A Survey of Checker Architectures

Rajshekar Kalayappan

Computer Science and Engineering
Indian Institute of Technology, Delhi
and

Smruti R. Sarangi

Computer Science and Engineering
Indian Institute of Technology, Delhi

Reliability is quickly becoming a primary design constraint for high end processors because of
the inherent limits of manufacturability, extreme miniaturization of transistors, and the growing
complexity of large multicore chips. To achieve a high degree of fault tolerance, we need to detect
faults quickly, and try to rectify them. In this paper, we focus on the former aspect. We present a
survey of different kinds of fault detection mechanisms for processors at the circuit, architecture,
and software level. We collectively refer to such mechanisms as checker architectures. First, we
propose a novel two-level taxonomy for different classes of checkers based on their structure and
functionality. Subsequently, for each class we present the ideas in some of the seminal papers that
have defined the direction of the area along with important extensions published in later work.

Categories and Subject Descriptors: C.1.0 [Processor Architectures]: General
General Terms: Checker Architectures

Additional Key Words and Phrases: Reliability, Checker Architecture, Fault Tolerance

1. INTRODUCTION

With continued device scaling, it is getting increasingly difficult to ensure relia-
bility at a device, circuit, and architectural level. Traditional methods of design
and testing are proving insufficient to ensure reliable error free operation for to-
day’s multi-billion transistor chips [Borkar 2004]. Consequently, the budgets for
verification and testing are now roughly two thirds [Bacchini et al. 2004] of the
cost of developing a high end processor. Even then, occasionally some defects slip
into production silicon, and have resulted in catastrophic failures as documented by
the popular press [Sarangi et al. 2007]. Other than such congenital faults [Sarangi
2007], processors are susceptible to a wide variety of transient and permanent faults
during regular operation. Hence, along with extensive testing and careful design,
it is necessary to reckon that defects will manifest in the field, and we need to

Address of the institute for both the authors

Indian Institute of Technology

Hauz Khas, New Delhi, 110016

India

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20YY ACM 1529-3785/20YY /0700-0001 $5.00

ACM Computer Surveys, Vol. V, No. N, Month 20YY, Pages 1-077.

2 . Rajshekar Kalayappan et. al.

make changes in the design of processors to dynamically detect and correct them.
Researchers are converging to the view that we need to design reliable processors
with increasingly unpredictable and unreliable components.

The need for reliable processors has been felt since the mid seventies when com-
puters started to be used in major banks, financial institutions, and airlines. The
designers of the Tandem computer [Horst and Chou 1985] were one of the early pi-
oneers in this field. They used three processors in parallel, and decided the results
based on voting. They considered a fail-stop failure model, which guarantees that
a processor will completely stop functioning upon an error. However, since then,
faults have become far more insidious in nature. In the mid nineties transient faults
due to cosmic rays and alpha particle strikes came into prominence. As a result,
IBM augmented its mainframe processors with a spare pipeline that executed a
redundant thread of computation [Spainhower and Gregg 1999].

In the last decade, transistors have seen further miniaturization, and have entered
the nanometer era. Along with a significantly increased chance of transient faults,
transistors are now vulnerable to a host of wear out related faults that manifest over
time. Secondly, designs have become extremely complicated, especially, after the
advent of multicores. This leads to a host of design defects. Consequently, there is a
vast body of literature on different kinds of checker architectures tailored to detect
different kinds of faults. Some of them use variants of classical n-modular execution;
however, most schemes use a host of novel techniques to quickly detect faults. There
are some additional constraints such as power consumption and complexity, which
make the space of solutions even more diverse.

1.1 Scope

The problem of designing reliable processors can be broken down into three parts
— fault characterization (Section 2.1), efficient fault/error detection (Sections 3 to
7), and checkpointing/ recovery (Section 2.3). In this survey paper, we focus on
online detection mechanisms for faults in hardware. In specific, we primarily look
at approaches at the architecture level. Additionally, we look at some circuit and
software level approaches that are fairly oblivious to low-level hardware details, and
mostly concern themselves with architectural features.

1.2 Organization

We start by providing a novel taxonomy of fault detection mechanisms in Sec-
tion 2.2. At the highest level, we classify the different detection mechanisms based
on two major criteria. The first criterion is the type of the checker — specialized
circuit, spare core, extra thread, and software module. The second criterion is the
type of target processor — single core, or multicore. For a second level classification,
we have three orthogonal sets of criteria namely the type of fault detected, degree
of coverage, and the structure of the checker. We observe that when the checker
architecture is limited to specialized circuits(see Section 3), there is a significant
amount of diversity in solutions. The solutions for different types of faults vary
significantly. However, most of the solutions at the level of a core, thread, or CMP,
follow one of several major patterns as described in Sections 4 to 6. These pat-
terns were proposed in a few seminal papers. Most schemes add extra constraints,
change the fault model, or change the type of coverage. The approaches for find-

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

Preparing Articles for the ACM Transactions : 3

ing hardware faults in software (see Section 7) either rely on classical redundancy
techniques, or check if a certain set of invariants hold.

We finally conclude in Section 8 by observing that we need an even more diverse
set of solutions for checking architectures of the future. Over the next few years,
we expect processors to have tens of cores, many specialized accelerators, 3d inte-
gration, and novel on-chip interconnects. They will have their own unique runtime
verification challenges.

2. BACKGROUND

We describe different types of faults in Section 2.1, provide a taxonomy of different
types of checking systems in Section 2.2, and briefly survey different methods of
taking checkpoints and performing rollback in Section 2.3.

2.1 Faults in Hardware

2.1.1 Owverview. Traditional fault tolerance literature [Koren and Krishna 2007;
Mourad and Zorian 2000] classifies faults in two different ways. They can be classi-
fied by their duration — transient, intermittent, or permanent. Alternatively, they
can be classified based on their nature — stuck-at, timing, and functional. Stuck-at
faults can be modeled as a permanent open circuit or short circuit for some wire or
transistor. When a circuit becomes slow, and signals do not reach their destination
on time, the circuit suffers from a timing fault. Lastly, a logical flaw in the design of
the circuit is referred to as a functional fault. Given the fact, that transient faults
in circuits can typically be modeled as stuck-at faults, and in a processor’s time
frame, there is no significant difference between an intermittent and permanent
fault, we can coalesce the different types of faults into four categories — transient,
timing, hard, and design.

2.1.2 Transient Faults. Transient faults are caused by events that occur once
and their effects persist for an extremely small duration (typically less than one
cycle). Some of the most common causes include alpha particles, and neutrons
generated by cosmic radiation, or spontaneous degeneration of unstable isotopes in
the packaging material [Ziegler et al. 1996]. These events induce a current pulse,
which is potent enough to flip the value stored in a latch. There are other relatively
infrequent causes such as crosstalk and sudden fluctuations in supply voltage. Both
logic as well as memory elements such as latches and unprotected SRAM arrays
are susceptible to these faults. Larger yet slower transistors can partially mitigate
this problem.

2.1.3 Timing Faults. Timing faults are typically caused by severe voltage or
temperature fluctuations, or as a result of gradual wear out. Severe temperature
and voltage fluctuations typically are intermittent in nature, and can possibly last
till hundreds of milliseconds. During this period, transistors can slow down, and
lead to the emergence of timing faults. Secondly, due to ageing processes [Tiwari
and Torrellas 2008], interconnects and transistors can gradually wear out, and be-
come slower. One of the prominent ageing processes is negative bias temperature
instability(NBTI), which refers to the increase in threshold voltage of PMOS tran-
sistors due to negative gate voltages applied at a high temperature.

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

4 Rajshekar Kalayappan et. al.
Fault Rule for Detection Rule for Correction
Transient | Any scheme that assesses the correct- | Spatial or temporal re-execution of the
ness of the program execution. affected sequence of instructions.
Timing 1) A spare copy that is physically iso- | A spare that effectively runs at a safe
lated from the master copy. Eg., sep- | frequency.
arate core, or separate circuit with its
own clock. or 2) A scheme that detects
an invariant.
Hard A scheme that uses spatial redundancy | Contains one or multiple spare copies
or invariants. that are guaranteed to be correct.
Design A method that checks some high level | An entity that computes the correct re-
properties of the program execution | sult through an alternative method.
that are independent of the architec-
ture.

Table I. Rules for classifying faults

2.1.4 Hard Faults. Ageing processes can ultimately lead to a complete disinte-
gration of the affected component (transistors or interconnects). Along with NBTI,
typical examples of ageing processes that ultimately lead to hard faults are electro-
migration, stress migration, thermal cycling, and dielectric breakdown. FElectromi-
gration refers to the phenomena in which wires tend to gradually thin over time,
because flowing electrons transfer a part of their momentum to the surrounding
atoms. A similar migration of atoms known as Stress Migration happens due to
thermal fluctuations. Thermal Cycling refers to metal fatigue around I/O contacts
due to temperature cycles.

2.1.5 Design Faults. Design faults refer to bugs in RTL. Even after extensive
verification, some design bugs slip into production silicon [Sarangi et al. 2007], and
permanently impair some aspect of the processor’s functionality. One such example
is the infamous Pentium division bug [Blum and Wasserman 1996]. Because of the
increasing complexity of modern architectures, it is becoming increasingly difficult
to completely eliminate them.

2.1.6 Detection and Correction of Faults. In the subsequent sections, we label
each major approach based on the types of faults it detects and corrects. We have
observed that in some cases, the original paper was slightly vague about the fault
coverage. Secondly, it is possible that through trivial extensions of the proposed
architecture, it is possible to detect a wider variety of faults.

Table I provides an alternate perspective, viewed in terms of the faults, rather
than the fault detection/correction schemes. The four types of faults are discussed
in terms of the nature of the support that is required to detect and correct them. We
use these rules to classify different architectures on the basis of their fault coverage.
Please note that when we say that a certain architecture detects a certain fault, we
mean that it either detects the fault or the error resulting from the fault. It is not
necessary for it to distinguish different fault types all the time, as long as it can
detect all the resultant errors.

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

Preparing Articles for the ACM Transactions : 5

2.2 Taxonomy

We propose a taxonomy of checkers in this section. Traditional fault tolerance
literature [Koren and Krishna 2007] has looked at three major classes of solutions:
spatial redundancy (run spare copies in parallel), temporal redundancy (run the
same copy repeatedly), and information redundancy (error checking logic). We
observe that these criteria prove to be extremely nebulous for classifying checker
architectures. For example, [Rashid et al. 2005] proposes to parallelize the process
of checking for different chunks of execution. These copies lag behind the master
copy. We cannot neatly place this idea in any of the bins, because it contains
aspects of both temporal as well as spatial redundancy.

D[7
Software - 74 : Symptom ——
o
< Q! Invariant ——
>| Thread — o) e :
F | & | g Classification
g >| Subset —— .
Sleoe [@] ® 8 of a Section
S Complete ——
Of ..
Pipeline |]) | . Transient T T T
‘ ‘ !] \ " Muli Single Mult
Comg tCFllqtrI Flow:UniProc | Consistency Timing Master ~ Slave Slave
g Coherence) Hard [checker structure |
Single Threaded ~ Multi-Threaded Design
[Nature of the Test Program |
(@) (b)

Fig. 1. Taxonomy of checkers

Consequently, we base our high level classification on a novel set of criteria shown
in Figure 1(a). Before considering the taxonomy in detail, we need to reckon that
it is often computationally intractable to check the correctness of hardware in to-
tality. Obtaining an acceptable amount of coverage using pure hardware check-
ing/verification methods can also be very time consuming. Consequently, the meth-
ods that we survey, primarily focus on the correctness of the execution of a given
test program. If this test program does not execute correctly, then we can infer a
hardware fault. Please note that the test program can either be a regular applica-
tion, or it can be a targeted micro-benchmark tailored to detect a specific category
of faults.

The x-axis represents the nature of the test program — single threaded, or multi-
threaded. For a single threaded execution, we can check the computation (Comp),
data flow (DataFlow) and control flow (CntriFlow). For a multi-threaded execution,
we can check for just uniprocessor semantics (UniProc), or mutiprocessor semantics
— cache coherence, and memory consistency. In the y-axis, we list the different types
of design alternatives for checkers. They can either be specialized circuits or intra-
pipeline functional units, spare cores, spare threads, or software modules. We divide

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

6 : Rajshekar Kalayappan et. al.

the 2D design space into rectangles, and discuss each rectangle in a separate section
in this paper..

We now define a set of second level criteria in Figure 1(b) to dissect each section.
Before proceeding, let us define the terms — master and slave. A master is an
entity (hardware or software), which represents the default implementation. It is
afflicted by faults, and has a minimal amount of instrumentation in a checker based
architecture. In comparison, a slave is a separate entity (hardware of software),
which is significantly impaired in either ability or performance as compared to the
master. A slave is not strictly required to guarantee correctness. Secondly, it
might either execute subsets of the original program, or perform a totally separate
computation to detect faults. A checker based architecture needs to detect faults
by observing the outputs of the masters and the slaves.

Now, we define three kinds of configurations based on the number of masters
and slaves — MultiMaster (multiple masters, no slaves), SingleSlave (single master,
single slave), and MultiSlave (single master, multiple slaves). MultiMaster is similar
to classical n-modular redundancy [Koren and Krishna 2007], where the existence
of a fault is decided by comparing the outputs of the different redundant units.
SingleSlave refers to a weak slave unit, which typically checks the execution of
the master/underlying system, or does some other computation that is helpful in
detecting a fault. The MultiSlave configuration parallelizes the work done by the
slaves. We use this classification as the x-axis in Figure 1(b).

Let us define the term, test set, which refers to the set of all dynamic instructions
in the execution of the test program that are relevant to the subsystem under test.
Now, for the y-axis in Figure 1(b), we consider the degree of coverage — complete,
subset, invariant, and symptom!. Complete coverage refers to the verification of
every single instruction in the test set; whereas, subset coverage considers only a
proper subset of all instructions. The invariant coverage metric seeks to verify a
certain set of high level assertions. Lastly, the symptom coverage metric is concep-
tually the inverse of invariant; it checks for signs of something wrong. However,
in most cases, it is not a strict boolean inverse of the invariant conditions. For
example, let us consider a program that finds a root of a quadratic equation. Com-
plete coverage is tantamount to checking all the instructions. We might just decide
to check that the instructions to compute the discriminant are executed correctly
(subset coverage), or we might substitute the value of the obtained root in the orig-
inal equation, and check if it equates to zero (invariant coverage). Lastly, we can
run a fault inference algorithm only upon the occurrence of an extraordinary event
such as a segmentation fault (symptom coverage).

Finally, we use the type of fault — transient, timing, hard, and design — in the
z-axis. For different types of checkers, we do not have solutions for all points in this
3D space. Consequently, we use different set of axes in different orders of priority
for each section based on the diversity of prior work.

2.3 Checkpoints and Recovery

In this section, we discuss the process of recovery from an error. There are a few
classical forward error recovery techniques, which use n-modular redundancy or

IWe use italics for the coverage metrics to distinguish them from other uses of the same word in
the rest of the text

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

Preparing Articles for the ACM Transactions : 7

error checking logic. In the former case, the correct output is decided by voting,
and latter case we use error correcting codes to fix erroneous bits in the output.
However, because of their limited applicability as well as implementation overhead,
prior work has primarily looked at backward error recovery(BER), which involves
the process of creating a checkpoint of a correct state, and a rollback upon the
detection of an error. Please note that both these areas are extremely well studied;
in this section, we are just outlining the major concepts.

For BER, the first design point that we need to consider is the extent of prop-
agation of the error at the time it is detected. The erroneous output might have
propagated to logic in the same functional unit(FU), other stages in the pipeline,
or other elements in the memory system such as caches.

2.3.1 Functional Units. If the error is localized to the FU, then we first need to
restore the state bits of the FU to default values. Subsequently, for error recovery
we have two generic options. We can either reissue the instruction to the same FU,
or use the result of a spare FU [Spainhower and Gregg 1999].

2.3.2 Pipeline. If the error has propagated to other pipeline stages, then we
can treat this event as an exception. We need to flush the pipeline, and restore
the register state. The correct register state can be obtained from either a register
checkpoint taken previously or from a separate slave thread, which is guaranteed
to be correct. As explained by Smith and Sohi [Smith and Sohi 1995], there are
two methods of taking a register checkpoint. The first technique uses a history
buffer to take a checkpoint of the values of all the architectural registers at periodic
intervals. To rollback, we need to find the relevant check point in the history
buffer. The second method, uses a separate architectural register file(ARF), which
maintains the register state for only the committed instructions. To flush all the
instructions in flight, we just need to copy the state from the ARF to the physical
register file in the processor.

2.3.3 Memory System. When bugs propagate to the memory system, the pro-
cess of recovery can be complicated. First, we need to use checkpoints for the
pipeline as mentioned in Section 2.3.2. Subsequently, there are four broad ap-
proaches for taking checkpoints for memory [Prvulovic et al. 2002] — full separation,
partial separation, renaming, and logging. “Full separation” proposes to keep all
the speculative state in a dedicated store buffer. For any access, we need to query
this buffer first, before accessing the caches. We can rollback to a checkpoint by
flushing the store buffer. To create a new checkpoint, we need to drain the store
buffer to the L1 cache, and reinitialize it. However, this approach is not very scal-
able. “Partial separation” uses the caches as the store buffer. Before creating a
checkpoint, we need to ensure that all the speculative data in the cache is flushed to
lower levels. Subsequently, we need to ensure that we are not evicting speculative
data from the cache. If there is a conflict miss, we can use a victim cache to ame-
liorate the situation. After detecting a fault, we can go back to the last checkpoint
by flushing the cache.

As compared to separation based approaches, we can use “renaming” at the
page level. We can use a copy-on-write scheme for pages. After the creation of a
checkpoint, whenever a word in a page is written, we need to create a new copy
of the page. To restore a checkpoint, we need to restore the state of the page

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

8 : Rajshekar Kalayappan et. al.

table at the beginning of the checkpoint. The most scalable method especially
for multiprocessors [Prvulovic et al. 2002; Sorin et al. 2002] is to use variants of
“logging”, which propose to record the old value of a memory word before it is
overwritten for the first time. These logs can be maintained either in software or in
hardware. Regular read accesses are oblivious of the logs. Since faults are extremely
infrequent, we will need to restore the values in the logs very rarely. Consequently,
we can afford to maintain very large logs.

For multiprocessors, there is an additional issue [Prvulovic et al. 2002] — check-
point consistency. A checkpoint is consistent if it contains the effect of an event,
only if, it contains the cause of the event. For example, it should never be the
case that processor 1 has written X to location A, processor 2 has read X from
there, and the read has been recorded but the write has not been recorded. We can
have many such cases in systems with relaxed memory consistency models. Conse-
quently, there is a need to take a co-ordinated checkpoint across different cores. We
can either have global co-ordination or optimized algorithms to take co-ordinated
local checkpoints [Prvulovic et al. 2002; Sorin et al. 2002; Ahmed et al. 1990].

3. CIRCUIT AND PIPELINE LEVEL TECHNIQUES
3.1 Summary

In this section, we look at approaches at the circuit and pipeline level. For a
second level classification, we classify the approaches by the type of fault that they
are primarily designed to detect. At this level, the approaches to detect different
kinds of faults vary significantly. We shall observe in the succeeding sections that
at a higher level, the nature of the fault is not very important, and it is hard to
distinguish between them.

Table IT shows a list of some of the seminal techniques. Most of them are designed
to primarily detect one kind of fault. Some proposals such as Argus [Meixner et al.
2007] can detect both hard as well as transient faults. We have classified them
based on their conceptual similarity with other schemes in the same category. We
mention the nature of faults covered in the description of the technique as well as
in Table II.

After classifying the techniques based on the type of fault they detect, we classify
them based on coverage. As compared to higher level approaches, circuit level
approaches are much more reliant on symptoms and invariants. Lastly, we observe
that there is also a preponderance of MultiSlave techniques, because, a pipeline
level checking algorithm typically uses a different type of slave for each important
stage.

3.2 Transient Faults

3.2.1 Complete Coverage. [Ray et al. 2001; Parashar et al. 2004] advocate the
use of classical n-modular redundancy for the execution stage of the pipeline (see
Figure 3). There are replicated execution units, and each instruction is dispatched
to a multitude of units. This replication is done at the rename stage. At the end of
the execution, the hardware compares the outputs of the replicated units. If there
is a mismatch that tends to recur, we can infer a hard fault.

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

Preparing Articles for the ACM Transactions : 9

Proposal Sub- Perf. HW Checker Coverage Faults
Section Ovhd. Ovhd. Type
IRTR Transient ~ 0% Minimal MultiMaster Subset
[Gomaa et. al. 2005] Faults (3.2)
ReStore Transient ~ 0% Minimal MultiSlave Symptom
[Wang et. al., 2006] Faults (3.2)
RAZOR Timing ~ 0% Extra flip-flop SingleSlave Complete
[Ernst et. al., 2003] Faults (3.3) per latch
‘Wearmon Timing ~ 0% 1 Delay moni- SingleSlave Invariant
[Zandian et. al., 2010] | Faults (3.3) tor per stage
BulletProof Hard 4—-18% | 5.8% MultiSlave Complete MH
[Shyam et. al., 2006] Faults (3.4)
Argus Hard < 4% <17% MultiSlave Complete TMH
[Meixner et. al., 2007] | Faults (3.4)
Phoenix Design ~ 0% 0.05% MultiSlave Complete
[Sarangi et. al., 2006] Faults (3.5)
Fault Types : (T — Transient, M — Timing, H — Hard, D — Design)
El — detect and correct, () — only detect

Table II. Summary of circuit/pipeline level approaches

3.2.2 Subset Coverage. Given the overheads of Complete coverage, we observe
the need to consider a subset of all the instructions. Gomaa et. al. [Gomaa and
Vijaykumar 2005] propose to use the resources of the pipeline when it is idle to
re-execute portions of the program. Such idle phases can be caused by L2 misses,
or low-IPC phases. They present the design of a reuse buffer that contains a set of
instructions along with their input and output values. A part of the pipeline such
as the issue queue, and the functional units are augmented with extra hardware to
verify the results. Qureishi et. al. [Qureshi et al. 2005] propose a similar scheme,
and augment it by making the verification phase visible to higher levels.

Reese [Nickel and Somani 2001] proposes to use idle cycles to only verify ALU
results. [Hu et al. 2005] extends this idea to consider the load imbalance between
the integer ALU and the floating point ALU. The floating point ALU can be used
to check the results of the integer ALU.

3.2.3 Symptom Coverage. The ReStore [Wang and Patel 2006] architecture uses
symptoms to detect transient faults. Through a detailed set of simulations, the au-
thors establish that about 80% of failure inducing transient faults can be classified
as processor exceptions, access to illegal memory addresses, and control flow viola-
tions. These can be detected by a specialized symptom detector.

3.2.4 Invariant Coverage. Early variants of IBM’s G5/S390 servers [Spainhower
and Gregg 1999] had processors that performed inline checking by performing parity
prediction or duplicating selected functional units. Parity prediction refers to a
process of quickly predicting the parity of the output of an ALU without doing
the actual computation. This can be used to find errors in the execution. [Ossi
et al. 2009] uses Berger codes to verify the operation of an ALU. A Berger code

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

10 : Rajshekar Kalayappan et. al.

is a concise representation of a binary number. Moreover, it is possible to find
the Berger code representation of the result of an ALU operation from the Berger
codes of the operands. [Carretero et al. 2009] generalizes this approach to consider
a variety of signatures. It uses these signatures to verify the control logic of the
issue queue and the register files. Secondly, it also proposes to use signatures based
on arithmetic codes, which can be used to verify the operation of ALUs.

3.3 Timing Faults

3.3.1 RAZOR - Complete Coverage. The RAZOR [Ernst et al. 2003] scheme
was originally proposed to reduce power. However, it proved to be a seminal tech-
nique and has subsequently been used in [Avirneni et al. 2009] for fault tolerance.
RAZOR proposes to augment a pipeline latch with an additional RAZOR flip-flop.

The intuition behind the RAZOR pipeline is as follows. Let us assume that the
ideal clock cycle is one unit of time. It is possible that due to a timing fault, the
delay of a pipeline stage increases to k, where k > 1 for some inputs. Now, if we
resample the output of the stage at the instant, x — 1, in the subsequent cycle, and
compare it with the value that was originally stored in the pipeline latch, we can
detect a timing fault.

Normal Clock

Shadow | CMP
Latch Error

Delayed Clock RAZOR FF

Fig. 2. RAZOR

Fig. 3. Dual use of superscalar datapath

Figure 2 shows the design of a RAZOR flip-flop. The flip-flop has a normal latch
and a shadow latch. The shadow latch uses a clock that is offset from the main
clock by x — 1 units of time. It is assumed that by the time the outputs are read
into the shadow latch, they have stabilized to the correct values. Consequently,
we compare the results in the shadow latch, and the main flip flop and infer faults
accordingly. It is possible to proceed by using the value in the shadow latch in
the subsequent stages. The erroneous computation can be discarded by inserting a
pipeline bubble or by flushing the pipeline [Blaauw et al. 2008].

3.3.2 Inwariant Coverage. Typically, the clock period of a processor is designed
to accommodate for worst case propagation delays of all the pipeline stages. The
difference between the propagation delay of a signal and the clock period is in-
dicative of the safety margin. If it is too small or negative, then we can infer the
occurrence of a timing fault. [Blome et al. 2007; Zandian et al. 2010] propose extra
circuitry to measure this difference through periodic sampling, and by using differ-
ent test vectors. These circuits are activated periodically or during periods of low
activity.

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

Preparing Articles for the ACM Transactions : 11

3.4 Hard Faults

[Shyam et al. 2006] proposes BulletProof, a circuit-level solution that protects the
pipeline and the on-chip memory. Each stage of the pipeline (decoder, register file,
functional units, cache) has an associated checker, which get activated during idle
slots. A decoder checker sends the same instruction to multiple unused decoders in
the pipeline and verifies the results. A register file checker generates random inputs,
and writes them to unused registers. It reads those registers at a later point of time,
and compares the results. Each ALU has a 9-bit mini ALU that can verify some
of the results generated by the main ALU. [Constantinides et al. 2007] proposes
a new set of instructions that can manipulate a microprocessor’s internal state.
The proposal envisages firmware that can periodically suspend the execution of the
microprocessor, capture its state, run a set of test vectors loaded by software, and
then restore the state back. The coverage of both of these techniques is dependent
on the type of test vectors, and checking algorithms.

Argus [Meixner et al. 2007] can detect both transient and hard faults. It has a
dataflow, control-flow, and computation checker. Using static analysis, the com-
piler embeds a signature representing the control flow and data flow in every basic
block. The signature represents the flow of values between different registers in a
basic block, and the unique id of the basic block. To verify the data flow within a
basic block, the hardware needs to compute the signature dynamically, and com-
pare it with the embedded signature. For the case of control flow, the compiler
embeds the signatures of the possible successors at the end of the basic block. The
hardware verifies the signature of a newly entered basic block with this list. For
verifying computation, Argus uses a low cost adder for adds, simpler redundant
units for logical operations, and a modulo-arithmetic based approach for checking
multiplication/division operations.

3.5 Design Faults

Sarangi et. al. [Sarangi et al. 2007] proposed the Phoeniz system that can detect
design faults. They analyze the errata sheets published by processor vendors, and
characterize the design defects based on the micro-architecture level signals that
activate them. For example, a bug in Pentium IV, can possibly manifest when in
the same cycle, the L2 cache is being flushed, there is an external snoop request, and
the processor is in a low power state. They subsequently characterize the defects
from a certain processor family, and use this information to design appropriate
hardware to collect all the signals for a future processor. There is an elaborate
network of programmable logic arrays that can collect and route signals. Each
fault is associated with a combination of signals.

After releasing a processor, vendors should continue to test their processor for
design faults. As and when they detect faults, they need to issue a hardware patch
that can train the reconfigurable on-chip hardware to monitor appropriate combi-
nations of signals, and flag an error if the combination gets activated. Software
or dedicated hardware can then initiate recovery, and take measures to circumvent
the problem. [Constantinides et al. 2008] extends this work by considering more
comprehensive and flexible monitoring of signals.

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

12 . Rajshekar Kalayappan et. al.

4. CORE BASED APPROACHES
4.1 Summary

In this section, we explore approaches that use single or multiple fully functional
cores as the checker. We survey a set of major techniques for each of the major
classes of checkers, and their implications in terms of power, performance and
complexity. We highlight some of the seminal proposals in Table III.

[Bernick et. al. 2005]

Proposal Sub- Perf. HW Checker Coverage Faults
Section Ovhd. Ovhd. Type
NSAA{ 4.2 Minimal 300% MultiMaster | Complete TMH

[Weaver et. al., 2001 |

DIVA 4.3 < 3% 6% SingleSlave | Complete

;

TMHD

[Purser et. al. 2000]

SlipStream 4.4 12% speed-up | 100% SingleSlave Complete

commit buffer

[Rashid et. al., 2005 |

CGVP* 4.5 < 8% 200% + post- MultiSlave Complete

5 B
HiE
T =

Fault Types : (T — Transient, M — Timing, H — Hard, D — Design)

— detect and correct, () — only detect

CGVP* — Coarse Grain Verification Parallelism, NSAAt — Non-Stop Advanced Architecture

Table III. Summary of core level approaches

We first look at the classical N-modular redundancy based MultiMaster configu-
ration in Section 4.2. MultiMaster based approaches can detect all kinds of faults,
and can provide complete coverage. The issue here is that we cannot run modern
processors in lock-step due to non-determinism introduced by the memory system,
and bus protocols [Sarangi et al. 2006]. Consequently, we need to devise protocols to
run processors in a loosely synchronized fashion, and compare outputs infrequently.

We subsequently look at two broad families of SingleSlave schemes — DIVA (Sec-
tion 4.3) and SlipStream (Section 4.4). DIVA uses a simple in-order checker proces-
sor, and SlipStream uses a redundant core that lags behind the master core. The
slave is meant to be slower as compared to the master such that we can ensure
that it is relatively immune to faults. However, for the slave to keep up with the
master, it is necessary for it to get hints — branch outcomes and memory values —
from the master. The SingleSlave approaches are clearly better than MultiMaster
approaches in terms of power. We can also reduce power consumption by consider-
ing a MultiSlave approach(MSSP family described in Section 4.5), where the task
of checking is distributed among several slaves. Each of them can be run at a slower
frequency. Since power is a cubic function of frequency, we can achieve substantial
power savings.

4.2 MultiMaster Approaches

Conceptually, we can either use Dual Modular Redundancy (DMR) to just detect
errors, or Triple Modular Redundancy (TMR) to correct them using voting. How-

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

Preparing Articles for the ACM Transactions : 13

ever, due to non-deterministic events in state of the art processors, it is difficult
to run processors in lockstep and compare results every cycle. Different proces-
sors might read asynchronous events at slightly different times. Signal propagation
delays using source synchronous buses [Sarangi et al. 2006] are typically variable.
Power and thermal management events typically introduce delays. Lastly, due to
process variation [Borkar 2004], different processors might run at different speeds
or might have I/O interfaces, which do not have the same latency. Consequently,
we need to explore loosely coupled solutions, which can tolerate some amount of
slack between the processors.

4.2.1 Lockstep Processors. Tandem Computers Inc. (now Hewlett Packard Non-
stop Enterprise Division) [Horst and Chou 1985; Joel et al. 1986] were the first to
design and commercially market highly reliable servers that used dual modular re-
dundancy. The cores had a minimal amount of slack between them. The NonStop
I was released in 1976. The system consisted of 2 to 16 processors connected by
a dual-bus interconnect. Each processor worked in a failstop mode. A failstop
processor stops as soon as it detects a fault. The Tandem processor had extensive
support for built in self test modules and parity checkers.

The first two versions of the Tandem processor used messages in software to
exchange state across redundantly executing processes. To facilitate the exchange
of messages, the NonStop kernel [Bartlett 1981] was developed. These processors
used redundant memory elements and hard disks. These designs used messages to
keep the checker processor in sync with the master. Whenever the master failed, it
was taken off the system, and the checker was connected in lieu of it.

By 1993, designers realized that internal BIST mechanisms are not sufficient to
detect all types of faults. Pure DMR solutions were deemed necessary. Hence, later
versions employed a pairing scheme for processors - two processors, working with the
same clock, executed the same program in a lock-stepped fashion (see Figure 4(a)).
If their results did not match, a fault was inferred, and both the processors were
removed from the system.

‘Core 1‘ ‘Core 1‘ ‘Core 1‘
‘Core 2‘ ‘Core 2‘ ‘Core 2‘
|Core 3‘ ‘CoreB‘ |Core 3‘
Germtl Sz ‘ Core 4‘ ‘ Core 4‘ ‘ Core 4‘ slice
Voter
l :
‘ Memory ‘ ‘ 1/O and Storage ‘

(a) (b)

Fig. 4. NonStop architecture

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

14 . Rajshekar Kalayappan et. al.

4.2.2 Loosely Coupled Processors. This lock-stepped manner of execution is not
desirable as it poses restrictions on possible power optimizations, advanced 1/0
protocols, and wide out-of-order machines. As an alternative, the NonStop Ad-
vanced Architecture or NSAA was proposed [Bernick et al. 2005]. NSAA follows a
more loosely coupled approach. The comparison of results is done at a much larger
granularity, thus, allowing for minor deviations in execution behavior, and in the
frequency at which the processors run. The comparison is done only before every
I/0O operation.

The working of the NSAA architecture is explained in Figure 4(b). The architec-
ture consists of groups of three 4-way Itanium SMP server processors. In a group,
three corresponding cores, each in one server processor are referred to as a slice.
All three cores in a slice execute the same program. They have separate mem-
ory address spaces. Please note that this architecture is only suitable for single
threaded applications. Before every I/O event or interprocessor message, all three
cores send a message to the voter. This message typically contains the content of
the I/O event. The voter compares the results for three cores. If all of them agree,
then we proceed normally. Otherwise, the recovery system marks the core that
produced the erroneous output. It is possible that the faulty core had a soft error.
In this case, we set the state of the faulty core to the state of a core that did not
suffer from a fault by copying the register and memory contents. However, if a core
repeatedly suffers from a fault or has a BIST failure, then it has most likely suffered
from a hard error. In this case the entire SMP system is removed. The two cores
in each slice can function in a standard DMR configuration, where we can detect
errors, but we cannot correct them without using extensive checkpoint-rollback re-
covery. It is possible to later add another 4-way SMP system in place of the faulty
one to complete each slice. This can be done though automatic reconfiguration or
manually.

[Nomura et al. 2011] proposes Sampling + DMR, which employs DMR for a
fraction of time. The remainder of the time has the system working in the uncovered
mode. This allows massive savings in terms of power and performance (as now fewer
comparisons are done). It must be noted that this is a solution that covers only
permanent faults.

4.3 SingleSlave — DIVA Family

Austin proposed the Dynamic Instruction Verification Architecture (DIVA) [Austin
1999], which is one of the earliest works in this area, and serves as the basis for
many subsequent proposals. This architecture uses a small slave coprocessor to
verify the execution of the larger master core. Since the slave typically has lesser
complexity, lower frequency, and uses fault tolerant transistors, it is significantly
more immune to faults. The main research challenge is to ensure that the slave can
keep up with the master in terms of performance.

4.3.1 DIVA. Figure 5 shows a high level view of the architecture.

We can view the DIVA pipeline as a deeper pipeline, with verification required
before the commit stage. Elaborating further, the primary core performs all the
functions of a standard processor (in-order or out-of-order) other than stores and
commits. After the execute stage and memory access (for loads), the checker core
verifies the execution of the master core in an in-order fashion. The verification

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

Preparing Articles for the ACM Transactions : 15

Checker Core

Master Core

in-order check
WT and commit

000 Processor

instruction packet ¢
IF ID REN EX —— CHK or

. . @ operands
in-order issue e Comp
Comm

Fig. 5. Basic Idea of DIVA

consists of 2 parts : checking the communication(Comm), and checking the com-
putation (Comp). Comm involves checking if the operands were read correctly.
Meanwhile, performed in parallel, Comp involves re-performing the operation and
checking if the results were computed correctly. If both the checks pass successfully,
the checker commits the instruction and performs a store operation if required.

Additionally, the checker core is also interrupted by a watch-dog timer. This
timer detects if the master is suffering from a deadlock. When a fault is detected
(logical or deadlock), the checker flushes the pipeline of the master. It commits all
the instructions till the erroneous instruction, and then starts the master from the
subsequent instruction.

The checker is significantly simpler when compared to the master core because it
processes instructions in-order. Thus, there is no need for complex structures like
reorder buffers and instruction windows, which potentially increase the chances of
a fault. The checker core can also match the master core’s performance because it
is expected to have a higher IPC, as it does not suffer from data or control hazards.
It is provided with the values of all the operands by the master.

Unfortunately, this design has a few shortcomings. Both the checker and the
master access the register file as well as the L1 cache. We will require extra ports.
Secondly, we need more entries in the load store queue and reorder buffer, because
it takes longer to commit an instruction. It is also possible that the master and
checker might destructively interfere in the L1 cache.

Master Checker

| que P‘pelirre |CT
L1 ahe CT — Commit
RF — Reg. File

| L2 Cache STQ— Store Queue

Fig. 6. FastShared Model

4.3.2 FastShared Model. The goal in this design [Chatterjee et al. 2000] is to
mitigate the structural hazards due to the sharing of register files and the store

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

16 : Rajshekar Kalayappan et. al.

queue. The checker contains a copy of the register file and the store queue. The
master core’s register file is speculative. Upon the detection of a fault, the checker
restores the contents of the master’s register file with values from its own register
file. The checker performs normal reads and writes to its register file. This opti-
mization eliminates register file checkpoints, and also reduces the number of ports
in both the register files.

There is a similar contention in the case of a shared store queue. Consequently,
the checker maintains its own store queue. The core checks for a possibility of
load-store forwarding by reading values from its own store queue. However, it does
not remove any entries from its store queue. The checker removes entries from its
queue, as well as the master core’s queue, after a store commits.

Master Checker Master Checker

‘ C<+re P*pelirte |CT W ‘ Cl+kr P*peliﬁme ‘CT ‘ ‘ C<+re P*pelil’te |CT ‘ ‘ Cﬁkr P*peliﬁme ‘CT ‘
A y Py—— Ty

L1 Cache [L1cache | | RF¢ | |acacne | rF]

f %5@ | L LI |

ST D R

‘ L2 Cache ‘ ‘ L2 Cache ‘
Fig. 7. MiniDiva Fig. 8. SplitDiva

4.3.3 MiniDiva and SplitDiva. In the FastShared model, we still have the issue
of increased contention at the level of the L1 cache. In the MiniDiva [Chatterjee
et al. 2000] model (see Figure 7), we introduce an extra L0 cache for the checker.
It is loaded with data that is touched by the master core. Along with reducing
contention in the L1 cache, it also helps in prefetching values for the checker core.
While writing data, the checker writes the data to its store queue and the dedicated
L0 cache. The data is further propagated to the L1 cache, when it has free ports
available.

We have, uptil now, assumed the L1 cache to be reliable. The SplitDiva [Chat-
terjee et al. 2000] design (see Figure 8) addresses this problem, and covers faults in
the L1 cache. There are two L1 caches - one for the master core, and one for the
checker. The master core’s L1 is speculative. It is not allowed to writeback mod-
ified data to the shared L2 cache. Once a store is committed, the data is written
to the checker’s L1. Upon an eviction, the checker’s L1 writes the data back to the
L2 cache.

4.3.4 Filtered Checkers. [Yoo and Franklin 2008] proposes hierarchical verifica-
tion, to minimize the performance penalty of the checker in a DIVA-like architecture
by changing the coverage metric from complete to subset. The basic idea is as shown
in Figure 9.

An instruction can be deemed critical or otherwise, by looking at various char-
acteristics of the instruction such as the number of bits in the instruction that are
useful, or the degree of usage of the result of an instruction. A filter checker sets
the non-criticality of every instruction. The filtering of instructions can be proac-
tive or reactive. Based on the non-criticality of an instruction, and the congestion
at the checker, the checker decides whether or not to drop an instruction. This

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

Preparing Articles for the ACM Transactions : 17

Filter

Master Checker —> Commit Master |\ - ker

—>Checker—>|Commit

(a) (b)

Fig. 9. a) Traditional DIVA b) Hierarchical Verification

scheme helps in reducing the power usage as well as the bandwidth between the
core and the checker. Secondly, for very high TPC programs, the checker can be-
come a bottleneck. By filtering out instructions that are not critical we can avoid
this scenario.

4.4 SingleSlave — SlipStream Family

4.4.1 SlipStream Processors. Purser et. al., proposed the Slipstream processor
[Sundaramoorthy et al. 2000; Purser et al. 2000] in 2000. This had a lot of concep-
tual similarities with DIVA (see Section 4.3). However, unlike DIVA, the slave core
is equivalent to the master core in terms of size.

In this architecture, two versions of an application are executed on two separate
cores. Omne version is called the advanced stream or the A-stream. The other
is called the redundant stream or the R-stream. The R-stream lags behind the
A-stream. The original paper primarily focused on increasing performance. They
achieved this through reducing the number of dynamic instructions in the A-stream
by eliminating redundant, and predictable computations. The R-stream could keep
up with the A-stream in terms of performance because it received periodic data-
flow and control-flow hints from the A-stream. The enhanced accuracy of different
predictors ensured that the R-stream had an elevated IPC. However, on a side note
the authors mention that this scheme can be used to increase reliability by treating
the A-stream as the master and R-stream as the slave. The reason we mention
this as a seminal technique is because the SlipStream approach forms the basis of
a plethora of subsequent proposals. Most extensions to this idea leverage the hints
from the A-stream to make the R-stream slower by either reducing its frequency,
lowering its voltage, or by using bigger transistors. In either case, the R-stream
is made more immune to faults. Secondly, since the core idea is to reduce the
performance of the R-stream to make it more reliable, it satisfies our definition of
a slave processor (see Section 2.2).

Branch Prediction,|
Value Prediction —>|

A-Stream R-Stream

Instruction
emova
Mechanism

Fig. 10. Slipstream processors

Figure 10 shows a high level view of the architecture. The A-stream and R-stream
processors are connected by a delay buffer, which is a queue containing dataflow and

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

18 : Rajshekar Kalayappan et. al.

control flow values. The A-stream writes entries into it, and the R-stream removes
them. The R-stream treats these values as hints and trains its predictors (branch
and load-latency). It thus has a higher IPC, and can match the A-stream in terms
of performance. Subsequently, the R-stream compares the results of the A-stream
with its own results. If a discrepancy is detected, then the R-stream initiates a
process of recovery. It flushes its pipeline, and resets the A-stream. Subsequently,
it restores its checkpointed register state and sends it to the A-stream also. For
memory values, this paper assumes that the two processors have separate address
spaces. A recovery controller tracks the store addresses that have been retired in
the A-stream but not in the R-stream. Upon detection of a fault, the recovery
controller restores the values of these addresses by reading them from the address
space of the R-stream. The R-stream thus commits only correct values. We further
observe that it has complete coverage, and it is mostly suitable for detecting and
recovering from transient faults.

4.4.2 Fingerprinting. [Smolens et al. 2004] aims to reduce the inter-core commu-
nication bandwidth required to exchange information for verification. If the granu-
larity of checking is small (say, every instruction executed is individually checked),
then this involves frequent exchanges of messages between the cores while check-
ing. If the granularity is increased, the amount of information to be exchanged
also increases. Every change to the architectural state since the last verification
round should be intimated to the other core. Fingerprinting suggests creating a
cryptographic hash of all this information and exchanging simply the hashes, thus
requiring much less bandwidth.

4.4.3 RESEA and RECVF. There have been other endeavors to reduce the
usage of the Network-on-Chip. [Subramanyan 2010] proposes Reduced Execution
based on Simple Execution Assistance (RESEA). Instead of forwarding the results of
all computations to the checker, the master only sends the results of load and branch
instructions. This is based on the fact that the criticality of these instructions is
generally greater than the rest. Important data and control hazards are resolved,
allowing the attainment of a higher IPC in the checker.

[Subramanyan et al. 2010] proposes Reduced Execution based on Critical Value
Forwarding (RECVF). The critical path of execution is identified in the master, and
the results of computations on this path (and not every instruction) are forwarded
to the checker. The criticality of an instruction is determined heuristically. Two
of the important heuristics determined are freedN and fanoutN. freedN marks an
instruction as critical if on completion, it wakes up at least NV instructions. fanoutN
deems an instruction as critical if the value it produces is consumed by at least N
live instructions.

4.4.4 Dual Core Ezecution. [Ma et al. 2007] follows in the same vein, proposing
Dual Core Ezecution (DCE) to improve reliability and/or power efficiency. The
idea again is to have the master core execute the program in a fast, highly accurate
way with the checker executing redundantly to guarantee accuracy. Redundant
execution implies a large power budget. Solutions are proposed to reduce the
power consumed. One important source of power consumption is the large effective
instruction window, which results as a result of redundant execution. The authors
suggest dynamic adaptive sizing of the instruction window based on the behavior

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

Preparing Articles for the ACM Transactions : 19

of the program.

4.4.5 Decoupled FEzecution. [Garg and Huang 2008] proposes an architecture
similar to Slipstream with a leading and a trailing core. The leading core runs
a reduced version of the program called the skeleton program. The skeleton pro-
gram is built by dynamic profiling and removal of code that is rarely exercised.
Consequently, branches and the computation involved in computing the branch de-
cision are removed. The leading core thus runs faster than the base version since
it processes fewer instructions. Correctness is guaranteed by the trailing core that
executes the entire program in a normal fashion. The trailing core is able to keep
pace with the leader as it receives branch prediction hints from the latter, and the
leader core helps prefetch memory locations. Memory operations also benefit from
shorter latencies in the trailing core. Discrepancies detected between the leading
and the trailing core trigger recovery mechanisms to restore a stable state.

It might not be always possible to dedicate a separate core for the process of
checking. There are some novel proposals that suggest using dead cores in a chip,
which have had faults detected by BISTs (Built-in Self Test). [Ansari et al. 2010]
is one such proposal, which proposes using dead cores in a Slipstream fashion.

4.5 MultiSlave Approaches

In this section, we look at another seminal work, MSSP, and relevant extensions.
The primary aim of MSSP was to improve performance. However, later works have
used the same idea to improve reliability by dividing the work of checking among
more than one slaves. As we shall see in Section 4.5.2, the main advantage of
MultiSlave approaches is the reduction of power consumption.

4.5.1 Master Slave Speculative Parallelization (MSSP). Zilles and Sohi [Zilles
and Sohi 2002] proposed the Master/Slave Speculative Parallelization (MSSP) frame-
work in 2002. The authors propose to match the rate of the master and the slave
by parallelizing the process of checking. They propose multiple checkers that each
check a portion of the master’s execution. This architecture was very influential in
the field of speculative parallelization also, primarily because data flow violations
between threads can be modeled as faults.

Here an approximate (referred to as distilled in the paper) version of the binary
is run on a core designated as the master. A distilled binary lacks large chunks of
code that are not likely to be executed in the common case. The process of creating
it is an approximate compiler transformation devoid of any correctness guarantees.

Now, MSSP generates a checkpoint periodically (approximately after every hun-
dred instructions). All instructions between two checkpoints constitute a task. A
task is then assigned to a slave core. The slave core executes instructions from the
original program, and not the approximate one.

Now if the master is fast enough, it may generate enough number of checkpoints
to require the use of multiple slaves, executing different tasks, in parallel. When a
slave completes its task, its state is compared with the corresponding checkpoint.
If a discrepancy is found, which is a rare event, a recovery process is initiated.
Subsequent, works have used this paper as a basis because it is possible to make
minor changes to this scheme to ensure reliability. Instead of the distilled binary,
we need to run the original binary on the master. Using this scheme, we can easily

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

20 : Rajshekar Kalayappan et. al.

detect transient faults because it is very unlikely that a master and a slave will be
afflicted by a transient fault at exactly the same point of time.

4.5.2 Coarse Grain Verification Parallelism. [Rashid et al. 2005] extends MSSP
for reliability. The main motivation is to reduce the total energy dissipated in the
process of checking. In the SingleSlave scenario, the difference in frequencies of the
master and the slave is limited to 20-30%. However, in a system with two slaves,
we can run each slave at half the frequency. Since the supply voltage is roughly
proportional to the frequency, the theoretical power consumption of the two slaves
combined is 25% of that of one slave running at the nominal frequency.

Master| Chunk1 | Chunk2 | |
Slave 1 \T Rédun(jant iChun—Ei T‘\\\
Slave 2 T Redundant Chunk 2

time

Fig. 11. Coarse-grain verification parallelism

The approach chosen by the authors involves having a large slack between the
leading core and the checking cores. The unverified instructions are divided into
chunks. Each chunk contains hundreds of instructions. Each checker is given the
starting state of a chunk (register file contents and starting PC), and an ending
state. The checker starts at the initial state, and keeps fetching instructions, till
it reaches the final state, or times out. If it reaches the final state, and there is a
discrepancy in the register contents or the values that need to be stored, then there
is an error.

Figure 11 shows this scheme. The master divides its execution into chunks, and
distributes the chunks across checkers. Each checker verifies the chunk assigned
to it. If there are n parallel checkers, then each checker can theoretically run at
(1/n)t" the frequency. The main problem is to provide each chunk the correct view
of the memory system. For this purpose the master maintains a list of uncommitted
stores in a structure called the Post-Commit Buffer(PCB). Each chunk first checks
the PCB for values before accessing the caches. [Zhao 2008] proposes optimizations
to the PCB structure.

5. THREAD LEVEL APPROACHES
5.1 Summary

This section focuses on achieving reliability through multi-threading. We shall ob-
serve that achieving reliability through multiple threads is conceptually different
from the approaches using multiple cores. It is much easier to communicate inter-
mediate results across threads than cores. Secondly, since multiple threads are on
the same physical core, there are no architectural differences that can be exploited.
We did not have this constraint for core based schemes. The checker could have
been very different from the master, like the DIVA scheme.

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

Preparing Articles for the ACM Transactions 21

Proposal Sub- Perf. HW Checker Coverage Faults
Section Ovhd. Ovhd. Type
IBM G5 5.2 ~ 0% Parallel MultiMaster | Complete
[Spainhower et. al., 2005] Pipeline
AR-SMT 5.2 10 — 30% | Delay MultiMaster | Complete
[Rotenberg, 1999] Buffer
SRT 5.2 ~ 8% Extra buffer/ MultiMaster | Complete
[Reinhardt et. al., 2000] queue
SRTR 5.2 < 40% Extra queue MultiMaster | Complete
[Vijaykumar et. al., 2002]
CRTR 5.2 < 30% Extra MultiMaster | Complete
[Gomaa et. al., 2003] Core
DBCE 5.3 < 35% Extra queue SingleSlave Subset
[Vijaykumar et. al., 2002]
Fault Types : (T — Transient, M — Timing, H — Hard, D — Design)
El — detect and correct, () — only detect

Table IV. Summary of thread level approaches

We observe that in the design space of multiple threads, the MultiMaster con-
figuration (see Section 5.2) is relatively simpler to design as compared to the core
based approaches. This is because the sources of non-determinism that afflict mul-
tiple cores such as clock skew, and variable delays in buses, are not relevant for
multiple threads. Most of the time, threads share bus controllers, and their clocks
are with each other. The SingleSlave approaches based on Slipstream are harder
to design, because it is typically not possible to run different threads at different
frequencies. However, there are some SingleSlave approaches that use the slave to
check a subset of instructions (see Section 5.3).

5.2 MultiMaster Schemes — Complete Coverage

5.2.1 IBM G5. The earliest commercial system to incorporate thread level re-
dundancy was the IBM G5 [Spainhower and Gregg 1999]. It had two pipelines
running at the same time. All stores, and register writeback values were compared
every cycle. If there was any discrepancy, both the pipelines were flushed. Effec-
tively, the G5 architecture added one extra pipeline stage, whose job was to check
the results of both the pipelines. We will outline several schemes that have tried to
improve upon this basic idea.

5.2.2 AR-SMT. A seminal work in this area is called Active-stream/Redundant-
stream Simultaneous Multithreading (AR-SMT) [Rotenberg 1999] proposed by Eric
Rotenberg in 1999. He proposes to use two threads called the A-thread and R-
thread (similar to SlipStream (see Section 4.4)). Both of them run the same copy
of an application. However, there is a lag of tens of cycles between them. This is
deliberately introduced to localize the effect of intermittent faults to one thread.
The A thread runs ahead of the R-thread. It writes all its results to a delay buffer.
The R-thread compares its results to values in the delay buffer. It commits an in-

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

22 . Rajshekar Kalayappan et. al.

struction only if the results match. If the R-thread, detects a discrepancy, both the
threads roll back to the last checkpointed state. This state is the last committed
state of the R-thread.

The two threads independently read and write from memory. They have separate
address spaces. Consequently, there is no explicit sharing of values, even though
there might be constructive or destructive interference in the caches for read only
data, which might possibly be in shared pages. The paper further proposes using
branch prediction and value prediction hints to speed up both the threads in a
SlipStream fashion. The authors showed that it is possible to achieve complete
fault coverage by incurring an overhead of 10% to 30%.

5.2.3 SRT. [Reinhardt and Mukherjee 2000] extended the AR-SMT idea and
made it more generic. An important contribution of this paper is the introduction
of the term sphere of replication shown in Figure 12(a) and 12(b). A sphere of
replication is a reliable subcomponent of a system, which ensures reliability through
computation redundancy. To support it, we need a well defined interface with the
rest of the system. Additionally, we need to replicate the inputs to feed all the
redundant units, and we need to compare the outputs for all of them. Figure 12(a)
shows an example, in which the entire execution is replicated. In Figure 12(b), we
just replicate the CPUs (not the memory or disk). IBM G5 follows this model.

Sphere of Replication Sphere of Replication
Execution Execution Processor Processor
Copy 1 Copy 2

Input Output Input Output
Replication Comparison| Replication Comparison|

! ! t y

Memory protected by ECC
Rest of System RAID protected by parity

(a) (b)

Fig. 12. Sphere of Replication

The authors observe that first, in an out-of-order system, the order of execution
of instructions of the leading and the trailing threads cannot be guaranteed to be
the same. Thus, a lock-stepped or per-cycle manner of comparing outcomes may
not be advisable. Secondly, the overhead of essentially executing every instruction
twice must be minimized as much as possible, while still providing fault tolerance.
Another issue that requires handling is that the execution of synchronization con-
structs must be exactly similar in both the threads. Like Slipstream and DIVA,
SRT passes branch outcomes between threads to speed the trailing checker thread.
Furthermore, the leading thread effectively prefetches memory values for the trail-
ing thread. This reduces its latency, and it can possibly run slower if required.

Two possible solutions for dealing with the synchronizing constructs are pro-
posed: Active Load Address Buffer (ALAB) and Load Value Queue (LVQ).

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

Preparing Articles for the ACM Transactions : 23

The ALAB scheme forces loads to happen in pairs. After performing a load,
the leading thread adds an entry in the ALAB if there is no previous entry for
that address. Otherwise, it increments the count for that entry. When the trailing
thread performs the same load, it decrements the count. If the count reaches zero,
then the entry can be recycled. During the time the count is non-zero, the cache
line cannot be replaced, or be written to. This ensures that the trailing thread gets
the same value for the load. This scheme can suffer from deadlocks. The paper
proposes appropriate solutions.

The LVQ is a much simpler solution. The leading thread inserts the results of load
instructions in the LVQ upon committing the instruction. The trailing thread does
not access the cache. Instead, it reads the results of load instructions in program
order from the LVQ.

In this scheme and SRT, the trailing thread is assumed to hold the correct state.
If there is a discrepancy between results when an instruction in the trailing thread
commits, then it is necessary to flush the pipeline of the trailing thread, and restore
the state of the leading thread.

5.2.4 SRTR. [Vijaykumar et al. 2002] proposes Simultaneously and Redundantly
Threaded Processors with Recovery (SRTR) as an extension to SRT [Reinhardt and
Mukherjee 2000]. The first problem with SRT recognized by the authors is that the
leading thread is allowed to commit an instruction before verification. This alters
the state of the system regardless of whether the instruction executed incorrectly or
not. To avoid this, SRTR advocates checking the instructions before committing.

Verification of the outputs involves comparing the values of registers. These
accesses increase pressure on the register file, which may degrade performance and
increase power consumption. As a solution to this, the authors propose maintaining
all unverified results of the leading thread in a Register Value Queue or RVQ. The
trailing thread compares its results with the values stored in the RVQ.

[Gomaa et al. 2003] proposes Chip-level Redundantly Threaded Processors with
Recovery, which is an extension of SRTR [Vijaykumar et al. 2002]. However, in this
case each thread is located on a separate SMT core.

5.3 SingleSlave — Subset Coverage

5.3.1 Dependence Based Checking Elision. The authors of SRTR [Vijaykumar
et al. 2002] also propose another scheme called Dependency Based Checking Eli-
sion(DBCE). They observe that it is possible to further reduce the pressure on
shared data structures, and also speed up the checker. The basic insight here is to
check the result of the last instruction in a long chain of dependent instructions.
Unless there is logical masking, a fault anywhere in the long chain of computation
should show up in the result of the last instruction with very high probability. If we
can isolate some values, which have long dependence chains or graphs (backward
slices), then we can check the execution of large parts of programs by verifying just
this small subset of values. The authors propose to build such DBCE chains by
propagating tokens across data dependent instructions.

5.3.2 Other Approaches. [Gomaa and Vijaykumar 2005] proposes Opportunistic
Fault Tolerance, where redundant execution takes place only when the efficiency of
single-thread execution is low.

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

24 Rajshekar Kalayappan et. al.

[Kumar and Aggarwal 2008] also aims at improving efficiency through Speculative
Instruction Validation (SpeclV). The basis for this work is that most instructions
have predictable outputs. For example, almost every instance of a particular load
instruction fetches from the same address. Similarly, reasoning may be extended
to the addresses of store instructions, the outcomes of branch instructions and
the results of computations. The idea is to leverage this predictability, and re-
execute only those instructions that fail to behave as predicted. Thus, the number
of instructions re-executed is reduced, thereby helping improve efficiency, while
having only a minimal impact on the protection offered.

6. MULTITHREADED PROGRAMS
6.1 Summary

In Sections, 4, and 5, we tried to infer hardware faults by analyzing the execution
of single threaded programs. In this section, we try to do the same by analyzing
multi-threaded programs. We can divide the correctness of a multithreaded pro-
gram into two parts — uniprocessor semantics and multiprocessor semantics. While
considering uniprocessor semantics (Section 6.2), we assume that values produced
by other processors are being correctly delivered at the right time. We just verify
the execution of each individual thread of computation separately. While consider-
ing multiprocessor semantics, we are interested in the integrity of values transferred
across processors, and the associated state machines. We separately look at detect-
ing faults in the cache coherence protocols in Section 6.3 and in the implementation
of the memory consistency model in Section 6.4.

Proposal Sub- Perf. HW Checker Coverage Faults
Section Ovhd. Ovhd. Type

Reunion Uniprocessor 5—6% 100% + sign MultiMaster | Complete
[Smolens et. al., 2006] Semantics(6.2.1) generator
HDTLR Uniprocessor ~ 40% 100% + SingleSlave Complete
[Rashid et. al., 2008] Semantics(6.2.2) PCB
Repas Uniprocessor < 21% SVQ SingleSlave Complete
[Sanchez et. al., 2009b] | Semantics(6.2.2)
Token Coh. Coherence < 7% BW | Central SingleSlave Invariant
[Meixner et. al., 2007] (6.3) overhead | Verifier
DVSC Consistency < 20% DIVA checker SingleSlave Varied
[Meixner et. al., 2005] (6.4) (1d/st reorder- Coverage

ing) + invari-

ant checker

Fault Types : (T — Transient, M — Timing, H — Hard, D — Design)

El — detect and correct, () — only detect

Table V. Summary of approaches

Verifying uniprocessor semantics is similar to verifying executions at the core
level. We thus discuss both MultiMaster and SingleSlave configurations. However,
the main difference here is that synchronization operations force the master and

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

Preparing Articles for the ACM Transactions : 25

slave to converge thus reducing the lag to zero. The performance penalty is non-
trivial, and consequently, this is a major research challenge. For verifying coherence
and consistency mechanisms, we look at the SingleSlave model, and verify both the
entire protocol as well as particular invariants. Table V summarizes the set of
schemes.

6.2 Uniprocessor Semantics

We look at MultiMaster configurations in Section 6.2.1 and the SingleSlave config-
uration in Section 6.2.2.

6.2.1 MultiMaster - Reunion. [Smolens et al. 2006] proposes the Reunion scheme,
which forms a logical pair of cores, where both of them execute the same thread.
They compare their results with each other to detect the occurrence of faults. Each
time a core finishes executing a pre-determined number of instructions, it creates
a hash(fingerprint) of all the results and passes it to the partner core. Exchange
of fingerprints consumes bandwidth, and so fixing the granularity of checking is an
important decision.

The two cores of a pair are not completely symmetric - one is called the vocal core,
and the other the mute core. The stores of the vocal core are allowed to propagate
to the rest of the memory system, while those of the mute core are not. Secondly,
unlike the vocal core, the mute core does not participate in coherence protocol
actions. Now, we have observed in Section 4.2 that it is very difficult to make two
cores operate in lock step. In modern processors there are a lot of non-deterministic
delays due to process variation, and complex out-of-order execution.

Consequently, there will be a small amount of asynchrony between the two cores.
This can lead to the input incoherence problem, i.e., two corresponding loads to the
same address return different values. This is because of intervening stores to the
same address. This scenario is indistinguishable from the case of a soft error in the
case of Reunion. A somewhat related problem is that the two cores might observe
different results for synchronization operations.

To check for discrepancies between the cores, we add a stage at the end of the
pipeline to compare fingerprints across the two cores. If they don’t match, then
there might have been a soft error or an input incoherence event. In either case,
both the cores flush their pipelines, and restore themselves to a safe state. It is
assumed that in the absence of soft errors, the vocal core maintains a correct state.
Furthermore, the vocal core transfers its register state to the mute core. To avoid
the input incoherence problem, the mute core copies the value of the mismatched
load instruction (if any) from the vocal core. Subsequently, both the cores resume
execution. The authors observe that a slowdown due to synchronizing/serializing
instructions is inevitable in master-checker architectures.

6.2.2 SingleSlave Configurations. We can naively use a solution based on DIVA
or SlipStream (see Sections 4.3,4.4). To avoid costly multiprocessor memory check-
points, we need to ensure that the effects of a fault are localized to the pipeline
or possibly to higher level private caches. Consequently, we need to make a write
and synchronization operation globally visible only when the entire execution till
that point is guaranteed to be correct. This can be a prohibitive constraint for
synchronization operations, if we do not allow master or slave threads to speculate

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

26 : Rajshekar Kalayappan et. al.

across them, especially in a proposal akin to DIVA or SlipStream. If we disallow
speculation, then all the masters and slaves need to converge at the beginning of
every synchronization operation. Researchers have measured a slowdown of upto
34% [Sanchez et al. 2009b] in this case. We thus need to mitigate this bottleneck
in high performance implementations.

Dynamic Core Coupling

In DCC [LaFrieda et al. 2007] each thread has a redundant copy running on another
core similar to Reunion. Here, there is some slack between the two cores(SlipStream
pattern). With increasing slack, the probability of different forms of input incoher-
ence events increases.

DCC attempts to solve this problem on a per-address basis. When the leading
thread executes a load, it opens a read window for the address, and when it executes
a store, it opens a write window. When both leading and trailing threads commit
the load (store), the read (write) window is closed. Two read windows on the same
address may overlap, but a read and a write window, or two write windows may
not overlap. Enforcing this constraint ensures that shared memory operations in
the leading and trailing thread behave in the same way.

HDTLR

Highly Decoupled Thread Level Redundancy or HDTLR [Rashid and Huang 2008]
allows for large slacks. The cores that run the leading threads(masters) form a
logical computation wavefront while the cores running the trailing threads(slaves)
form the verification wavefront. Coherence activities in one wavefront do not affect
the other.

The problem arising out of the large slack is that the sequence of memory opera-
tions need not be the same in the leading and trailing threads, due to complicated
interactions between the threads of a wavefront. Thus, at the time of verification,
states may not match, even when no error has occurred. Especially, race conditions
pose a problem. We start out by dividing the entire execution into intervals called
epochs. Both the wavefronts need to compare their state at the end of epochs.

To handle the issue of race conditions in programs, we partition epochs into
sub-epochs. The partitioning is such that there are no two stores (even across
threads) to the same address in the same sub-epoch. This is achieved by some
amount of communication among the leaders, with each informing the others of
its stores. If a leader has issued a store to an address, and receives a message
from another core informing of a store to the same address, the leader places all
further instructions in the next sub-epoch. The verification wavefront ensures that
all instructions belonging to a sub-epoch are completed before moving onto the next
one, thereby maintaining the ordering of shared memory operations as seen in the
leading wavefront. All operations including memory races are replayed in exactly
the same order.

REPAS

[Sanchez et al. 2009b; 2009a] proposes Reliable Ezecution for Parallel Applications
in Tiled CMPs or REPAS. It extends earlier proposals CRTR [Gomaa et al. 2003]
and SRT [Reinhardt and Mukherjee 2000] to provide a solution for checking multi-

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

Preparing Articles for the ACM Transactions : 27

threaded applications. The idea is to have two copies of each thread, both executing
on the same SMT core. This removes the requirement for non-trivial inter-core
bandwidths (DCC [LaFrieda et al. 2007]) and large central data-structures (HDTLR
[Rashid and Huang 2008]). Stores made by the leading thread, go as far as the L1
cache, and on verification by the trailing thread, go beyond. Such a scheme requires
the two threads to have a reasonably small slack between them. An additional
structure called the Store Value Queue is used to support multiple unverified writes
to the same cache block.

6.3 Multiprocessor Semantics - Cache Coherence

Most of the error detection schemes for cache coherence utilize the SingleSlave
configuration consisting of a small dedicated unit that checks for errors in the
execution of the protocol. Upon the detection of an error, the hardware needs to
discard the victim memory operation or in some cases rollback to a checkpoint.
We present three schemes, where each one of them considers a separate coverage
model.

6.3.1 Complete Coverage. [J. F. Cantin and Smith. 2001] extends the DIVA
scheme [Austin 1999] for cache coherent SMPs. Each node is paired with a checker
processor, which checks its computation. The core sends coherence events and
results to a private cache coherence checker immediately after a memory operation
completes. The checker verifies the actions of the coherence protocol. The second
phase of checking is global in nature. The checkers have a dedicated network for
passing messages. They broadcast the states of lines, and then check for illegal
global states.

6.3.2 Invariants . Token Coherence [Marty et al. 2005] is a token-based protocol
for verifying cache coherence. Each block has N tokens, one of them being the owner
token. For a memory element to be able to read a block it must hold at least one
token. To write to a block, it must hold all the tokens. If a memory element wishes
to read (or write) a block, and doesn’t have sufficient tokens, then it broadcasts a
token request. Other cores respond to this request by sending their tokens.

6.3.3 Symptoms . [Fernandez-Pascual et al. 2007] builds on Token Coherence.
It handles faults in the on-chip interconnect. The detection of faults is solely
based on time-outs. Every control message, which requires a reply according to
the protocol is associated with a time-out period. Based on the kind of control
message, expiry of the time-out results in resending of the message (fixed number
of re-trials) or proceeding with the recovery mechanism. The recovery mechanism
is to simply invalidate all current tokens, and generate new ones.

6.4 Multiprocessor Semantics — Memory Consistency

Similar to cache coherence, most of the schemes follow the SingleSlave DIVA pattern
by proposing a small non-intrusive hardware unit to verify memory consistency. It
takes inputs from the memory system. The schemes use invariants that are provably
equivalent to the memory consistency model being verified.

[Meixner and Sorin 2005] proposes two schemes — DVSC-Direct and DVSC-
Indirect. The DVSC schemes try to dynamically verify sequential consistency(SC)
[Adve and Gharachorloo 1996]. The DVSC-Direct scheme tries to record the de-

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

28 : Rajshekar Kalayappan et. al.

pendence edges across multiple threads by timestamping all the memory accesses
using a logical time base. If event, A, precedes event, B, then a logical time base
guarantees that time(A) < time(B). The dependence edges across memory oper-
ations in different threads are recorded through special units that track the loads
and stores issued by each processor. Conceptually, there is a violation of SC, if
there is a cycle in the dependence graph. Due to space constraints, this approach
is impractical.

However, the authors use insights suggested by [Plakal et al. 1998] to make the
design practical by actually verifying a set of sub-invariants. These sub-invariants
are equivalent to SC. They, thus, propose the DVSC-Indirect protocol, which re-
duces the number of messages, and the amount of logging by an order of magni-
tude. [Chen et al. 2008] extends this scheme by using scalar timestamps. Lastly,
DVMC [Meixner and Sorin 2009] extends DVSC to verify relaxed memory mod-
els. It checks the three sub-invariants — uniprocessor semantics, allowable memory
reordering, cache coherence — that are provably equivalent to the memory model
that it intends to verify. An extension of DVMC [Romanescu et al. 2010] recog-
nizes physical address memory consistency (PAMC) and virtual address memory
consistency (VAMC) as two separate problems. Virtual memory can create issues
because of synonyms, and dynamic changes in page mapping.

7. SOFTWARE APPROACHES
7.1 Summary

This section discusses software-based approaches for providing fault tolerance in
processors. In Section 7.2, we survey papers that attempt to verify only the com-
putation and data flow. In Section 7.3, we look at approaches that try to exclusively
verify the control flow. Section 7.4 discusses solutions that are capable of handling
errors in both data flow as well as in the control flow. Lastly, approaches specially
catering to the multi-processor domain are discussed in Section 7.5.

It must be noted that some of these solutions are purely software-based (for
example, EDDI (Section 7.2)), while others require a certain amount of hardware
support (for example, SWAT (Section 7.4.2)). A summary of the seminal papers in
this area is provided in Table VI.

7.2 Computation and Dataflow Errors

In this section, we focus on techniques that try to infer hardware faults by analyzing
errors in the computation and data flow of test programs. The most popular set
of approaches use a MultiMaster configuration(Section 7.2.1). They run multiple
copies of the same instruction and compare the results. Section 7.2.2 describes
approaches that use the SingleSlave configuration. The slave instructions mostly
check invariants.

7.2.1 MultiMaster Schemes.
Complete Coverage

[Rebaudengo et al. 1999] describes a general scheme that consists of duplicating
all the computation and data. At compile time, each instruction is duplicated with
a different set of registers. For instance, an operation of the form a = b + ¢; is

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

Preparing Articles for the ACM Transactions 29
Proposal Sub- Perf. HW Checker Coverage Faults
Section Ovhd. Ovhd. Type

EDDI Comp. and upto 100% | nil MultiMaster Subset
[Oh et. al., 2002] Data Flow(7.2)
DDFV Data Flow ~ 1.8% Signature HW SingleSlave Invariant
[Meixner et. al., 2007] (7.2) + Modifi-

cations to

ROB,RF
CCA Control Flow 20 — 50% nil SingleSlave | Invariant
[Kanawati et. al., 1996] (7.3)
SWIFT All errors ~ 41% ECC in Multiple Varied
[Reis et. al., 2005] (7.4.2) memory Checkers Coverage
SWAT All errors ~ 0% Symptom SingleSlave Invariant
[Li et. al., 2008] (7.4.2) Detector HW
T'SOtool Total Store Not Not SingleSlave Complete TMHD
[Hangal et. al., 2004] Order (7.5) Applicable | Applicable
mSWAT All errors ~ 0% Record/Replay | MultiMaster | Invariant
[Hari et. al., 2005] (7.5) Support

Fault Types : (T — Transient, M — Timing, H — Hard, D — Design)

El — detect and correct, () — only detect

Table VI. Summary of approaches

transformed to a; = by + ¢1;a2 = by + co;. These two statements are followed by
an assertion statement that checks for the equality of a; and as. Thus, any errors
in the computation and the reading(writing) of operands(results) are detected with
a high probability, since the recurrence of the same fault (only transient faults are
covered by this technique) during the redundant computation is highly unlikely.
[Chang et al. 2006] proposes SWIFT-R that uses TMR to both detect and recover
from faults.

Subset Coverage

Error Detection by Duplicated Instructions (EDDI)[Oh et al. 2002b] extends this
idea by changing the coverage model to subset. It checks the values that are writ-
ten to memory or determine a branch direction. [Pattabiraman et al. 2007] also
proposes to reduce the overhead through Critical Value Recomputation(CVR), a
static technique, wherein during compile-time, the data-flow graph is analyzed,
and results that have a high fanout (number of consuming instructions) are deemed
critical values. The computation of these values is then covered by duplication.
[Lyle et al. 2009] extends CVR, proposing the implementation of the checks in an
on-chip progammable array to accelerate execution.

7.2.2 Singleslave Schemes. [Meixner and Sorin 2007] proposes Dynamic Data
Flow Verification (DDFV), which starts out by creating signatures for each basic
block at compile time. A signature is a hash of the histories of each register, where,
history, refers to the ordered list of registers, whose values were used in setting the

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

30 : Rajshekar Kalayappan et. al.

value of the concerned register. This signature is embedded in the program source.
During runtime, special DDFV hardware computes the signature for each executed
block, and compares them with the statically determined values.

7.3 Control Flow Errors

A more challenging problem is the detection of errors that alter the control flow.
This can be caused by errors in the backward slice of a branch instruction or by
faults in the fetch logic. The general pattern of approaches to verify the control-flow
of a program is to compare the observed basic block sequence with a set of patterns
computed through static analysis. For example, let us assume that basic block B
can be preceded by only basic blocks A, and C. If B is preceded by basic block, D,
then we can infer an error. All the schemes that we have surveyed primarily use the
SingleSlave pattern, and are mostly tailored to detect transient faults. They avoid
redoing any computation to verify the control flow; instead, they rely on verifying
invariants.

[Schuette and Shen 1994] proposes to assign identifiers to basic blocks at compile-
time. There is a global register, K EFY, which contains the identifier of the current
basic block being executed. The first instruction of every basic block updates
the basic block id in the KEY register. The compiler further embeds checking
statements within a basic block to test the value of the K EY register. If the value
is incorrect, then we can infer a control flow error. This means that the processor
has not executed the first instruction of a basic block.

[Kanawati et al. 1996] proposes Control-Flow Checking using Assertions(CCA),
which adds more information to every basic block. During compilation, each basic
block is assigned a block identifier BI D, and a control flow identifier CFID. All
blocks sharing the same parent block (or predecessor block in the control flow)
have the same CFID. The BIDs help detect entry into the middle of a basic block
similar to[Schuette and Shen 1994], while the C'F'I Ds serve to verify that upon exit
from the current basic block, a legally succeeding block (in terms of the control
flow) is executed. A drawback of this approach is the extra storage to maintain the
BID and CFID, and the time needed to compare them.

[Alkhalifa et al. 1999] proposes Enhanced Control-Flow Checking using Asser-
tions(ECCA). By using prime numbers for the identifiers and number theoretic
techniques, it is possible to compress the BID and CFID to a single number.
Secondly, ECCA proposes to create large hyperblocks from more than one basic
blocks. By performing checking at the hyperblock level, we can further reduce the
time and space overhead.

[Oh et al. 2002a; Goloubeva et al. 2003] propose another signature-based tech-
nique termed Control-Flow Checking through Software Signatures(CFSS). The au-
thors propose to perform the invariant check in only a subset of blocks, as opposed
to every single block.

[Venkatasubramanian et al. 2003] proposes Assertions for Control-Flow Check-
ing(ACFC). The novelty in this technique is that instead of associating an identi-
fier with each basic block (and then updating a common register during runtime),
ACFC maintains Ezecution Status words, with each block being represented by a
single bit in these words. The flow of control modifies these Ezrecution Status words
based on which block has just been entered, and the invariant check is based on

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

Preparing Articles for the ACM Transactions : 31

their current value.

[Borin et al. 2006; Vemu and Abraham 2006] propose the Edge Control-Flow
Technique where we ascertain the signature of the next block at the end of every
basic block. After entering the target block, the compiler inserts code to ascertain
that the correct basic block is being executed. This is done through comparing
the id of the predicted basic block with the id of the basic block currently being
executed. [Borin et al. 2006] further proposes to use the same method at the level
of larger hyperblocks.

7.4 All Types of Errors

In this section we look at software schemes that detect hardware faults by consid-
ering programs holistically.

7.4.1 Multimaster Techniques. [Banerjee et al. 1990] proposes application-specific
techniques to detect errors in matrix multiplication, Gaussian elimination, and
Fourier transforms. Let us consider a matrix multiplication problem — C' = A x B.
Here a controller core gives each master core, i, the matrix B and a portion of the
matrix A, A;. Each core i computes C; = A; *x B and sends it to the controller. The
controller then aggregates these components (C;) to derive C. Now, to enable the
detection of faults, the controller core makes a logical pair of masters called mates.
Each mate computes the sub-matrix, C;. The two mates exchange these matrices
(whole or signature) among each other. If there is a discrepancy, then at least one
of the mates is faulty. The controller can then assign the task to another set of
masters.

Classical techniques described in [Koren and Krishna 2007] propose running n
copies of the same program, and decide the final or intermediate outputs through
voting. There is another famous paradigm known as N-version software [Avizienis
1985], which considers n independently designed versions of the same program.
Such approaches can ensure a better detection of design faults because it is possible
that one version might be exercising a certain functional unit such that a bug
is exposed. Foutris et. al. [Foutris et al. 2011] consider a variant of n-version
programming by generating code for the same benchmark in multiple ways. For
example, it is possible that one version can use an instruction like swap and the
other version can replace it with a sequence of moves. These approaches increase
the diversity of the programs and help us detect a wide variety of faults, inclusive of
design and intermittent faults, because different sequences of instructions exercise
different functional units.

7.4.2 Singleslave Techniques. We categorize the different techniques for the Sin-
gleSlave configuration based on coverage.

Subset Coverage

[Constantinides et al. 2007] aims at a flexible reliability solution through a software-
based BIST (Built in self test) technique. Periodically, the firmware suspends exe-
cution and runs tests on the processor. These tests can be explicitly invoked by the
user or the compiler as the instruction set is augmented with additional monitoring
capabilities. [Pellegrini and Bertacco 2010] also proposes to periodically run tests,
but only on units that are being exercised by the user’s application, in a bid to

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

32 : Rajshekar Kalayappan et. al.

reduce overhead. Another solution, Relaz [de Kruijf et al. 2010}, uses hardware
error detection-recovery techniques like Argus [Meixner et al. 2007]. These are used
only on those instructions for which the programmer or compiler have explicitly
requested for additional protection.

Fault Detection Based on Invariants

[Ersoz et al. 1985] proposes software implementations of a watchdog processor
with which other applications can register invariant assertions. The WatchDog Task
periodically verifies all registered invariants, enabling the detection of errors. [Leeke
et al. 2011] tries to automatically deduce the invariants through a combination of
rigorous static analysis and profiling.

[Reis et al. 2005] proposes SWIFT, a software-based transient error detection
mechanism, inclusive of both control and data flow errors. It is blend of duplication
for dataflow errors, ECC-based memory protection, and invariant based control flow
error detection. Additionally, it proposes some optimizations to reduce overhead,
like performing checks only on those values that are to be written to memory.

Fault Detection Based on Symptoms

Some recent works propose techniques that are implemented partly in hardware
and partly in software. [Li et al. 2008] introduces Software Anomaly Treatment
(SWAT). The findings illustrate that a vast majority of the hardware faults that
propagate into software can be detected with simple hardware support. The prin-
ciple is to detect suspicious activities (symptoms) such as (i) fatal hardware traps,
(ii) abnormal application exit, (i) application or OS hangs, and (i) abnormally
high OS activity. The occurrence of one or more of these activities implies the oc-
currence of an error with good probability. In [Sahoo et al. 2008], the authors aim
to improve the coverage of SWAT with iSWAT. They suggest the usage of training
inputs to determine likely ranges of selected program variables. At runtime, we can
verify these invariants.

7.5 Detecting Faults in Multiprocessors

We present two schemes here — mSWAT and TSOtool. mSWAT can detect tran-
sient, timing, and hard faults; TSOtool, can also detect design faults.

7.5.1 mSWAT. mSWAT [Hari et al. 2009)] is an extension to SWAT (Section 7.4.2)
for multi-core systems. mSWAT aims to identify the faulty core in a set of n cores,
and it further assumes that only one core has suffered a fault. Whenever the
mSWAT hardware observes a symptom, it rolls back the entire system to a correct
checkpoint, and restarts execution. If the symptom does not recur, then we can
infer a transient fault; otherwise, we can infer a permanent fault or software bug.
In the latter case, mSWAT restarts the application from the checkpoint, and col-
lects a detailed trace of all the events. The trace is a log of all loads performed by
each core. In the first round, each core sends its checkpoint and trace to another
core. The other cores executes the received trace, and compares the outputs. A
lack of divergence implies a software bug. If there two divergences, then there must
be a core in common between the two pairs since we assume only one faulty core.

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

Preparing Articles for the ACM Transactions : 33

This core can be declared faulty. If there is just one divergence, then we have two
suspect cores (core A that generated the trace, and core B that ran it). In the next
round, we run the trace that had a divergence on a fault free core (known from the
first round). If there is a divergence, then core A is at fault, else, core B is at fault.

7.5.2 TSOtool. The TSOtool project [Hangal et al. 2004] aims to find errors
in the implementation of a processor’s memory model. In specific, it checks for
the TSO (total store order), which allows the processor to relax the write to read
ordering. It first generates a set of multi-threaded programs that randomly read
and write from a small set of locations. Each write operation stores a unique value
to memory. Now, by analyzing the values read by load instructions, it is possible
to create a dependence graph between all the dynamic instructions. The graph will
have some edges induced by the program order and some edges from producing
stores to consuming loads. The last part of the algorithm checks for cycles in this
graph. If there are cycles, then we can be sure that there is a violation of the
underlying memory model, TSO. The algorithm for finding cycles has performance
issues since the size of the graph is typically very large. Chen et. al. [Chen et al.
2009] propose algorithms to speed up this process for memory models that imple-
ment atomic writes. The complexity of their algorithm is linear in the number of
operations.

8. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we presented a comprehensive survey of most of the state of the
art techniques for detecting faults in processors. In Section 2.2, we proposed a
taxonomy of different checker architectures. We observed that there is a significant
variability in the nature of techniques for solutions at the circuit/pipeline and the
software level. However, solutions at the thread, core, and multiprocessor level
follow a set of major patterns, and have a roughly similar structure.

Most of the techniques that we presented were proposed in the last decade. The
next decade is extremely exciting for computer architecture research since a host of
new technologies [Torrellas 2009] such as optical interconnects, non-volatile RAMs,
FinFets , 3D stacking, and near threshold operation are expected to be introduced.
These new technologies have very different fault mechanisms, and consequently
detecting them with a minimal amount of hardware is a challenge.

In specific, futuristic chips are expected to have extensive on-chip networks pos-
sibly containing many different types of interconnects. We would need a dedicated
checker substrate for the network to verify different safety and liveness properties.
Novel interconnect technologies such as optical interconnects are sensitive to pro-
cess variation, and thus their health needs to be monitored. Non-volatile memory
extends the lifetime of a fault. Faults can persist even after a system restart, and
can propagate to lower levels and I/O devices more easily. Consequently, early fault
detection, and efficient fault containment are important challenges. Novel process
technologies using FinFets, high k transistors, and 3D stacking allow for greater
on-chip transistor densities. We would need to detect faults at multiple layers in
the 3D stack simultaneously. For example, if we have processor and memory on
a single die, it is possible that high temperature in the processor layer can cause
faults in the DRAM memory layer. Any fault detection mechanism for such pro-
cessors will probably need to take such interactions into account. We thus foresee

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

34 : Rajshekar Kalayappan et. al.

an exciting decade ahead for research in fault detection architectures.

REFERENCES

ADVE, S. V. AND GHARACHORLOO, K. 1996. Shared memory consistency models: A tutorial. IEEE
Computer 29, 12, 66-76.

AHMED, R., FRAZIER, R., AND MARINOS, P. 1990. Cache-aided rollback error recovery (carer)
algorithm for shared-memory multiprocessor systems. In Fault-Tolerant Computing, 1990.
FTCS-20. Digest of Papers., 20th International Symposium. 82 —88.

ALKHALIFA, Z., NAIR, V., KRISHNAMURTHY, N., AND ABRAHAM, J. 1999. Design and evaluation of
system-level checks for on-line control flow error detection. Parallel and Distributed Systems,
IEEE Transactions on 10, 6 (jun), 627 —641.

ANSARI, A., FENG, S., GUPTA, S., AND MAHLKE, S. 2010. Necromancer: enhancing system through-
put by animating dead cores. In Proceedings of the 37th annual international symposium on
Computer architecture. ISCA ’10. ACM, New York, NY, USA, 473-484.

AusTiN, T. 1999. Diva: a reliable substrate for deep submicron microarchitecture design. In
Microarchitecture, 1999. MICRO-32. Proceedings. 32nd Annual International Symposium on.
196 —207.

AVIRNENI, N. D. P., SUBRAMANIAN, V., , AND SOMANI, A. K. 2009. Soft error mitigation schemes
for high performance and aggressive designs. In SELSE.

AvizIENIS, A. 1985. The n-version approach to fault-tolerant software. Software Engineering,
IEEE Transactions on SE-11, 12 (dec.), 1491 — 1501.

BaccHINI, F., DaMIANO, R. F., BENTLEY, B., BATY, K., NORMOYLE, K., IsHII, M., AND YOGEV,
E. 2004. Verification: what works and what doesn’t. In DAC. 274.

BANERJEE, P., RAHMEH, J., STUNKEL, C., NAIR, V., ROy, K., BALASUBRAMANIAN, V., AND ABRA-
HAM, J. 1990. Algorithm-based fault tolerance on a hypercube multiprocessor. Computers,
IEEE Transactions on 39, 9 (sep), 1132 —1145.

BARTLETT, J. F. 1981. A nonstop kernel. In Proceedings of the eighth ACM symposium on
Operating systems principles. SOSP ’81. ACM, New York, NY, USA, 22-29.

BERNICK, D., BRUCKERT, B., VIGNA, P. D.; GARCIA, D., JARDINE, R., KLECKA, J., AND SMULLEN,
J. 2005. Nonstop® advanced architecture. In Proceedings of the 2005 International Con-
ference on Dependable Systems and Networks. DSN ’05. IEEE Computer Society, Washington,
DC, USA, 12-21.

Braauw, D., KALAISELVAN, S., LAl, K., MA, W.-H., PANT, S., TOKUNAGA, C., DAs, S., AND BULL,
D. 2008. Razor ii: In situ error detection and correction for pvt and ser tolerance. In Solid-State
Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International. 400
—622.

BLOME, J., FENG, S., GUPTA, S., AND MAHLKE, S. 2007. Self-calibrating online wearout detection.
In Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO 40. IEEE Computer Society, Washington, DC, USA, 109-122.

BLumMm, M. AND WASSERMAN, H. 1996. Reflections on the pentium division bug. IEEFE Trans.
Comput. 45, 385—-393.

Borin, E.;, WaNG, C., Wu, Y., AND ARAUJO, G. 2006. Software-based transparent and compre-
hensive control-flow error detection. In Code Generation and Optimization, 2006. CGO 2006.
International Symposium on. 13 pp.

BORKAR, S. 2004. Microarchitecture and design challenges for gigascale integration. In Proceedings
of the 87th annual IEEE/ACM International Symposium on Microarchitecture. MICRO 37.
IEEE Computer Society, Washington, DC, USA, 3-3.

CARRETERO, J., CHAPARRO, P., VERA, X., ABELLA, J., AND GONZALEZ, A. 2009. End-to-end

register data-flow continuous self-test. SIGARCH Comput. Archit. News 87, 3 (June), 105—
115.

CHANG, J., REIS, G., AND AuGgusT, D. 2006. Automatic instruction-level software-only recovery.
In Dependable Systems and Networks, 2006. DSN 2006. International Conference on. 83 —92.

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

Preparing Articles for the ACM Transactions : 35

CHATTERJEE, S., WEAVER, C., AND AusTIN, T. 2000. Efficient checker processor design. In
Proceedings of the 33rd annual ACM/IEEE international symposium on Microarchitecture.
MICRO 33. ACM, New York, NY, USA, 87-97.

CHEN, K., MALIK, S., AND PATRA, P. 2008. Runtime validation of memory ordering using con-
straint graph checking. In HPCA. 415-426.

CHEN, Y., Lv, Y., Hu, W., CuEN, T., SHEN, H., WANG, P.; AND PaN, H. 2009. Fast complete
memory consistency verification. In High Performance Computer Architecture, 2009. HPCA
2009. IEEFE 15th International Symposium on. 381 —392.

CONSTANTINIDES, K., MuTLU, O., AND AUSTIN, T. 2008. Online design bug detection: Rtl anal-
ysis, flexible mechanisms, and evaluation. In Microarchitecture, 2008. MICRO-41. 2008 41st
IEEE/ACM International Symposium on. 282 —293.

CONSTANTINIDES, K., MUTLU, O., AUSTIN, T., AND BERTACCO, V. 2007. Software-based online
detection of hardware defects mechanisms, architectural support, and evaluation. In Proceedings
of the 40th Annual IEEE/ACM International Symposium on Microarchitecture. MICRO 40.
97-108.

DE KRULJF, M., NOMURA, S., AND SANKARALINGAM, K. 2010. Relax: an architectural framework
for software recovery of hardware faults. SIGARCH Comput. Archit. News 38, 3 (June), 497—
508.

ErnsT, D., Kim, N. S., Das, S., PANT, S., Rao, R., PHAM, T., ZIESLER, C., BLAAUW, D., AUSTIN,
T., FLAUTNER, K., AND MUDGE, T. 2003. Razor: a low-power pipeline based on circuit-level tim-
ing speculation. In Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM
International Symposium on. 7 — 18.

ERsoz, A., ANDREWS, D. M., aAND J., M. E. 1985. The watchdog task:concurrent error detection
using assertions. Tech. rep., Center for Reliable Computing, Stanford Univ., CA, CRC-TR
85-8.

FERNANDEZ-PASCUAL, R., GARCIA, J., Acacio, M., AND DuaTo, J. 2007. A low overhead fault
tolerant coherence protocol for cmp architectures. In High Performance Computer Architecture,
2007. HPCA 2007. IEEE 13th International Symposium on. 157 —168.

FouTRis, N., GizorouLos, D., PSARAKIS, M., VERA, X., AND GONZALEZ, A. 2011. Accelerating
microprocessor silicon validation by exposing isa diversity. In MICRO. 386-397.

GARG, A. AND HuaNng, M. C. 2008. A performance-correctness explicitly-decoupled architecture.
In Proceedings of the 41st annual IEEE/ACM International Symposium on Microarchitecture.
MICRO 41. IEEE Computer Society, Washington, DC, USA, 306-317.

GOLOUBEVA, O., REBAUDENGO, M., SONZA REORDA, M., AND VIOLANTE, M. 2003. Soft-error
detection using control flow assertions. In Defect and Fault Tolerance in VLSI Systems, 2003.
Proceedings. 18th IEEE International Symposium on. 581 — 588.

GoMAA, M., SCARBROUGH, C., VIJAYKUMAR, T. N.; AND POMERANZ, I. 2003. Transient-fault
recovery for chip multiprocessors. In Proceedings of the 30th annual international symposium
on Computer architecture. ISCA ’'03. ACM, New York, NY, USA, 98-109.

GoMAA, M. AND VIJAYKUMAR, T. 2005. Opportunistic transient-fault detection. In Computer
Architecture, 2005. ISCA ’05. Proceedings. 32nd International Symposium on. 172 — 183.

HANGAL, S., VaHIA, D., MaNoviT, C., AND Lu, J.-Y. J. 2004. Tsotool: A program for verifying
memory systems using the memory consistency model. In Proceedings of the 31st annual
international symposium on Computer architecture. ISCA ’04. 114—.

HARI, S., L1, M.-L., RAMACHANDRAN, P., CHOI, B., AND ADVE, S. 2009. mswat: Low-cost hardware
fault detection and diagnosis for multicore systems. In Microarchitecture, 2009. MICRO-42.
42nd Annual IEEE/ACM International Symposium on. 122 —132.

HorsT, R. AND CHou, T. 1985. The hardware architecture and linear expansion of tandem
nonstop systems. Tech. rep., Tandem Computers.

Hu, J. S., Link, G. M., JonNn, J. K., WANG, S., AND ZIAVRAS, S. G. 2005. Resource-driven
optimizations for transient-fault detecting superscalar microarchitectures. In Proceedings of
the 10th Asia-Pacific conference on Advances in Computer Systems Architecture. ACSAC’05.

J. F. CANTIN, M. H. L. AND SMITH., J. E. 2001. Dynamic verification of cache coherence protocols.
In Workshop on Memory Performance Issues. WMPI *01.

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

36 : Rajshekar Kalayappan et. al.

JoEL, B., GrAY, J., AND HORST, B. 1986. Fault tolerance in tandem computer systems. Tech.
rep., Tandem Computers.

KaNawaTi, G., NAIR, V., KRISHNAMURTHY, N., AND ABRAHAM, J. 1996. Evaluation of integrated
system-level checks for on-line error detection. In Computer Performance and Dependability
Symposium, 1996., Proceedings of IEEE International. 292 —301.

KOREN, I. AND KRISHNA, C. 2007. Fault Tolerant Systems. Morgan Kaufmann.

KUMAR, S. AND AGGARWAL, A. 2008. Speculative instruction validation for performance-reliability
trade-off. In High Performance Computer Architecture, 2008. HPCA 2008. IEEE 14th Inter-
national Symposium on. 405 —414.

LAFRIEDA, C., IPEK, E., MARTINEZ, J., AND MANOHAR, R. 2007. Utilizing dynamically coupled
cores to form a resilient chip multiprocessor. In Dependable Systems and Networks, 2007. DSN
07. 37th Annual IEEE/IFIP International Conference on. 317 —326.

LEEKE, M., ARIF, S., JHUMKA, A., AND ANAND, S. 2011. A methodology for the generation of
efficient error detection mechanisms. In Dependable Systems Networks (DSN), 2011 IEEE/IFIP
41st International Conference on. 25 —36.

L1, M.-L., RAMACHANDRAN, P., SAHOO, S. K., ADVE, S. V., ADVE, V. S.; AND ZHOU, Y. 2008.
Understanding the propagation of hard errors to software and implications for resilient sys-
tem design. In Proceedings of the 13th international conference on Architectural support for
programming languages and operating systems. ASPLOS XIII. ACM, New York, NY, USA,
265-276.

LyLE, G., CHEN, S., PATTABIRAMAN, K., KALBARCZYK, Z., AND IYER, R. 2009. An end-to-end
approach for the automatic derivation of application-aware error detectors. In Dependable
Systems Networks, 2009. DSN °09. IEEE/IFIP International Conference on. 584 —589.

Ma, Y., Gao, H., DiMITROV, M., AND ZHOU, H. 2007. Optimizing dual-core execution for power
efficiency and transient-fault recovery. IEEE Transactions on Parallel and Distributed Sys-
tems 18, 1080-1093.

MARTY, M. R., BINGHAM, J. D., HiLL, M. D., Hu, A. J., MARTIN, M. M. K., AND WooOD, D. A.
2005. Improving multiple-cmp systems using token coherence. High-Performance Computer
Architecture, International Symposium on 0, 328-339.

MEIXNER, A., BAUER, M. E., AND SORIN, D. 2007. Argus: Low-cost, comprehensive error detection
in simple cores. In Proceedings of the 40th Annual IEEE/ACM International Symposium on
Microarchitecture. MICRO 40. IEEE Computer Society, Washington, DC, USA, 210-222.

MEIXNER, A. AND SORIN, D. 2007. Error detection using dynamic dataflow verification. In Parallel
Architecture and Compilation Techniques, 2007. PACT 2007. 16th International Conference
on. 104 —-118.

MEIXNER, A. AND SORIN, D. J. 2005. Dynamic verification of sequential consistency. In Proceed-
ings of the 32nd annual international symposium on Computer Architecture. ISCA ’05. IEEE
Computer Society, Washington, DC, USA, 482—-493.

MEIXNER, A. AND SORIN, D. J. 2009. Dynamic verification of memory consistency in cache-
coherent multithreaded computer architectures. IEEE Transactions on Dependable and Secure
Computing 6, 18-31.

MOURAD, S. AND ZORIAN, Y. 2000. Principles of Testing Electronic Systems. Wiley-Interscience.

NICKEL, J. B. AND SoMANI, A. K. 2001. Reese: A method of soft error detection in microprocessors.
In Proceedings of the 2001 International Conference on Dependable Systems and Networks
(formerly: FTCS). DSN ’01.

NOMURA, S., SINCLAIR, M. D., Ho, C.-H., GOVINDARAJU, V., DE KRUIJF, M., AND SANKAR-
ALINGAM, K. 2011. Sampling + dmr: practical and low-overhead permanent fault detection.
SIGARCH Comput. Archit. News 39, 3 (June), 201-212.

OH, N., SHIRVANI, P., AND McCLUSKEY, E. 2002a. Control-flow checking by software signatures.
Reliability, IEEE Transactions on 51, 1 (mar), 111 —122.

OH, N., SHIRVANI, P.; AND McCLUSKEY, E. 2002b. Error detection by duplicated instructions in
super-scalar processors. Reliability, IEEE Transactions on 51, 1 (mar), 63 =75.

Ossi, E. J., LimBRrICK, D. B., RoBiNsoN, W. H., AND BHuvA, B. L. 2009. Soft-error mitigation
at the architecture-level using berger codes and instruction repetition. In SELSE. SELSE.

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

Preparing Articles for the ACM Transactions : 37

PARASHAR, A., GURUMURTHI, S., AND SIVASUBRAMANIAM, A. 2004. A complexity-effective ap-
proach to alu bandwidth enhancement for instruction-level temporal redundancy. SIGARCH
Comput. Archit. News 32, 2.

PATTABIRAMAN, K., KALBARCZYK, Z., AND IYER, R. 2007. Automated derivation of application-
aware error detectors using static analysis. In On-Line Testing Symposium, 2007. IOLTS 07.
13th IEEE International. 211 —216.

PELLEGRINI, A. AND BERTACCO, V. 2010. Application-aware diagnosis of runtime hardware faults.
In Proceedings of the International Conference on Computer-Aided Design. ICCAD ’10. IEEE
Press, Piscataway, NJ, USA, 487-492.

PrakarL, M., SoriN, D. J., ConpoN, A. E., AND HiLr, M. D. 1998. Lamport clocks: verifying
a directory cache-coherence protocol. In Proceedings of the tenth annual ACM symposium on
Parallel algorithms and architectures. SPAA '98. ACM, New York, NY, USA, 67-76.

PrvuLovic, M., ZHANG, Z., AND TORRELLAS, J. 2002. Revive: cost-effective architectural sup-
port for rollback recovery in shared-memory multiprocessors. In Computer Architecture, 2002.
Proceedings. 29th Annual International Symposium on. 111 —122.

PURSER, Z., SUNDARAMOORTHY, K., AND ROTENDBERG, E. 2000. A study of slipstream processors.
Microarchitecture, IEEE/ACM International Symposium on 0, 269.

QurEesHI, M. K., MutLu, O., AND PATT, Y. N. 2005. Microarchitecture-based introspection: A
technique for transient-fault tolerance in microprocessors. In DSN. 434-443.

RAsHID, M. AND HUANG, M. 2008. Supporting highly-decoupled thread-level redundancy for
parallel programs. In High Performance Computer Architecture, 2008. HPCA 2008. IEEE
14th International Symposium on. 393 —404.

Rasuip, M. W., Tan, E. J., HuanGg, M. C., AND ALBONEsI, D. H. 2005. Exploiting coarse-
grain verification parallelism for power-efficient fault tolerance. Parallel Architectures and
Compilation Techniques, International Conference on 0, 315-328.

RaAy, J., Hog, J. C.,; AND FALSAFI, B. 2001. Dual use of superscalar datapath for transient-fault
detection and recovery. In Proceedings of the 34th annual ACM/IEEE international symposium
on Microarchitecture. MICRO 34. IEEE Computer Society, Washington, DC, USA, 214-224.

REBAUDENGO, M., SONZA REORDA, M., TORCHIANO, M., AND VIOLANTE, M. 1999. Soft-error
detection through software fault-tolerance techniques. In Defect and Fault Tolerance in VLSI
Systems, 1999. DFT ’99. International Symposium on. 210 —218.

REINHARDT, S. K. AND MUKHERJEE, S. S. 2000. Transient fault detection via simultaneous
multithreading. In Proceedings of the 27th annual international symposium on Computer
architecture. ISCA ’00. ACM, New York, NY, USA, 25-36.

REIS, G. A., CHANG, J., VACHHARAJANI, N., RANGAN, R., AND AucusT, D. I. 2005. Swift: Software
implemented fault tolerance. In Proceedings of the international symposium on Code generation
and optimization. CGO ’05. IEEE Computer Society, Washington, DC, USA, 243-254.

RoMmANEScuU, B. F., LEBECK, A. R., AND SORIN, D. J. 2010. Specifying and dynamically verifying
address translation-aware memory consistency. In Proceedings of the fifteenth edition of AS-
PLOS on Architectural support for programming languages and operating systems. ASPLOS
’10. ACM, New York, NY, USA, 323-334.

ROTENBERG, E. 1999. Ar-smt: A microarchitectural approach to fault tolerance in microproces-
sors. Fault-Tolerant Computing, International Symposium on 0, 84.

SAHOO, S., L1, M.-L., RAMACHANDRAN, P.; ADVE, S., ADVE, V., AND ZHOU, Y. 2008. Using likely
program invariants to detect hardware errors. In Dependable Systems and Networks With
FTCS and DCC, 2008. DSN 2008. IEEE International Conference on. 70 —79.

SANCHEZ, D.; ARAGON, J., AND GARCIA, J. 2009a. Extending srt for parallel applications in tiled-
cmp architectures. In Parallel Distributed Processing, 2009. IPDPS 2009. IEEE International
Symposium on. 1 —8.

SANCHEZ, D., ARAGON, J., AND GARCIA, J. 2009b. Repas: Reliable execution for parallel appli-
cations in tiled-cmps. In Euro-Par 2009 Parallel Processing, H. Sips, D. Epema, and H.-X.
Lin, Eds. Lecture Notes in Computer Science, vol. 5704. Springer Berlin / Heidelberg, 321-333.
10.1007/978-3-642-03869-3_32.

SARANCGI, S. R. 2007. Techniques to mitigate the effects of congenital faults in processors. Ph.D.
thesis, Champaign, IL, USA. AAI3270016.

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

38 : Rajshekar Kalayappan et. al.

SARANCGI, S. R., GRESKAMP, B., AND TORRELLAS, J. 2006. Cadre: Cycle-accurate deterministic
replay for hardware debugging. In Proceedings of the International Conference on Dependable
Systems and Networks. 301-312.

SARANGI, S. R., NARAYANASAMY, S., CARNEAL, B., TIWARI, A., CALDER, B., AND TORRELLAS,
J. 2007. Patching processor design errors with programmable hardware. IEEE Micro 27, 1,
12-25.

SCHUETTE, M. AND SHEN, J. 1994. Exploiting instruction-level parallelism for integrated control-
flow monitoring. Computers, IEEE Transactions on 43, 2 (feb), 129 —140.

SHYAM, S., CONSTANTINIDES, K., PHADKE, S., BERTACCO, V., AND AUSTIN, T. 2006. Ultra low-
cost defect protection for microprocessor pipelines. In In Proceedings of the 12th International
conference on Architectural Support for Programming Languages and Operating Systems (AS-
PLOS. 73-82.

SMITH, J. AND SOHI, G. 1995. The microarchitecture of superscalar processors. Proceedings of
the IEEE 83, 12 (dec), 1609 —1624.

SMOLENS, J. C., GoLD, B. T., FALSAFI, B., AND HOE, J. C. 2006. Reunion: Complexity-effective
multicore redundancy. In Proceedings of the 39th Annual IEEE/ACM International Symposium
on Microarchitecture. MICRO 39. IEEE Computer Society, Washington, DC, USA, 223-234.

SMOLENS, J. C., GoLp, B. T., Kim, J., FALsAFI, B., HOE, J. C., AND NOWATZYK, A. G. 2004.
Fingerprinting: bounding soft-error detection latency and bandwidth. SIGARCH Comput.
Archit. News 32, 224-234.

SORrIN, D. J., MARTIN, M. M. K., HiL, M. D.; AND Woo0D, D. A. 2002. Safetynet: improving
the availability of shared memory multiprocessors with global checkpoint/recovery. In Proceed-
ings of the 29th annual international symposium on Computer architecture. ISCA ’02. IEEE
Computer Society, Washington, DC, USA, 123-134.

SPAINHOWER, L. AND GREGG, T. A. 1999. Ibm s/390 parallel enterprise server g5 fault tolerance:
a historical perspective. IBM J. Res. Dev. 43, 863-873.

SUBRAMANYAN, P. 2010. Efficient fault tolerance in chip multiprocessors using critical value
forwarding. M.S. thesis, Supercomputer Education and Research Center, Indian Institute of
Science, Bangalore.

SUBRAMANYAN, P., SINGH, V., SALUJA, K., AND LARSSON, E. 2010. Energy-efficient fault tolerance
in chip multiprocessors using critical value forwarding. In Dependable Systems and Networks
(DSN), 2010 IEEE/IFIP International Conference on. 121 —130.

SUNDARAMOORTHY, K., PURSER, Z., AND ROTENBERG, E. 2000. Slipstream processors: improving
both performance and fault tolerance. SIGPLAN Not. 35, 257-268.

T1wARI, A. AND TORRELLAS, J. 2008. Facelift: Hiding and slowing down aging in multicores. In
MICRO. 129-140.

TORRELLAS, J. 2009. Architectures for extreme-scale computing. IEEE Computer 42, 11, 28-35.

VEMU, R. AND ABRAHAM, J. 2006. Ceda: control-flow error detection through assertions. In
On-Line Testing Symposium, 2006. IOLTS 2006. 12th IEEE International. 6 pp.

VENKATASUBRAMANIAN, R., HAYES, J., AND MURRAY, B. 2003. Low-cost on-line fault detection
using control flow assertions. In On-Line Testing Symposium, 2003. IOLTS 2003. 9th IEEE.
137 — 143.

VIJAYKUMAR, T., POMERANZ, 1., AND CHENG, K. 2002. Transient-fault recovery using simultane-
ous multithreading. In Computer Architecture, 2002. Proceedings. 29th Annual International
Symposium on. 87 —98.

WANG, N. AND PATEL, S. 2006. Restore: Symptom-based soft error detection in microprocessors.
Dependable and Secure Computing, IEEE Transactions on 3, 3 (july-sept.), 188 —201.

Yoo, J. AND FRANKLIN, M. 2008. Hierarchical verification for increasing performance in reliable
processors. Journal of Electronic Testing 24, 117-128. 10.1007/s10836-007-5037-z.

ZANDIAN, B., DWEIK, W., KANG, S. H., PUNIHAOLE, T., AND ANNAVARAM, M. 2010. Wearmon:
Reliability monitoring using adaptive critical path testing. In Dependable Systems and Networks
(DSN), 2010 IEEE/IFIP International Conference on. 151 —160.

ZHAO, H. 2008. Memory buffer element optimization for decoupled thread level redundancy. M.S.
thesis, Department of Electrical and Computer Engineering The College School of Engineering
and Applied Science University of Rochester, Rochester, New York.

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

Preparing Articles for the ACM Transactions : 39

ZIEGLER, J. F., Curtis, H. W., MuHLFELD, H. P., MONTROSE, C. J., CHIN, B., NICEWICZ, M.,
RusseLL, C. A., WANG, W. Y., FREEMAN, L. B., HOSIER, P., LAFAvVE, L. E., WALSH, J. L.,
ORRO, J. M., UNGER, G. J., Ross, J. M., O’GorMmAN, T. J., MESSINA, B., SuLLIvAaN, T. D.,
SYKES, A. J., YOURKE, H., ENGER, T. A., ToLAT, V., ScoTT, T. S., TABER, A. H., SUSSMAN,
R. J., KLEIN, W. A., AND WAHAUS, C. W. 1996. Ibm experiments in soft fails in computer
electronics (1978-1994). IBM Journal of Research and Development 40, 1 (jan.), 3—18.

ZiLLEs, C. AND SoHl, G. 2002. Master/slave speculative parallelization. In Microarchitecture,
2002. (MICRO-35). Proceedings. 35th Annual IEEE/ACM International Symposium on. 85 —
96.

ACM Computer Surveys, Vol. V, No. N, Month 20YY.

