
Operating Systems

Assignment 1 – Easy

Total: 40 Marks

Instructions:

1. The assignment has to be done individually.

2. You can use Piazza for any queries related to the assignment and avoid
asking queries on the last day.

The assignment has 5 parts.

1 Installing and Testing xv6: 3 Marks

• xv6 is available at the following link .

• Install xv6 version 11.

• Instructions to build and install xv6 can be found here .

• Build instructions for Qemu can be found here.

2 System calls: 7 Marks

In this part, you will be implementing system calls in xv6. These are simple
system calls and form the basis for the subsequent parts of the assignment.

• System call trace:
Let us define two states within the kernel: TRACE ON and TRACE OFF.
If the state is equal to TRACE OFF, which is the default, then nothing
needs to be done. However, it is possible to set the state to TRACE ON
with a special system call, which we shall see in the next bullet point. The
state can be subsequently reset (set to TRACE OFF) as well.

Whenever the state changes from TRACE OFF to TRACE ON, you need
to enable a custom form of system call tracing within the kernel. This will
keep a count of the number of times a system call has been invoked since
the state changed to TRACE ON.

Let us define a new system call called sys print count. It will print the
list of system calls that have been invoked since the last transition to the
TRACE ON state with their counts. A representative example is shown
below. The format is as follows. There are two columns separated by a
single space. The first column contains the name of the system call, and
the second column contains the count. There are no additional lines; the
system call names are sorted alphabetically in ascending order.

1

https://pdos.csail.mit.edu/6.828/2018/xv6.html
https://drive.google.com/file/d/17QRMrRb4hCM5Zz33amRGvb458OkXlxo7/view?usp=sharing
https://drive.google.com/file/d/1jFFOhAsileiNgJjC_cogf9pwtT0R10M1/view?usp=sharing


sys_fork 10

sys_read 20

• Toggling the tracing mode:
Let us now add one more system call, sys toggle() that toggles the state:
if the state is TRACE ON sets it to TRACE OFF, and vice versa. A
program to toggle the state looks like this:

#include "types.h"

#include "user.h"

#include "date.h"

int

main(int argc , char *argv [])

{

// If you follow the naming convention , the system

call

// name will be sys_toggle and you

// call it by calling the function toggle ();

// toggle ();

toggle ();

exit();

}

Add User Programs to xv6:

– Create two files called, “user toggle.c”, and “print count.c” in the
root directory.

– Add a line “ user toggle” and “ print count” in the Makefile. The
relevant part of your Makefile should look like this:

UPROGS=\

_cat\

_echo\

_forktest\

_grep\

_init\

_kill\

_ln\

_ls\

_mkdir\

_rm\

_sh\

_stressfs\

_usertests\

_wc\

_zombie\

_user_toggle\

_print_count\

2



The only change in this part is the last two lines.

– Also make changes to the Makefile as follows (the only change is on
the second line):

1 EXTRA=\

2 user_toggle.c print_count.c\

3 mkfs.c ulib.c user.h cat.c echo.c forktest.c grep.c kill.c\

4 ln.c ls.c mkdir.c rm.c stressfs.c usertests.c wc.c zombie.c\

5 printf.c umalloc.c\

6 README dot-bochsrc *.pl toc.* runoff runoff1 runoff.list\

7 .gdbinit.tmpl gdbutil\

– Now, enter the following commands to build the OS in the xv6 di-
rectory.

make clean

make

– If you want to test the user program, launch xv6 using the command

make qemu-nox

After xv6 has booted in the new terminal, you can type

ls

This will show user toggle and print count in the list of available
programs.

• Add system call: sys add()
In this part, you have to add a new system call to xv6. This system call
should take two integer arguments and return their sum. Create a system
call, sys add(), and then create a user-level program to test it.

• Process List: sys ps()
In this part you have to add a new system call, sys ps(), to print a list of
all the current running processes in the following format:

pid:<Process-Id> name:<Process Name>

...

...

eg:

pid:1 name:init

Similarly for this part, create a new user program, which should in turn
call your sys ps() system call.

3 Inter-Process Communication: 10 Marks

We implement the following communication models between the processes, namely:

1. Unicast : In this communication model, a process can communicate with
another process using two system calls namely, sys send and sys recv. The
sys send system call is responsible for sending the data from a sender pro-
cess to a receiver process. Similarly, the sys recv system call is responsible

3



for reading the data sent from a sender process at the receiver process.
The length of the message is fixed at 8 bytes. The signatures of the
system calls are:

int sys_send(int sender_pid, int rec_pid, void *msg)

• sender pid: pid of the sender process.

• rec pid: pid of the receiver process.

• msg: pointer to the buffer that contains the 8-byte message.

int sys_recv(void *msg)

• msg: Pointer to the buffer where the message from the sender is
stored (after sys recv returns). This is a blocking call.

The return type is int : 0 means success and any other value indicates an
error.

2. Multicast : In contrast to the unicast communication model, the multi-
cast model sends a data from a sender to multiple processes using the
sys send multi system call. You need to implement this system call using
interrupts. This will involve writing a signal handler that is called by the
kernel. You need to make appropriate modifications to the kernel as you
deem fit. Name the software interrupt sys msg mcast. The signature of
the system call is:

int sys_send_multi(int sender_pid, int rec_pids[], void *msg)

• sender pid: pid of the sender process.

• rec pids: pids of the receiver processes.

• msg: pointer to the buffer that contains the 8-byte message.

Note: You can implement the multicast communication model using the
sys recv system call instead of a signal handler.

4 Distributed Algorithm: 10 Marks

In this part, you will compute the sum of the elements in an array in a distributed
manner. Modern systems have multiple cores, and applications can benefit from
parallelizing their operations so as to use the full capability of the hardware
present in the system. Use your unicast and multicast primitives.

The task here is simple. Calculate the sum of an array, subject to the
following conditions:

• Total number of elements in the array: 1000.

• Elements are from 0 to 9.

4



A sample program has been provided. It needs to be completed. The pro-
gram takes two command line arguments: ⟨type⟩ and ⟨input file name⟩. If the
type is 0, you use unicast communication, and if it is 1, you use multicast based
communication.

Some more points:

1. In the unicast version create (assign) a coordinator process. This will
collect the partial sums from the rest of the processes, compute and print
the sum. The format of the output is specified in the sample program.

2. In the multicast version, you need to extend the program to compute
the variance. Divide your program into two phases. In the first phase,
you have the standard unicast version, where all the processes send their
partial sums to the coordinator. The coordinator then computes the mean
and then multicasts it to all the worker processes. The worker processes
then unblock themselves, compute the sum of the squares of the differences
about the mean (second phase). Then the worker processes send the
partial sums to the coordinator. The coordinator computes and prints the
variance.

3. Limit the number of processes to 8. Note that your program should run
for 8 processes.

5 Report: 10 Marks

Page limit: 10
The report should clearly mention the implementation methodology for all the
parts of the assignment. Small code snippets are alright, additionally, the pseu-
docode should also suffice.

• Distributed Algorithm: How exactly does your algorithm work?

• IPC: Explain the implementation of the interrupt handler

• Any other details that are relevant to the implementation.

• Submit a pdf file containing all the relevant details.

• Say what you have done that is extra.

6 Submission Instructions

• We will run MOSS on the submissions. We will also include last year’s
submissions. Any cheating will result in a zero in the assignment, a penalty
as per the course policy and possibly much stricter penalties (including a
fail grade).

• There will be NO demo for assignment 1. Your code will be evaluated
using a check script (check.sh) on hidden test cases and marks will be
awarded based on that. You can find the test scripts here. The README
file inside the test scripts tarball contains the instructions to run the test
scripts. You need to submit only the assign1 8.c file.

5

https://drive.google.com/file/d/1F5RYOUnyfr6RbBSkyQ3w9Zhc6tGj5HKe/view?usp=sharing


How to submit:

1. Copy your report and the assign1 8.c file to the xv6 root directory.

2. Then, in the root directory run the following commands:

make clean

tar czvf assignment1_easy_<entryNumber>.tar.gz *

This will create a tarball with the name, assignment1 easy < entryNumber >
.tar.gz in the same directory. Submit this tarball on Moodle. Entry num-
ber format: 2020CSZ2445. (All English letters will be in capitals in the
entry number.)

3. Please note that if the report is missing in the root directory, then no
marks will be awarded for the report.

How to validate:

1. Make the following changes in the Makefile of XV6:

1. Append the following in the variable UPROGS to add

testcases:

_assig1_1\

_assig1_2\

_assig1_3\

_assig1_4\

_assig1_5\

_assig1_6\

_assig1_7\

_assig1_8\

2. Replace the target "fs.img" with the below rule:

fs.img: mkfs README arr $(UPROGS)

./mkfs fs.img README arr $(UPROGS)

2. Run the following commands to validate your submission:

sudo apt install expect

mkdir check_scripts

tar xzvf check_scripts.tar.gz -C check_scripts

cp assignment1_easy_<entryNumber>.tar.gz check_scripts

cd check_scripts

bash check.sh assignment1_easy_<entryNumber>.tar.gz

6


	Installing and Testing xv6: 3 Marks
	System calls: 7 Marks
	Inter-Process Communication: 10 Marks
	Distributed Algorithm: 10 Marks
	Report: 10 Marks
	Submission Instructions

