
Motivation
System Architecture

Evaluation

Dynamo

Smruti R. Sarangi

Department of Computer Science
Indian Institute of Technology

New Delhi, India

Smruti R. Sarangi Dynamo 1/26

Motivation
System Architecture

Evaluation

Outline

1 Motivation

2 System Architecture

3 Evaluation

Smruti R. Sarangi Dynamo 2/26

Motivation
System Architecture

Evaluation

Prerequisites

Prerequisites
Distributed Hash Tables: Chord and Pastry
ACID Guarantees
Eventual Consistency

Smruti R. Sarangi Dynamo 3/26

Motivation
System Architecture

Evaluation

Motivation

Reliability is one of the biggest challenges for Amazon.
Amazon aims at 99.999% reliability (five 9s) (Less than 5
mins per year)
Lack of reliability can translate into significant financial losses
The infrastructure consists of thousands of servers

Servers and network components keep failing.
Customers need an always-on experience.

Smruti R. Sarangi Dynamo 4/26

Motivation
System Architecture

Evaluation

Dynamo

Highly available key-value store.
Serves a diverse set of applications with Amazon.
Services – Best seller’s list, shopping carts, customer pref-
erences, sales rank, product catalog
Served 3 million shopping checkouts in a single day (in
2006)
Manages session state for thousands of concurrently active
sessions
Provides a simple key-value interface over the network

Smruti R. Sarangi Dynamo 5/26

Motivation
System Architecture

Evaluation

Assumptions and Requirements

Query Model – Simple key-value access
ACID properties – Provides only A, I, and D
Latency requirements – 99.9% of all accesses satisfy the
SLA
SLA⇒ Service Level Agreement

Maximum Latency
Maximum client request rate

Smruti R. Sarangi Dynamo 6/26

Motivation
System Architecture

Evaluation

System Diagram

Server Server Server Server

Client Requests

Aggregator Aggregator

Request Routing

Request Routing

Page Rendering

Aggregation

Storage

Dynamo Dynamo Other

Smruti R. Sarangi Dynamo 7/26

Motivation
System Architecture

Evaluation

Key Principles of the Design

Incremental Scalability: Should be able to scale one node
at a time.
Symmetry: Every node should have the same responsibility.
Decentralization: Peer to peer system
Heterogeneity: Needs to be able to exploit heterogeneous
capabilities of servers.
Eventual Consistency:

1 A get operation returns a set of versions (need not contain
latest value).

2 A write ultimately succeeds.

Smruti R. Sarangi Dynamo 8/26

Motivation
System Architecture

Evaluation

Basic Operations

get(key) Returns all the versions of an item (context).
put(key,object, context) Adds the object corresponding to
the key in the database.

Writes need to be very fast. Reads can be slow.
Never lose a write.

Smruti R. Sarangi Dynamo 9/26

Motivation
System Architecture

Evaluation

Partitioning

Uses consistent hashing (similar to Chord) to distribute keys
in a circular space.
Each item is assigned to its successor.
Uses the notion of virtual nodes for load balancing.
A physical node is responsible for multiple virtual nodes.
For fault tolerance, the key is assigned to N successors
(preference list).

Note that they need to belong to different physical nodes.
These nodes are also distributed across data centers.

One of these N successors, is the co-ordinator node.

Smruti R. Sarangi Dynamo 10/26

Motivation
System Architecture

Evaluation

Partitioning-II

The basic consistent hashing (similar to Chord) has some
basic challenges: non-uniform data and load distribution.
Nodes can have heterogeneous performance.
Each node is assigned to multiple positions (tokens) in the
ring.
Each such key range is assigned to a virtual node within the
physical node.

Smruti R. Sarangi Dynamo 11/26

Motivation
System Architecture

Evaluation

Example of Partitioning

Physical node P1

V1

V2

V3

V4

Virtual node
Physical node P2

V1'
Portion of the key
space that V3
is responsible for

Smruti R. Sarangi Dynamo 12/26

Motivation
System Architecture

Evaluation

Data Versioning

A put call might return before the update has propagated to
all replicas.
If there is a failure then some replicas might get the update
after a very long time.
Some applications such as “add to shopping cart” (write),
need to always complete. (Prioritize Writes)
Each new version of data is treated as a new and immutable
version of data.
If there are failures and concurrent updates, then version
branching may occur.
Reconciliation needs to be performed among multiple up-
dates

Can be done at the server side (generic logic)
Can be done at the client side (semantic merging)

Smruti R. Sarangi Dynamo 13/26

Motivation
System Architecture

Evaluation

Vector Clocks for Versioning

A vector clock, contains an entry for each server in the pref-
erence list.
When a server updates an object, it increments its vector
clock.
If there are concurrent modifications, then a get operation
returns all versions.
The put operation indicates the version.
The put is considered a merge operation.
Example⇒

Smruti R. Sarangi Dynamo 14/26

Motivation
System Architecture

Evaluation

Vector Clock Example

write handled
by A

v1 [A,1]

write handled
by A

v2 [A,2]

write handled
 by B

write handled
 by C

v3 [A,2, B,1] v4 [A,2, C,1]

v5 [A,3, B,1, C,1]

writes reconciled
 by A

Smruti R. Sarangi Dynamo 15/26

Motivation
System Architecture

Evaluation

Execution of get() and put()

Send the request to any node that will forward it to the co-
ordinator (like Pastry).
Or, directly find the successor.
The nodes ideally access the preference list (or top N healthy
nodes)
There is a read quorum of R nodes, and write quorum of W
nodes
R + W > N
For a put() request, the co-ordinator merges the versions,
and broadcasts it to the quorum
For a get() request, the co-ordinator sends all the concur-
rent versions to the client

Smruti R. Sarangi Dynamo 16/26

Motivation
System Architecture

Evaluation

Sloppy Quorum

Uses the first N healthy nodes (typically the preference list)
If a node cannot deliver an update to node A, then it will
send it to node D with a hint
Once A recovers, D will transfer the object
For added reliability the quorum spans across data centers

Smruti R. Sarangi Dynamo 17/26

Motivation
System Architecture

Evaluation

Synchronization across Replicas

Nodes maintain Merkle trees ⇒ The parent is the hash of
its children.
A Merkle tree contains the set of keys mapped to each vir-
tual node.

It represents a range of keys.

Nodes regularly exchange Merkle trees, through an anti-
entropy based algorithm.
Trees need to be often recalculated. If there is a discrep-
ancy the data needs to be merged.

Smruti R. Sarangi Dynamo 18/26

Motivation
System Architecture

Evaluation

Maintaining Membership

Dynamo maintains membership information through explicit
join and leave requests.
Ring membership changes are infrequent.
Additionally a gossip based protocol propagates ring mem-
bership information across randomly chosen nodes.
For 1-Hop routing, nodes maintain large routing tables.
All routing, membership, and placement information propa-
gates through anti-entropy based gossip protocols.
To prevent logical partitions, some nodes act as seeds, and
synchronize information across peers.

Smruti R. Sarangi Dynamo 19/26

Motivation
System Architecture

Evaluation

Load Balancing and Failure Detection

Failure detection is also done with gossip style protocols.
Node allocation and removal happens in the same manner
as Chord.
Since keys are replicated in successors. When a new node
is added some of the data is moved from successors to the
new node.

Smruti R. Sarangi Dynamo 20/26

Motivation
System Architecture

Evaluation

Three different types of storage engines
In memory buffer with persistent backing store.
Berkely DB
MySQL DB

Request co-ordination
Communication through Java NIO channels

Smruti R. Sarangi Dynamo 21/26

Motivation
System Architecture

Evaluation

Result: Read-Write Response Time

In the peak season of December 2006.
The average read time varied periodically (time period: 12
hours) between 12 to 18 ms.
The average write time varied periodically (12 hours) be-
tween 21 to 30 ms.
The 99.9 percentile values were roughly 10 times more.

Smruti R. Sarangi Dynamo 22/26

Motivation
System Architecture

Evaluation

Result: BDB vs Buffered Writes

The 99.9th percentile response time for buffered writes was
between 40 and 60 ms.
For direct BDB writes the fluctuations were much more (be-
tween 40 and 180 ms).

Smruti R. Sarangi Dynamo 23/26

Motivation
System Architecture

Evaluation

Reconciliation Methods

Reconciliation Methods
Business Logic Based Reconciliation: Shopping cart
Time stamp based Reconciliation (last write wins): Customer
session management

Smruti R. Sarangi Dynamo 24/26

Motivation
System Architecture

Evaluation

Token Distribution

Strategy 1: Randomly place the tokens in the ring. This
makes a node responsible for random portions of the key
space. Any node addition/deletion is expensive: migrate
key-value data, re-compute Merkle trees.
Strategy 2:

Divide the hash space into Q equally-sized partitions.
A partition is placed on the first N nodes that are encoun-
tered when we traverse the ring clock-wise from the end of
the partition.
Separates the tasks of partitioning and placement.

Smruti R. Sarangi Dynamo 25/26

Motivation
System Architecture

Evaluation

Token Distribution - II

Strategy 3:
Divide the hash space into Q equally-sized partitions.
Each node is assigned Q/S tokens, where S is the total
number of nodes.

Results
Efficiency = Mean load

Maximum load
Strategy 3 is the most efficient (> 99%)
Next is Strategy 1 (≈ 95%)
The last is Strategy 2 (≈ 83%)

Smruti R. Sarangi Dynamo 26/26

Motivation
System Architecture

Evaluation

DeCandia, Giuseppe, Deniz Hastorun, Madan Jam-
pani, Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. "Dynamo: amazon’s highly available
key-value store." ACM SIGOPS operating systems review
41, no. 6 (2007): 205-220.

Smruti R. Sarangi Dynamo 26/26

	Motivation
	System Architecture
	Evaluation

