Leader Election
 Rings, Arbitrary Networks

Smruti R. Sarangi

Department of Computer Science
Indian Institute of Technology New Delhi, India

Outline

(1) Leader Election in Rings

- $O\left(n^{2}\right)$ Algorithm
- $O(n \log (n))$ Algorithm
(2) Leader Election in Trees

Outline

(9) Leader Election in Rings

- $O\left(n^{2}\right)$ Algorithm
- $O(n \log (n))$ Algorithm

2 Leader Election in Trees

Leader Election in Rings

- We assume that we are using a ring based overlay.
- We wish to choose the process with the smallest id as the leader. (NOTE: asymmetry)
- Messages can only be sent to the clockwise neighbor(left) or anti-clockwise neighbor(right).

Chang-Roberts Algorithm

```
1 if \(p\) is initiator then
2 |sate }\leftarrow\mathrm{ find
    send p to next(p)
    while state }\not=l\mathrm{ leader do
    receive(q);
    if p=q then
                state}\leftarrow\mathrm{ leader
            end
            else if q<p then
                if state = find then
                state}\leftarrow\mathrm{ lost
            end
                        send q to next(p)
```


Chang Roberts Algorithm - II

Analysis

Message Complexity

- Assume there are $O(N)$ initiators.
- The leader's message will be sent N times.
- For other initiators, the message will be sent $N-i$ times.
- $\sum_{i}(N-i)=O\left(N^{2}\right)$.

Analysis

Message Complexity

- Assume there are $O(N)$ initiators.
- The leader's message will be sent N times.
- For other initiators, the message will be sent $N-i$ times.
- $\sum_{i}(N-i)=O\left(N^{2}\right)$.

Optimization

Global broadcast is not necessary

Outline

(1) Leader Election in Rings

- $O\left(n^{2}\right)$ Algorithm
- $O(n \log (n))$ Algorithm

2 Leader Election in Trees

Basic Idea

- We get a $O\left(N^{2}\right)$ complexity because each message can travel $O(N)$ hops.
- Instead of sending a message to everybody, we need to find a way to filter the set of messages (similar to Maekawa's algorithm)
- We will consider gradually larger sizes of windows in a sequence of rounds.
- Each window will allow only one of its members to participate in the next round.
- If, we are able to filter the number of participating members by a factor of 2 in each round, we will have $O(\log (N))$ rounds.
- If in each round, we send only N messages, then a total of $O(N \log (N))$ messages need to be sent.

$O(n \log (n))$ Time Algorithm

1
send (probe,id, 0,1) to left and right
receive (probe,j,k,d) from left(right):
if $j=i d$ then
leader \leftarrow j
Terminate

3 end
4 if $j<i d$ and $d<2^{k}$ then
5 send (probe, j, k, d+1) to right (left)

6 end
7 if $j<i d$ and $d=2^{k}$ then
send (reply, j, k) to left (right)
9 end

O($n \log (n)$) Time Algorithm - II

```
1 receive (reply,j,k) from left(right):
if j\not=id then
2
3 end
4 else
5 if received (reply,j,k) from right(left) then
6
7 end
8 end
```


Analysis

- The maximum number of winners after k phases is:
- Two winners can at the least be 2^{k} entries apart.
- Thus, the total number of winners after k phases is $n /\left(2^{k}+1\right)$
- The total number of messages for each initiator in phase k is 4×2^{k}
- Total number of messages in the $k^{\text {th }}$ phase is:

$$
4 \times 2^{k} \times \frac{n}{2^{k-1}+1}
$$

- Total number of messages is:

$$
\begin{equation*}
M=\sum_{k=1}^{\log (n)} 4 \times 2^{k} \times \frac{n}{2^{k-1}+1}=O(n \log (n)) \tag{1}
\end{equation*}
$$

Leader Election in Trees

- Let us consider arbitrary networks.
- Creating a ring based overlay is difficult (It amounts to constructing a Hamiltonian cycle - NP Hard).
- However, creating a tree based overlay is easy.
- To further optimize the process, we can choose the MST (minimum spanning tree) as the overlay.
- Assumptions:
- Let the current node be termed as p
- Let a neighbor be termed q
- All the leaves (degree=1) are initiators

Initialization

/* Wakeup all the nodes
1 if p is an initiator then
2 awake \leftarrow true
foreach $q \in \operatorname{neigh}(p)$ do
end
5 end
6 while numWakeups $<\mid$ neigh $(p) \mid$ do
7 receive(wakeup)
numWakeups \leftarrow numWakeups +1
if awake = false then
awake \leftarrow true
foreach $q \in \operatorname{neigh}(p)$ do

Send Proposal to Parent

```
/* Collate result from the leaves and send to
    parent
1 received \(\leftarrow 0\)
\(\min _{p} \leftarrow \mathrm{p}\)
while received < \#children do
2 receive \(<r>\) from \(q\)
\(\operatorname{rec}_{p}[q] \leftarrow\) true
received \(\leftarrow\) received +1
\(\min _{p} \leftarrow \min \left(\min _{p}, r\right)\)
3 end
4 send \(\min _{p}\) to parent
```


Decide the Leader

/* Receive the result from the parent, and send to the leaves
1 receive $<r>$ from parent res $\leftarrow \min \left(\min _{p},<r>\right)$
if res $=p$ then
state \leftarrow leader
3 end
4 else
5 |late \leftarrow lost
6 end
7 foreach $q \in \operatorname{neigh}(p), q \neq$ parent do
8 send res to q
9 end

Analysis

Message Complexity

- On every edge, we can send at the most two wakeup messages
- We can send a proposal and its reply.
- A tree with N nodes as ($N-1$) edges.

Complexity

Message Complexity: 4N-4=O(N)

冨 Introduction to Distributed Algorithms by Gerard Tel，Cam－ bridge University Press， 2000

嗇 Distributed Computing，Fundamentals，Simulations and Ad－ vanced Topics by Haggit Attiya and Jennifer Welch，Wiley 2004
圊 Advanced Concepts in Operating Systems by Mukesh Sing－ hal and Niranjan Shivaratri，McGrawHill， 1994

嗇 Distributed Algorithms by Nancy Lynch，Morgan Kaufmann， 1996

