
Matching in Dynamic Graphs
(2011; Baswana, Gupta, Sen)

Surender Baswana, IIT Kanpur, www.cse.iitk.ac.in/∼sbaswana
Manoj Gupta, IIT Delhi, www.cse.iitd.ernet.in/∼gmanoj

Sandeep Sen, IIT Delhi, www.cse.iitd.ernet.in/∼ssen

SYNONYMS and INDEX TERMS: Matching, maximum matching, maximal matching, dynamic graph,
randomized algorithms.

1 PROBLEM DEFINITION

Let G = (V,E) be an undirected graph on n = |V | vertices and m = |E| edges. A matching in G is a set
of edges M ⊆ E such that no two edges in M share any vertex. Matching has been one of the most well-
studied problems in algorithmic graph theory for decades [4]. A matching M is called maximum matching
if the number of edges in M is maximum. The fastest known algorithm for maximum matching, due to
Micali and Vazirani [5], runs in O(m

√
n). A matching is said to be maximal if it is not strictly contained

in any other matching. It is well known that a maximal matching achieves a factor 2 approximation of the
maximum matching.

2 Key Result

We address the problem of maintaining maximal matching in a fully dynamic environment - allowing up-
dates in form of both insertion and deletion of edges. Ivković and Llyod [3] designed the first fully dynamic
algorithm for maximal matching with O((n + m)0.7072) update time. In this article, we present a fully
dynamic algorithm for maximal matching that achieves O(log n) expected amortized time per update.

3 Ideas underlying the algorithm

We begin with some terminologies and notations that will facilitate our description and also provide some
intuition behind our approach. LetM denote a matching in the given graph at any instant - an edge (u, v) ∈
M is called a matched edge where u is referred to as a mate of v and vice versa. An edge in E\M is an
unmatched edge. A vertex x is matched if there exists an edge (x, y) ∈M; otherwise it is free or unmatched.

In order to maintain a maximal matching, it suffices to ensure that there is no edge (u, v) in the graph
such that both u and v are free with respect to the matching M. Therefore, a natural technique for main-
taining a maximal matching is to keep track of each vertex if it is matched or free. When an edge (u, v) is
inserted, we add (u, v) to the matching if u and v are free. For the case when an unmatched edge (u, v) is
deleted, no action is required. Otherwise, for both u and v we search their neighborhoods for any free vertex
and update the matching accordingly. It follows that each update takes O(1) computation time except when
it involves deletion of a matched edge; in this case the computation time is of the order of the sum of the
degrees of the two endpoints of the deleted edge. So this trivial algorithm is quite efficient for small degree
vertices, but could be expensive for large degree vertices. An alternate approach could be to match a free

1

vertex u with a randomly chosen neighbor, say v. Following the standard adversarial model, it can be ob-
served that an expected deg(u)/2 edges incident to u will be deleted before deleting the matched edge (u, v).
So the expected amortized cost per edge deletion for u is roughly O

(
deg(u)+deg(v)

deg(u)/2

)
. If deg(v) < deg(u),

this cost is O(1). But if deg(v) � deg(u), then it can be as bad as the trivial algorithm. To circumvent this
problem, we introduce an important notion, called ownership of edges. Intuitively, we assign an edge to that
endpoint which has higher degree.

The idea of choosing a random mate and the trivial algorithm described above can be combined together
to design a simple algorithm for maximal matching. This algorithm maintains a partition of the vertices into
two levels. Level 0 consists of vertices which own fewer edges and we handle the updates there using the
trivial algorithm. Level 1 consists of vertices (and their mates) which own larger number of edges and we
use the idea of random mate to handle their updates. This 2-LEVEL algorithm achieves O(

√
n) expected

amortized time per update. A careful analysis of the 2-LEVEL algorithm suggests that a finer partition of
vertices could help in achieving a faster update time. This leads to our log2 n-LEVEL algorithm that achieves
expected amortized O(log n) time per update.

Our algorithm uses randomization very crucially in order to handle the updates efficiently. The matching
maintained (based on the random bits) by the algorithm at any stage is not known to the adversary for it to
choose the updates adaptively. This oblivious adversarial model is no different from randomized data-
structures like universal hashing.

4 The 2-LEVEL Algorithm

The algorithm maintains a partition of the set of vertices into two levels. Each edge present in the graph will
be owned by one or both of its endpoints as follows. If both the endpoints of an edge are at level 0, then it
is owned by both of them. Otherwise it will be owned by exactly that endpoint which lies at a higher level.
If both the endpoints are at level 1, the tie will be broken suitably by the algorithm. LetOu denote the set of
edges owned by a vertex u at any instant of the algorithm. With a slight abuse of the notation, we will also
use Ou to denote {v|(u, v) ∈ Ou}. As the algorithm proceeds, the vertices will make transition from one
level to another and the ownership of edges will also change accordingly.

The algorithm maintains the following three invariants after each update.

1. Every vertex at level 1 is matched. Every free vertex at level 0 has all its neighbors matched.

2. Every vertex at level 0 owns less than
√

n edges at any stage.

3. Both endpoints of every matched edge are at the same level.

It follows from the first invariant that the matching M is maximal at each stage. The second and third
invariant help in incorporating the two ideas of our algorithm efficiently.

Handling insertion of an edge

Let (u, v) be the edge being inserted. If either u or v are at level 1, there is no violation of any invariant.
However, if both u and v are at level 0, then we we proceed as follows. Both u and v become the owner of
the edge (u, v). If u and v are free, then we add (u, v) to M. Notice that the insertion of (u, v) also leads
to increase of |Ou| and |Ov| by one, and so may lead to violation of Invariant 2. We process the vertex that
owns more edges; let u be that vertex. If |Ou| =

√
n, then Invariant 2 has got violated. In order to restore it,

u moves to level 1 and gets matched to some vertex, say y, selected uniformly at random fromOu. Vertex y

also moves to level 1 to satisfy Invariant 3. If w and x were respectively the earlier mates of u and y at level
0, then the matching of u with y has rendered w and x free. Both w and x search for free neighbors at level
0 and update the matching accordingly. It is easy to observe that in all these cases, it takes O(

√
n) time to

handle an edge insertion.

2

Handling deletion of an edge

Let (u, v) be an edge that is deleted. If (u, v) /∈ M, all the invariants are still valid. Let us consider the
more important case of (u, v) ∈ M - the deletion of (u, v) has caused u and v to become free. Therefore,
the first invariant might have got violated for u and v. If edge (u, v) was at level 0, then both u and v search
for a free neighbor and update the matching accordingly. This takes O(

√
n) time. If edge (u, v) was at level

1, then u (similarly v) is processed as follows.
First, u disowns all its edges whose other endpoint is at level 1. If |Ou| is still greater than or equal to√

n, then u stays at level 1 and selects a random mate from Ou. However, if |Ou| has fallen below
√

n,
then u moves to level 0 and gets matched to a free neighbor (if any). For each neighbor of u at level 0,
the transition of u from level 1 to 0 is, effectively, like insertion of a new edge. This transition leads to an
increase in the number of owned edges by each neighbor of u at level 0. As a result the second invariant for
each such neighbor at level 0 may get violated if the number of edges it owns now becomes

√
n. To take

care of these scenarios, we proceed as follows. We scan each neighbors of u at level 0 and for each neighbor
w, with |Ow| =

√
n, a mate is selected randomly from Ow and w is moved to level 1 along with its mate.

This concludes the deletion procedure of edge (u, v).

4.1 Analysis of the algorithm

It may be noted that, unlike insertion, the deletion of an edge could potentially lead to moving of many
vertices from level 0 to 1 and this may involve significant computation. However, we will show that the
expected amortized computation per update will is O(

√
n).

We analyze the algorithm using the concept of epochs.

Definition 4.1 At any time t, let (u, v) be any edge in M. Then the epoch of (u, v) at time t is the maximal
time interval containing t during which (u, v) ∈M.

The entire life span of an edge (u, v) can be viewed as a sequence of epochs when it is matched separated
by periods when it is unmatched. Any edge update that does not change the matching is processed in O(1)
time. An edge update that changes the matching results in the start of new epoch(s) or the termination
of some existing epoch(s). And it is only during the creation or termination of an epoch that significant
computation is involved. For the purpose of analyzing the update time, (when matching is affected), we
assign the computation performed to the corresponding epochs created or terminated. It is easy to see that
the computation associated with an epoch at level 0 is O(

√
n). The computation associated with an epoch at

level 1 is of the order of sum of the degrees of the endpoints of the corresponding matched edge which may
be Ω(n). When a vertex moves from level 0 to 1, although it owns

√
n edges, this may grow later to O(n).

So the computation associated with an epoch at level 1 can be quite high. We will show that the expected
number of such epochs that get terminated during any arbitrary sequence of edge updates will be relatively
small. The following lemma plays a key role.

Lemma 4.1 The deletion of an edge (u, v) at level 1 terminates an epoch with probability ≤ 1/
√

n.

Proof: The deletion of edge (u, v) will lead to termination of an epoch only if (u, v) ∈ M. If edge (u, v)
was owned by u at the time of its deletion, note that u owned at least

√
n edges at the moment of start

of its epoch. Since u selected its matched edge uniformly at random from these edges, the (conditional)
probability is 1√

n
. The same argument applies if v was the owner, so (u, v) is a matched edge at the time of

deletion of (u, v) with probability at most 1/
√

n. 2

Consider any sequence of m edge updates. We analyze the computation associated with all the epochs
that get terminated during these m updates. It follows from Lemma 4.1 and the linearity of expectation
that the expected number of epochs terminated at level 1 will be m/

√
n. As discussed above, computation

3

associated with each epoch at level 1 is O(n). So the expected computation associated with the termination
of all epochs at level 1 is O(m

√
n). The number of epochs destroyed at level 0 is trivially bounded by

O(m). Each epoch at level 0 has O(
√

n) computation associated with it, so the total computation associated
with these epochs is also O(m

√
n). We conclude the following.

Theorem 4.1 Starting with a graph on n vertices and no edges, we can maintain maximal matching for any
sequence of m updates in expected O(m

√
n) time.

4.2 The log2 n-LEVEL Algorithm

The key idea for improving the update time lies in the second invariant of our 2-LEVEL algorithm. Let
α(n) be the threshold for the maximum number of edges that a vertex at level 0 can own. Consider an
epoch at level 1 associated with some edge, say (u, v). The computation associated with this epoch is of
the order of the number of edges u and v own which can be Θ(n) in the worst case. However, the expected
duration of the epoch is of the order of the minimum number of edges u can own at the time of its creation,
i.e., Θ(α(n)). Therefore, the expected amortized computation per edge deletion at level 1 is O(n/α(n)).
Balancing this with the α(n) update time at level 0, yields α(n) =

√
n.

In order to improve the running time of our algorithm, we need to decrease the ratio between the maxi-
mum and the minimum number of edges a vertex can own during an epoch at any level. It is this ratio that
determines the expected amortized time per edge deletion. This observation leads us to a finer partitioning
of the ownership classes. When a vertex creates an epoch at level i, it owns at least 2i edges, and during the
epoch it is allowed to own at most 2i+1 − 1 edges. As soon as it owns 2i+1 edges, it migrates to a higher
level. Notice that the ratio of maximum to minimum edges owned by a vertex during an epoch gets reduced
from

√
n to a constant leading to about log2 n levels. Though the log2 n-LEVEL algorithm can be seen as

a natural generalization of our 2-LEVEL algorithm, there are many intricacies that makes the algorithm and
its analysis quite involved. For example, a single edge update may lead to a sequence of falls and rise of
many vertices across the levels of the data structure. Moreover, there may be several vertices trying to fall
or rise at any time while processing an update. Taking a top down approach in processing these vertices
simplifies the description of the algorithm. The analysis of the algorithm becomes easier when we analyze
each level separately. This analysis at any level is quite similar to the analysis of LEVEL-1 in our 2-LEVEL

algorithm. We recommend the interested reader to refer to the journal version of this paper in order to fully
comprehend the algorithm and its analysis. The final result result achieved by our log2 n-LEVEL algorithm
is stated below.

Theorem 4.2 Starting with a graph on n vertices and no edges, we can maintain maximal matching for any
sequence of m updates in expected O(m log n) time.

Using standard probability tools, it can be shown that the bound on the update time as stated in Theorem
4.2 holds with high probability, as well as with limited independence.

5 OPEN PROBLEMS

There have been new results on maintaining approximate weighted matching [2] and (1 + ε)-approximate
matching [1, 6] for ε < 1. The interested reader should study these results. For any ε < 1, whether it is
possible to maintain (1+ ε)-approximate matching in poly-logarithmic update time is still an open problem.

6 EXPERIMENTAL RESULTS

None is reported.

4

7 DATA SETS

None is reported.

8 URL to CODE

None is reported.

9 CROSS REFERENCES

None is reported. Entry editors please feel free to add some.

10 RECOMMENDED READING

[1] A. Anand, S. Baswana, M. Gupta, and S. Sen. Maintaining approximate maximum weighted match-
ing in fully dynamic graphs. In FSTTCS, pages 257–266, 2012.

[2] M. Gupta and R. Peng. Fully dynamic (1+ e)-approximate matchings. In FOCS, pages 548–557,
2013.

[3] Z. Ivkovic and E. L. Lloyd. Fully dynamic maintenance of vertex cover. In WG ’93: Proceedings of
the 19th International Workshop on Graph-Theoretic Concepts in Computer Science, pages 99–111,
London, UK, 1994. Springer-Verlag.

[4] L. Lovasz and M. Plummer. Matching Theory. AMS Chelsea Publishing, North-Holland, Amster-
damNew York, 1986.

[5] S. Micali and V. V. Vazirani. An O(
√

(|V |)|E|) algorithm for finding maximum matching in general
graphs. In FOCS, pages 17–27, 1980.

[6] O. Neiman and S. Solomon. Simple deterministic algorithms for fully dynamic maximal matching.
In STOC, pages 745–754, 2013.

5

