Paxos Distributed Consensus

Smruti R. Sarangi

Department of Computer Science Indian Institute of Technology New Delhi, India

ъ

Motivation

- Algorithm
- Analysis

æ

<ロト <回 > < 注 > < 注 > 、

Consensus

- Each process might propose a value.
- Processes co-ordinate to agree upon one value, V.
- V needs to be proposed by at least one process.
- All processes need to agree upon V.

Uses

- Solve the distributed commit problem
 - Each process can propose two values commit or abort
 - 2 All the processes agree to either commit or abort.
- Run multiple copies of a computation, and use voting to decide the result.

(日)

Paxos

Consensus with Reliable Processes

Simple Algorithm

- Elect a leader.
- Use the leader to collect proposals, decide on a consensus value, and broadcast the all processes.
- Issues:
 - Fault tolerance
 - Centralized processing

ヘロト 人間 ト ヘヨト ヘヨト

Paxos

Consensus with Reliable Processes

Simple Algorithm

- Elect a leader.
- Use the leader to collect proposals, decide on a consensus value, and broadcast the all processes.
- Issues:
 - Fault tolerance
 - Centralized processing

The consensus problem is interesting in the presence of faults

ヘロト 人間 ト ヘヨト ヘヨト

Basic Results

Result by Fischer, Lynch, Patterson

It is impossible to achieve consensus with even one faulty process in an asynchronous system.

Reasons:

- We cannot distinguish between a failed and a slow process.
- Assume 2n + 1 processes.
 - Let *n* processes propose 1, and let *n* processes propose 0.

- The faulty/slow process holds the key.
- The algorithm can thus get stuck forever.

Way Ahead

- Safety Property : Something wrong does not happen.
 - If the traffic light on one road is green, then the traffic light on the perpendicular road is red.
- Liveness Property : Something good always happens.
 - The red light will ultimately turn green.
- Let us propose protocols that never violate the safety constraint.
- Liveness is a secondary criteria.

Motivation Algorithm Analysis

Types of Agents

- Proposer Proposes a value
- Acceptor A set of nodes that accept proposed values
- Learner Nodes that join the consensus protocol and learn the accepted value.
- Note that a node can be a proposer, and acceptor at the same time.

くロト (過) (目) (日)

Paxos

Motivation Algorithm Analysis

Outline

Motivation

- Algorithm
- Analysis

æ

<ロト <回 > < 注 > < 注 > 、

Paxos

Motivation Algorithm Analysis

Conditions

First-Accept Condition: C1

An acceptor does not know how many proposals are there in the system. Hence, he must accept the first proposal that he gets.

- Several values could be proposed by different proposers.
- Different acceptors could accept different proposals.
- Hence, an acceptor needs to accept multiple proposals.
- Each proposer however needs to choose the consensus proposal.

くロト (過) (目) (日)

Paxos

Motivation Algorithm Analysis

Proposal Numbering

- **1** Proposal \rightarrow (number, value)
- 2 All the proposal numbers are unique

Condition – C2(Consensus Condition)

If a proposal (n, v) is chosen, then every proposal with a number greater than *n* that is chosen, has value *v*.

• By induction, we can prove that only one value is chosen.

Let us now see, how to satisfy condition C2 to achieve consensus.

Paxos

Motivation Algorithm Analysis

Condition – C2a

Condition - C2a

If a proposal with value v is chosen, then every higher numbered proposal accepted by any acceptor has value v.

- Assume that a process wakes up, and gets a proposal. By condition C1, it needs to accept it.
- This is not desirable.
- We need to strengthen C2a.

Paxos

Condition – C2b

Condition – C2b

If a proposal with value v is chosen, then every higher-numbered proposal issued by any proposer has value v.

Motivation

- C2b is a fairly strong condition.
- It ensures that after a proposal is chosen, all higher numbered proposals propose the chosen value.
- Any acceptor, which joins the protocol late, is proposed the consensus value, which it can readily accept.
- The main challenge is to ensure condition C2b.

ヘロト ヘ戸ト ヘヨト ヘヨト

Motivation Algorithm Analysis

Outline

Motivation

Analysis

æ

イロン イロン イヨン イヨン

Paxos

Algorithm

Paxos Algorithm

Algorithm 1: Paxos: Phase 1

Propose: Proposer sends prepare(n) to a majority of acceptors.

2 Receive prepare(n):

- if *n* > maxPrep then
- $\begin{array}{c|c} \mathbf{3} & maxPrep \leftarrow n \\ \textbf{return} & maxAccept \end{array}$
- 4 end

Paxos

Algorithm Analysis

Paxos Algorithm - II

	Algorithm 2: Paxos: Phase 2		
1	Receive (<i>maxAccept_i</i>) from a majority of acceptors:		
	$v \leftarrow \max(maxAccept_i)$ send accept(<i>n</i> , <i>v</i>) to all the acceptors in the quorum		
2	Received accept(<i>n</i> , <i>v</i>) request:		
	If $n \ge maxPrep$ then		
3	$ maxAccept \leftarrow v$		
	accept the proposal (<i>n</i> , <i>v</i>)		
	send response to proposer		
4	end		
5	Received all responses to accept messages:		
	Choose the value (v)		

- Motivation
- Algorithm
- Analysis

æ

ヘロト 人間 とくほとく ほとう

Motivation Algorithm Analysis

Analysis of Paxos

Definitions

Let us consider two proposals, P_1 , and P_2 .

- If an acceptor(A) receives P₂'s prepare message after P₁'s accept message, then P₁ ≺ P₂ at A.
- If an acceptor(A) receives P₂'s prepare message after P₁'s prepare message is ignored, then P₁ ≺ P₂ at A.
- P_1 is concurrent with P_2 ($P_1 \bowtie P_2$) at A if, if $P_1 \not\prec P_2$, and $P_2 \not\prec P_1$.

Definitions

- $P_1 \bowtie P_2$, if $P_1 \bowtie P_2$ at any acceptor.
- Otherwise, either $P_1 \prec P_2$, or $P_2 \prec P_1$.

Problem of Consensus Paxos Algorithr Analysis

Analysis - II

Theorem

If $P_1 \bowtie P_2$, and $P_1.num < P_2.num$, P_1 will not pass phase II at the common acceptor.

Proof.

- There must be some acceptor that gets messages for both proposals.
- Assume it first gets a prepare message from P₁.
 - P1 will not succeed in phase II.
- Assume it first gets a prepare message from P₂.
 - P1 will not succeed in phase I.

< □ > < 同 > < 三 > <

Analysis - III

Theorem

If $P_1 \prec P_2$, and P_1 .num > P_2 .num, P_2 will not pass phase I.

Proof.

- There must be some acceptor that gets messages for both proposals.
- *P*₂.*num* < *maxPrep* at that acceptor.
- Hence, P₂ will not pass phase I.

ヘロト ヘアト ヘビト ヘビト

Motivation Algorithm Analysis

Analysis - IV

Theorem

If $P_1 \prec P_2$, and both of them succeed (pass phase II at all acceptors), then they choose the same value.

Proof.

- There must be some acceptor (*A*) that gets messages for both proposals.
- For P_2 to succeed $P_2.num > P_1.num$.
- Induction hypothesis: All the successful proposals with numbers between P₁.num and P₂.num, choose the value chosen by P₁.
- A must have forwarded its value v at the end of phase 1 to the proposer of P₂.
- If *v* is the maximum value of the response, we are done.

Motivation Algorithm Analysis

Analysis - V

Proof.

- If it is not the case, then assume v' > v is the maximum value.
- Let P_3 propose v'. Now, by the induction hypothesis $P_3.num < P_1.num$ or $P_3.num > P_2.num$.
- If P₃.num < P₁.num, then P₁ must have seen P₃'s value (cannot be concurrent). Not Possible
- If $P_3.num > P_2.num$, then P_2 will not pass phase II.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Progress

- Note that we have not said anything about progress.
- If $P_1 \bowtie P_2$, one of them will not succeed.
- We can possibly have a chain of failures, and theoretically never achieve consensus!
- Solution Eliminate concurrent proposals.
 - Use a distinguished proposer (leader), who can propose.
 - If the leader fails, choose a new leader.
 - Paxos provides safety, just in case the old leader wakes up.

Problem of Consensus Paxos	Motivation Algorithm Analysis
The part-time parliament, 1998.	Leslie Lamport. ACM TOCS,

Paxos made Simple, Leslie Lamport. ACM Sigact News 32.4 (2001): 18-25.

э

ヘロト ヘ戸ト ヘヨト ヘヨト