2 k—pn+ ("+1) =(1+ g)n This is worst case
over operations but not over elements. O

9.3 Universal Hash Functions

Definition 9.3.1 A collection H C {h|h : [0...N — 1] — [0...m — 1]} is c-universal
if for all z,y € [0...N — 1],

H
|{h|h € H and h(z) = h(y)}| < cu
m
for some small constant c¢. Roughly »_, dx(z,y) < c'Tnﬂ
Claim:
LN 14 0@, ) <1—l—c—
1Hl
where |S| = n.
Proof: LHS
1
- mX 2.2,
heH h yes
S e
|H]|
< 1+
i Z
= 14+ —n
So expected cost of n operation = > (1 + %) < (I+cB)n O

9.4 Example of a Universal Hash function

H' : hop; hap(z) = ((ax + b) mod N) mod m where a,b € 0...N — 1 (N is prime).
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If hey(z) = hay(y) then for some ¢ € [0...m — 1]and n, s € [0...21]

ar+b = (9+rm)mod N
ay+b = (94 sm) mod N

This is a unique solution for a,b once ¢, r, s are fixed. So there are a total of m(%)
solutions = %2 Also, since |H'| = N?| therefore H' is ”1” universal.
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