Operating Systems
Assignment 3 — Hard

Instructions:
1. The assignment has to be done individually.

2. You can use Piazza for any queries related to the assignment and avoid
asking queries on the last day.

1 Character Device Driver

Device drivers are built as loadable kernel modules (LKMs), which can be added
to or removed from the kernel at runtime. To uniquely identify a device, Linux
assigns major and minor numbers to a device. The major number represents
the device type and the minor number identifies the device. A device driver
receives system calls from users and then appropriately manages the device
(internally represented as a file). Hence, the device driver must implement the
system calls specific to files: open, close, read, write, lseek, mmap, etc. These
operations are described in the fields of the struct file_operations structure.

1.1 Problem Statement

Design and implement a character device driver for a virtual LIFO (last in, first
out) device (see link), whose size is practically unbounded (can be quite large,
let’s say limited to 1 MB). We will give it smaller inputs as test cases. You must
create two virtual LIFO devices that use the same device driver. One of the
devices must be read-only, while the other must be write-only. The characters
written to the write-only device can be read only from the read-only LIFO
device. The first character read from the read-only LIFO device corresponds
to the last character written to the write-only LIFO device. Reading from
an empty LIFO device should return an EOF. Otherwise, the process calling
the read operation must be blocked, and the process must be woken up once
characters are available to be read.


https://linux-kernel-labs.github.io/refs/heads/master/labs/device_drivers.html

The pseudocode for the reader is shown below:

int main(int argc, char *argv[])

{

}

char device [MAX_BUF_SIZE];
char user_msg[MAX_BUF_SIZE];

strcpy(device, argv[1]);
fd = open(device, O_RDONLY);
memset (user_msg, O, sizeof (user_msg));

ret = read(fd, user_msg, MAX_BUF_SIZE);
close (fd);

The pseudocode for the writer is shown below:

int main(int argc, char xargv[])

{

char device [MAX_BUF_SIZE];
char user_msg[MAX_BUF_SIZE];

strcpy (device, argv[1]);
strcpy (user_msg, argvl[2]);

fd = open(device, O_WRONLY);
memset (user_msg, O, sizeof (user_msg));

ret = write(fd, user_msg, strlen(user_msg));
close (fd);

3

Deliverable

. The character device driver for a virtual LIFO device.
. Test script that demonstrates the functionality of the driver.

. Prepare a PDF file with the name A3_report.pdf that includes a descrip-

tion of the driver’s functionality, a list of any issues encountered during
development and testing.

Bonus

The bonus marks will be awarded based on the resilience of the device driver.

4

Submission Instruction

1. We will run MOSS on the submissions. Any cheating will result in a zero

in the assignment, a penalty as per the course policy and possibly much
stricter penalties (including a fail grade).




2. There will be a demo for the assignment in which you must demonstrate
the functionality of the character device driver. This will be followed by
a viva in which your general theoretical and practical understanding will
be tested (in the context of the assignment). Note that regardless of the
code that you submit, the viva performance is vitally important.

3. Create a zip file that contains the report, test script, and a folder that
contains the character device driver files, and then name the zip file as,
assignment3_hard_ < entryNumber > .zip. Submit this zip file to Moo-
dle. Entry number format: 2020CSZ2445. Note that all English letters
are in capitals.



	Character Device Driver
	Problem Statement

	Deliverable
	Bonus
	Submission Instruction

