
Motivation
Design

Evaluation

Percolator

Smruti R. Sarangi

Department of Computer Science
Indian Institute of Technology

New Delhi, India

Smruti R. Sarangi Google Percolator 1/32



Motivation
Design

Evaluation

Outline

1 Motivation
Google’s Search Algorithm
Requirements

2 Design
Structure
Algorithm
Details and Optimizations

3 Evaluation

Smruti R. Sarangi Google Percolator 2/32



Motivation
Design

Evaluation

Google’s Search Algorithm
Requirements

Outline

1 Motivation
Google’s Search Algorithm
Requirements

2 Design
Structure
Algorithm
Details and Optimizations

3 Evaluation

Smruti R. Sarangi Google Percolator 3/32



Motivation
Design

Evaluation

Google’s Search Algorithm
Requirements

Updating Google’s web index continuously is a major chal-
lenge.

Tens of petabytes of data
Billions of updates per day
Thousands of machines.
Cascading updates.

Smruti R. Sarangi Google Percolator 4/32



Motivation
Design

Evaluation

Google’s Search Algorithm
Requirements

Google’s Search Algorithm

Every page has a “page rank”.
The page rank of a popular page is supposed to be high.
The page rank of a page is determined by the page rank of
all the pages that link to it.
For example:

If the New York Times website points to some link, then it
has a high page rank. ,
If my website points to some website, it will have a very low
page rank. /

Smruti R. Sarangi Google Percolator 5/32



Motivation
Design

Evaluation

Google’s Search Algorithm
Requirements

Example of a Google Search Query

Smruti R. Sarangi Google Percolator 6/32



Motivation
Design

Evaluation

Google’s Search Algorithm
Requirements

Structure of a Web Index

word link
anchor text

link
anchor text

link
anchor text

word link
anchor text

link
anchor text

link
anchor text

word link
anchor text

link
anchor text

link
anchor text

Smruti R. Sarangi Google Percolator 7/32



Motivation
Design

Evaluation

Google’s Search Algorithm
Requirements

The Problem of Updates

The links in the inverted list are arranged according to their
page rank.
If the page rank of a website changes then:

We need to update the inverted list to reflect the change.
The page rank of sites that it points to need to change.
This problem is known as cascading update .

Smruti R. Sarangi Google Percolator 8/32



Motivation
Design

Evaluation

Google’s Search Algorithm
Requirements

Outline

1 Motivation
Google’s Search Algorithm
Requirements

2 Design
Structure
Algorithm
Details and Optimizations

3 Evaluation

Smruti R. Sarangi Google Percolator 9/32



Motivation
Design

Evaluation

Google’s Search Algorithm
Requirements

Requirements of a Solution

Should provide ACID transaction semantics (do not want to
corrupt database).
Should have high throughput, and acceptable latency.
Should be able to handle petabytes of data.
Traditional DBMS systems are too slow → Need new tech-
nology
Random access to data such that changes can percolate
Consistency Model: Snapshot Isolation

Smruti R. Sarangi Google Percolator 10/32



Motivation
Design

Evaluation

Google’s Search Algorithm
Requirements

Snapshot Isolation

Assume two concurrent updates to a linked list.
If they do not access the same node or its parent, then they
are disjoint.
Disjoint accesses can continue in parallel.
This is different from regular transaction semantics such as
serializability.

Definition :
When a transaction starts, it takes(appears to) a consistent
snapshot of the entire database.
It then proceeds to update its private copy of the database.
The values are committed if they have not been changed by
another transaction since the snapshot.

Smruti R. Sarangi Google Percolator 11/32



Motivation
Design

Evaluation

Structure
Algorithm
Details and Optimizations

Outline

1 Motivation
Google’s Search Algorithm
Requirements

2 Design
Structure
Algorithm
Details and Optimizations

3 Evaluation

Smruti R. Sarangi Google Percolator 12/32



Motivation
Design

Evaluation

Structure
Algorithm
Details and Optimizations

Design of Percolator

Built on top of Bigtable – Google’s distributed storage en-
gine
Bigtable is a multidimensional database

Distributed key-value store
We save – row, column, timestamp
Atomic read-modify-write operations for each row
Meta data is stored in separate columns

Observer framework
Any row has a set of observers.
They run specialized functions when data in the row changes.

Smruti R. Sarangi Google Percolator 13/32



Motivation
Design

Evaluation

Structure
Algorithm
Details and Optimizations

Model of Transactions

Provides support for ACID transactions
Hard to do in such a large database
Required : Do not want to have Google’s database in an
inconsistent state
Uses a timestamp for each data item
The set of timestamps at the beginning of a transaction is its
snapshot.

Transactions can include multiple rows across multiple BigTable
tables
Percolator implements its own lock service
Percolator adds a special column to save locks.

Smruti R. Sarangi Google Percolator 14/32



Motivation
Design

Evaluation

Structure
Algorithm
Details and Optimizations

Columns in BigTable

Column Use
lock contains a pointer to the lock
write timestamp of committed data
data data value
notify list of observers
ack_O last timestamp at which observer O ran

Smruti R. Sarangi Google Percolator 15/32



Motivation
Design

Evaluation

Structure
Algorithm
Details and Optimizations

Example

A transfers B 7|
key data lock write

A
6: 6: 6:data@5
5:10| 5: 5:

B
6: 6: 6:data@5
5:2| 5: 5:

key data lock write

A
7:3| 7:primary 7:
6: 6: 6:data@5
5:10| 5: 5:

B
6: 6: 6:data@5
5:2| 5: 5:

Smruti R. Sarangi Google Percolator 16/32



Motivation
Design

Evaluation

Structure
Algorithm
Details and Optimizations

Example - II
key data lock write

A
7:3| 7: primary 7:
6: 6: 6:data@5
5:10| 5: 5:

B
7:9| 7: primary@A 7:
6: 6: 6:data@5
5:2| 5: 5:

key data lock write

A

8: 8: 8: data @ 7
7:3| 7: 7:
6: 6: 6:data@5
5:10| 5: 5:

B
7:9| 7: primary@A 7:
6: 6: 6:data@5
5:2| 5: 5:

Smruti R. Sarangi Google Percolator 17/32



Motivation
Design

Evaluation

Structure
Algorithm
Details and Optimizations

Example - III

key data lock write

A

8: 8: 8: data @ 7
7:3| 7: 7:
6: 6: 6:data@5
5:10| 5: 5:

B

8: 8: 8: data @ 7
7:9| 7: 7:
6: 6: 6:data@5
5:2| 5: 5:

Smruti R. Sarangi Google Percolator 18/32



Motivation
Design

Evaluation

Structure
Algorithm
Details and Optimizations

Outline

1 Motivation
Google’s Search Algorithm
Requirements

2 Design
Structure
Algorithm
Details and Optimizations

3 Evaluation

Smruti R. Sarangi Google Percolator 19/32



Motivation
Design

Evaluation

Structure
Algorithm
Details and Optimizations

Algorithm: Begin Transaction

Algorithm 1: Begin Transaction

1 startTs ← oracle.getTimeStamp()

2 Set(W):
writes.push(W)

Smruti R. Sarangi Google Percolator 20/32



Motivation
Design

Evaluation

Structure
Algorithm
Details and Optimizations

Get Method

1 Get(row, column):
while True do

2 T ← startTrans(row)
if T.hasLock(0,startTs) then

3 backOffAndMaybeRemoveLock(row,col)
continue

4 end
5 latestWrite← T.read(row, [0,startTs])

if !latestWrite then
6 return φ
7 end
8 dataTs ← latestWrite.timeStamp

return (T.read(row, "data", dataTs)
9 end

Smruti R. Sarangi Google Percolator 21/32



Motivation
Design

Evaluation

Structure
Algorithm
Details and Optimizations

PreWrite

1 PreWrite(Write w , Write primary )
Column col ← w .col
T ←startTransaction(w .row)

2 if T.read(w .row, "write", [startTs,∞]) then
3 return false
4 end
5 if T.read(w .row, "lock", [0,∞]) then
6 return false
7 end

8 T.write (w .row , "data", startTs, w .value)
T.write (w .row , "lock", startTs, {primary .row , primary .col})
return T .commit()

Smruti R. Sarangi Google Percolator 22/32



Motivation
Design

Evaluation

Structure
Algorithm
Details and Optimizations

Commit - I

1 Commit()
/* Prewrite all the entries */

2 (primary , secondaries)← (writes[0],writes[1 . . . n])
if !PreWrite(primary,primary) then

3 return false
4 end
5 for Write w: secondaries do
6 if !PreWrite(w,primary) then
7 return false
8 end
9 end

10 commitTs ← oracle.getTimeStamp()

Smruti R. Sarangi Google Percolator 23/32



Motivation
Design

Evaluation

Structure
Algorithm
Details and Optimizations

Commit - II

/* Commit the primary */
11 T ← startTransaction(primary .row)

/* Test to see if aborted by somebody else */
12 if !T.read(primary.row, "lock", startTs) then
13 return false
14 end

/* Write the primary and erase the lock */
15 T.write(primary .row , "write", commitTs, "data@"+startTs)

T.erase (primary .row , "lock", commitTs)

/* Point of commit */
16 if !T.Commit() then
17 return false
18 end

Smruti R. Sarangi Google Percolator 24/32



Motivation
Design

Evaluation

Structure
Algorithm
Details and Optimizations

Commit - III

19 for Write w: secondaries do
20 write(w .row , "write", commitTs, "data@"+startTs)

erase (w .row , "lock", commitTs)
21 end
22 return true

Smruti R. Sarangi Google Percolator 25/32



Motivation
Design

Evaluation

Structure
Algorithm
Details and Optimizations

Outline

1 Motivation
Google’s Search Algorithm
Requirements

2 Design
Structure
Algorithm
Details and Optimizations

3 Evaluation

Smruti R. Sarangi Google Percolator 26/32



Motivation
Design

Evaluation

Structure
Algorithm
Details and Optimizations

Timestamps

The timestamp oracle needs to be able to sustain a very
high throughput.
Possible to batch several RPC calls to the oracle to reduce
network load.
Needs to give out timestamps in increasing order.
If it fails, then it needs to recover and issue timestamps that
are greater than the ones it issued earlier.

Smruti R. Sarangi Google Percolator 27/32



Motivation
Design

Evaluation

Structure
Algorithm
Details and Optimizations

Observers

Each observer registers a set of columns, and a function.
The function gets invoked, if any of the columns are up-
dated.
Possible to do message collapsing
At most one observer’s transaction will commit per column.
Steps in running an observer

After an update to a column, Percolator sets the notify col-
umn.
A worker thread, ultimately picks up this information, and
runs an observer.
If the latest timestamp of an observer run (ack_O) is less
than the commit timestamp of the update, then run the ob-
server.
Worker threads avoid clumping by scanning random parts
of the database.

Smruti R. Sarangi Google Percolator 28/32



Motivation
Design

Evaluation

Structure
Algorithm
Details and Optimizations

Performance Improvements

Support for read-modify-write RPCs in BigTable.
Create batches of RPC calls.
Employ pre-fetching to reduce reads.
Use blocking API calls, and a large number of threads to
simplify the programming model.

Smruti R. Sarangi Google Percolator 29/32



Motivation
Design

Evaluation

Setup

Existing Setup:
Crawl billions of documents
Series of 100 map-reduces
A document takes 2-3 days for getting indexed

Percolator based indexing system – Caffeine
100x faster
Average age of documents gets reduced by 50%

Smruti R. Sarangi Google Percolator 30/32



Motivation
Design

Evaluation

Performance vs Crawl Rate

Crawl rate → Percentage of repository that is updated per
hour.
Let us plot the clustering latency (y axis) vs the crawl rate
(x axis)
For Map-reduce it starts at 2200s and rises to infinity when
the crawl rate exceeds 33%.
For Percolator it remains below 200s till about 37%. Then
it continues to rise.

Smruti R. Sarangi Google Percolator 31/32



Motivation
Design

Evaluation

Scalability for TPC/E benchmarks

The transactions per second (TPS) varies linearly as we
scale the number of cores.
4000 TPS is achieved with 5,000 cores.
It increases to 12,000 TPS for 15,000 cores.

Close to Linear Scaling

Smruti R. Sarangi Google Percolator 32/32



Motivation
Design

Evaluation

Large-scale Incremental Processing Using Distributed
Transactions and Notifications by Daniel Peng and Frank
Dabek, OSDI, 2010

Smruti R. Sarangi Google Percolator 32/32


	Motivation
	Google's Search Algorithm
	Requirements

	Design
	Structure
	Algorithm
	Details and Optimizations

	Evaluation

