
Operating Systems

Assignment 3 – Easy

Instructions:

1. The assignment has to be done in a group of 2 members.

2. You can use Piazza for any queries related to the assignment and avoid
asking queries on the last day.

3. Check script with a sample test case: Link.

4. Please use the x86 implementation of the xv6 OS.

5. Demo will be taken for the students whose code fails to execute on the
test machine.

1 Buffer Overflow Attack in XV6

During the execution of a function, the operating system maintains a stack frame
for allocating the callee’s local variables and storing the pointer to the parent
stack frame (caller). The stack frame is furthermore used for holding the return
address. The register ebp is used to store the pointer to the parent stack frame,
and the register esp stores the address of the top of the stack. When a function
returns, the stored return address is popped into the instruction pointer (eip),
and the control jumps to that address.

The figure below shows the C code, abridged assembly instructions, and the
stack frame generated by xv6 compiled for the x86 architecture while executing
the function vulnerable function().

#include "types.h"

#include "user.h"

#include "fcntl.h"

void foo(){

printf(1, "SECRET_STRING");

}

void vulnerable_function(char *input) {

char buffer [4];

strcpy(buffer , input);

}

int main(int argc , char **argv)

{

1

https://drive.google.com/file/d/1AMnOOXe32FoVaXxfJiYOAgiqlBKfKGhV/view

fd = open("payload", O_RDONLY);

char payload [100];

read(fd , payload , 100);

vulnerable_function(payload);

exit();

}

00000000 <foo >:

.......

4: push %ebp

5: mov %esp ,%ebp

7: push %ebx

8: sub $0x4 ,%esp
15: sub $0x8 ,%esp

.......

1e: push %edx

1f: push $0x1
21: mov %eax ,%ebx

23: call 52a <printf >

28: add $0x10 ,%esp
2b: nop

2c: mov -0x4(%ebp),%ebx

2f: leave

30: ret

00000031 <vulnerable_function >:

.......

35: push %ebp

36: mov %esp ,%ebp

38: push %ebx

// store callee saved registers

39: sub $0x14 ,%esp
// create space for locals

46: sub $0x8 ,%esp
49: pushl 0x8(%ebp)

// push the address of payload into stack

4c: lea -0xc(%ebp),%edx

4f: push %edx

50: mov %eax ,%ebx

52: call d5 <strcpy >

57: add $0x10 ,%esp
// remove locals

5a: nop

5b: mov -0x4(%ebp),%ebx

// restore ebx

5e: leave

5f: ret

00000060 <main >:

.......

6e: push %ebp

6f: mov %esp ,%ebp

71: push %ebx

2

72: push %ecx

73: sub $0x10 ,%esp
// create space for locals

.......

87: mov %eax ,-0xc(%ebp)

// load the address of payload into (ebp - 12)

8a: sub $0xc ,%esp
8d: pushl -0xc(%ebp)

// push address at (ebp -12) [payload address]

// into stack

90: call 31 <vulnerable_function >

95: add $0x10 ,%esp
// remove space for locals

98: call 38e <exit >

Unsafe functions like gets() and strcpy() do not check bounds during execu-
tion. This leads to a situation in which the supplied input overflows into adjacent
memory regions. For example, during normal execution (without overflow), the
variable buffer will hold a maximum of four bytes, whereas if a buffer over-
flow attack is mounted, vulnerable functions like gets() and strcpy() will offload
more than four bytes into a space reserved for four bytes. This will cause the
saved registers and the return address to get overridden with attacker-controlled
values. Once the modified return address is popped into the eip register, the
control jumps to a location the attacker can control. For example, if the return
address is overridden with 0x00000000, the control jumps to the function foo()
even though the function is never explicitly called.

You have to write a python script that writes to a file(payload) an exploit
code which, when passed to the buffer overflow binary (buffer overflow.c),
executes the foo() function that prints a secret string on the console. The input
to the Python script is the size of the buffer variable.

$python3 gen_exploit.py buffer_size

$make clean && make -qemu -nox

$./ buffer_overflow
SECRET_STRING

2 Address Space Layout Randomization

ASLR prevents buffer overflow attacks by making the address layout of a process
non-deterministic. This makes it difficult for attackers to predict the memory
layout of a process and exploit its vulnerabilities.

Modify the xv6 operating system to implement ASLR. Specifically, you need
to:

1. Create a file called aslr flag that contains the current status of ASLR in
xv6.

2. If the file contains 1, turn on ASLR; otherwise, turn ASLR off.

3. Create a random number generator.

3

https://gist.github.com/therahulkanyal/7bdb553fcc294169306e7c46e05fb798

4. Modify the memory allocation routines to use the random number gen-
erator to randomize the location of regions (stack, heap, text, data, bss,
etc. OR the entire space) in the process’s virtual address space.

5. Test the ASLR implementation by executing the test case with the same
payload that revealed the secret string. If the ASLR implementation is
correct, the secret string should not be revealed.

6. Write a report summarizing your implementation of ASLR in xv6, the
challenges faced, and their resolutions.

3 Deliverables

1. A modified version of the xv6 operating system that supports toggleable
ASLR.

2. A report documenting your implementation of ASLR in xv6.

Note:

• You might have to change the no-stack-protector and the pie CFLAGS
in the Makefile.

• Include the payload file in the filesystem by adding ”payload” to the fs.img
build rule in Makefile.

4 Submission Instructions

• We will run MOSS on the submissions. Any cheating will result in a zero
in the assignment, a penalty as per the course policy and possibly much
stricter penalties (including a fail grade).

How to submit:

1. Copy your report to the xv6 root directory.

2. Then, in the root directory run the following commands:

make clean

tar czvf \

assignment3_easy_<entryNumber1>_<entryNumber2>.tar.gz *

This will create a tarball with the name, assignment3 easy < entryNumber1 >
< entryNumber2 > .tar.gz in the same directory that contains all the

xv6 files and the report PDF document. Entry number format: 2020CSZ2445
(All English letters will be in capitals in the entry number.). Only one
member of the group is required to submit this tarball on Moodle.

3. Please note that if the report is missing in the root directory, no marks
will be awarded for the report.

4. If you attempt the assignment individually, you do not need to mention
the entryNumber 2 field.

4

	Buffer Overflow Attack in XV6
	Address Space Layout Randomization
	Deliverables
	Submission Instructions

