
Design
Design Details

Evaluation

Coda

Smruti R. Sarangi

Department of Computer Science
Indian Institute of Technology

New Delhi, India

Smruti R. Sarangi Coda Distributed File System 1/34



Design
Design Details

Evaluation

Outline

1 Design
Caching
Semantics
Replication

2 Design Details
Communication
Conflict Resolution
State Transformation

3 Evaluation

Smruti R. Sarangi Coda Distributed File System 2/34



Design
Design Details

Evaluation

Coda

Coda is a large scale distributed file system.
Provides a high level of resiliency:

Tolerates server failures by having replicas.
Allows for disconnected operation. A client can temporarily
act as a server.

Efficient and easy to use.
Location transparent.
It extends the Andrew File System (AFS)

Smruti R. Sarangi Coda Distributed File System 3/34



Design
Design Details

Evaluation

Historical Overview

Coda arose out of AFS.
It needed to provide more fault tolerance.
Aim: Constant Data Availability

Provide data availability in spite of failures in the system.

Was meant to integrate portable computers in the file sys-
tem network (read laptops).
Need for compatibility with Unix file semantics.

Smruti R. Sarangi Coda Distributed File System 4/34



Design
Design Details

Evaluation

Brief Overview of AFS

When we open a file, the entire file is fetched from the
server and stored in the client’s cache.
All read and write operations are directed to the local file
system.
When the file is closed, it is written back to the server.
The client establishes a callback with the server. The server
promises to let the client know if there is a concurrent mod-
ification.
The server sends file invalidate messages (known as break-
ing the callback) to clients that have a cached copy.
If multiple clients are writing at the same time, the last writer
wins.

Smruti R. Sarangi Coda Distributed File System 5/34



Design
Design Details

Evaluation

Caching
Semantics
Replication

Outline

1 Design
Caching
Semantics
Replication

2 Design Details
Communication
Conflict Resolution
State Transformation

3 Evaluation

Smruti R. Sarangi Coda Distributed File System 6/34



Design
Design Details

Evaluation

Caching
Semantics
Replication

Coda Caching

Observation: Caching is key to the efficient performance of
AFS. Better is the cache, better is the performance
Clients cache entire files in their disks.
Uses the AFS caching mechanism as a baseline

Check the cache on a file open() call.
If the file is not there, fetch it from the server.
If the file has been modified, then write it back to the server
after the close() call.

Smruti R. Sarangi Coda Distributed File System 7/34



Design
Design Details

Evaluation

Caching
Semantics
Replication

Outline

1 Design
Caching
Semantics
Replication

2 Design Details
Communication
Conflict Resolution
State Transformation

3 Evaluation

Smruti R. Sarangi Coda Distributed File System 8/34



Design
Design Details

Evaluation

Caching
Semantics
Replication

Coda Semantics - I

One-Copy Unix Semantics: Modification to any byte in a file
is immediately and permanently visible to every client.
AFS-I Semantics: Propagate changes at the granularity of
files (at the time of open and close only).
AFS-II Semantics:

The client sets up a callback mechanism with the server.
It informs the server about its cached files.
Whenever a file changes, the server notifies the client.
If there is a network partition, the client cache is incoherent.

Smruti R. Sarangi Coda Distributed File System 9/34



Design
Design Details

Evaluation

Caching
Semantics
Replication

Coda Semantics - II

Coda uses a set of servers S.
A client maintains a subset of servers s ⊆ S that are reach-
able.
Every τ seconds, a client recomputes s.
On an open()

A client gets the latest version of a file from s.
If s = φ, then it uses its cached version.
Relaxed consistency: It considers a file valid, if it was the
latest copy at some instant in the last τ seconds, and a call-
back was lost.

On a close()
A client propagates the update to all of s.

Smruti R. Sarangi Coda Distributed File System 10/34



Design
Design Details

Evaluation

Caching
Semantics
Replication

Outline

1 Design
Caching
Semantics
Replication

2 Design Details
Communication
Conflict Resolution
State Transformation

3 Evaluation

Smruti R. Sarangi Coda Distributed File System 11/34



Design
Design Details

Evaluation

Caching
Semantics
Replication

Coda Replication

Unit of Replication: A volume (a set of files and directories,
subtree of the shared file system)
Each file or directory has an unique ID
A part of this ID identifies the parent volume.
A set of servers with replicas of a volume, are known as the
volume storage group (VSG)
The list of servers are stored in the volume replication database.
The client cache manager (Venus) keeps track of the subset
of the VSG that is accessible (AVSG).

Smruti R. Sarangi Coda Distributed File System 12/34



Design
Design Details

Evaluation

Caching
Semantics
Replication

Replication Strategy

Upon a cache miss, a client obtains the file from one mem-
ber of the AVSG. (Preferred Server)
The preferred server can be chosen on the basis of physical
proximity.
The client contacts the other servers on the AVSG to verify
that the preferred server has the latest copy of the data.
If the preferred server is outdated, then the server with the
latest copy is made the preferred server.
Establish a callback with the preferred server.
Upon a file close – it is transferred to all the members of the
AVSG.

Smruti R. Sarangi Coda Distributed File System 13/34



Design
Design Details

Evaluation

Caching
Semantics
Replication

Cache Coherence

The client needs to recognize the events not more than τ
seconds later.

Enlargement of the AVSG.
Contact missing members every τ seconds.
If an AVSG expands, then cached files may be out of date.
Coda drops the callbacks on these files.
The next time that these files are requested, the new AVSG
needs to be contacted.

Shrinkage of the AVSG.
Detected by probing each member every τ seconds.
If the preferred server dies, then Venus removes its callbacks.

Smruti R. Sarangi Coda Distributed File System 14/34



Design
Design Details

Evaluation

Caching
Semantics
Replication

Cache Coherence-II

Loss of a callback event.
Upon a read, the client verifies the version of the file in the
preferred server with that of other servers in the AVSG.
If there is a mismatch, then there might be a missing call
back.
Uses a summary of updates on a volume (volume version
vector) as a basis of comparison.

Smruti R. Sarangi Coda Distributed File System 15/34



Design
Design Details

Evaluation

Communication
Conflict Resolution
State Transformation

Outline

1 Design
Caching
Semantics
Replication

2 Design Details
Communication
Conflict Resolution
State Transformation

3 Evaluation

Smruti R. Sarangi Coda Distributed File System 16/34



Design
Design Details

Evaluation

Communication
Conflict Resolution
State Transformation

Efficient Parallel Communication

Each remote operation typically requires to contact multiple
servers.
Coda provides multiRPC for this purpose.
MultiRPC uses the multicast capabilities of the network.

Smruti R. Sarangi Coda Distributed File System 17/34



Design
Design Details

Evaluation

Communication
Conflict Resolution
State Transformation

Disconnected Operation

Disconnected Operation begins when the AVSG is empty.
If there is a cache miss in disconnected mode there is a
problem.
Venus tries to minimize cache misses by using the LRU re-
placement policy.

Coda also allows the user to specify a priority for files.
High priority files are not removed from the cache.

Allows the user to annotate a sequence of actions.
Every file generated as a result of those actions is denoted
as sticky.

Smruti R. Sarangi Coda Distributed File System 18/34



Design
Design Details

Evaluation

Communication
Conflict Resolution
State Transformation

Reintegration

Happens after disconnected mode ends (one of the servers
in the AVSG is up).
For each modified file, updates are propagated to the servers
in the AVSG.
Proceeds top-down from the leaves.
There might be conflicts.

Provide a temporary home for storing the client updates (co-
volume).
Similar to lost+found directory in Unix.
Let the client resolve the updates later.

Smruti R. Sarangi Coda Distributed File System 19/34



Design
Design Details

Evaluation

Communication
Conflict Resolution
State Transformation

Voluntary Disconnection

When a user voluntary disconnects her laptop.
She relies on the large file cache.
She needs to re-synchronize later.

Smruti R. Sarangi Coda Distributed File System 20/34



Design
Design Details

Evaluation

Communication
Conflict Resolution
State Transformation

Outline

1 Design
Caching
Semantics
Replication

2 Design Details
Communication
Conflict Resolution
State Transformation

3 Evaluation

Smruti R. Sarangi Coda Distributed File System 21/34



Design
Design Details

Evaluation

Communication
Conflict Resolution
State Transformation

Conflict Resolution

When a conflict is detected, Coda tries to resolve it auto-
matically.

Easy to automatically resolve conflicts on directories.
There are three kinds of conflicts that cannot be automati-
cally resolved.

update/update conflict: The status of the same object is up-
dated differently in different partitions.
remove/update conflict: Updating an object in one partition,
and removing it in the other.
name/name conflict: Two files with the same name are cre-
ated.

Coda has specialized repair tools that allows the user to fix
these conflicts.

The user can see all the replicas.

Smruti R. Sarangi Coda Distributed File System 22/34



Design
Design Details

Evaluation

Communication
Conflict Resolution
State Transformation

Replica Management

Each modification has an unique storeid.
The server maintains a history of storeids.
If the history of storeids on server A is a subset of that in
server B, then B contains newer copies.

Coda will consider B to have the latest version.

This method is useful for files, but can be very conservative
for directories.
Coda maintains the following information:

Coda maintains the LSID (latest storage id), and the current
length of the update history.
LSID→ client:<monotonically increasing integer>
A replication site also contains the length of the update his-
tory of every replica. This is like a vector clock. It is called
the CVV.

Smruti R. Sarangi Coda Distributed File System 23/34



Design
Design Details

Evaluation

Communication
Conflict Resolution
State Transformation

Comparison of Replicas

Strong Equality : LSIDA = LSIDB and CVVA = CVVB

Weak Equality : LSIDA = LSIDB and CVVA 6= CVVB

dominance : LSIDA 6= LSIDB and ∀i ,CVVA[i] ≥ CVVB[i]
inconsistency : If none of the other three conditions hold.
If there is strong and weak equality, the replicas are syn-
chronized.
If replica A is dominating replica B, then replica B needs to
be updated.

Smruti R. Sarangi Coda Distributed File System 24/34



Design
Design Details

Evaluation

Communication
Conflict Resolution
State Transformation

Outline

1 Design
Caching
Semantics
Replication

2 Design Details
Communication
Conflict Resolution
State Transformation

3 Evaluation

Smruti R. Sarangi Coda Distributed File System 25/34



Design
Design Details

Evaluation

Communication
Conflict Resolution
State Transformation

State Transformation – Update

Update:
Most common operation – file create, delete, modification of
permissions
First Phase:

The client sends the LSID and CVV to each AVSG server.
If there are no conflicts, the server performs the desired ac-
tion.

Second Phase:
Each AVSG site records the clients view of which AVSG sites
performed the update successfully.

Smruti R. Sarangi Coda Distributed File System 26/34



Design
Design Details

Evaluation

Communication
Conflict Resolution
State Transformation

Check at an AVSG Server

The check succeeds for files if:
The cached and server copies are the same.
Or, the cached copy dominates.

The check succeeds for directories if:
When the two copies are equal

If the check does not succeed:
The client pauses the operation, and invokes the resolution
subsystem.
If the resolution subsystem can automatically fix the prob-
lem, then the client restarts.
Otherwise, an error is returned to the client and the opera-
tion is aborted.
If the operation is successful, the server performs the action,
notes the LSID of the client, and commits a temporary CVV.

Smruti R. Sarangi Coda Distributed File System 27/34



Design
Design Details

Evaluation

Communication
Conflict Resolution
State Transformation

Update Operation

At the end of phase I, the client examines the replies from
each server.
For each responding server i , it augments CVV [i].

The client sends this CVV to every responding server.
Each responding server replaces its tentative CVV by this
CVV.

Venus returns control to the user at the end of the first
phase.

Smruti R. Sarangi Coda Distributed File System 28/34



Design
Design Details

Evaluation

Communication
Conflict Resolution
State Transformation

State Transformation – Force

Force operation – Transfer of file contents from a dominant
to a submissive site.
Force of a directory is more complex.

Lock and atomically apply changes one directory at a time.
Before creating a new entry, we first create a stub at the
server. It contains a CVV that will always make it submissive.
Subsequently, a force operation will change the status of the
stub.

Smruti R. Sarangi Coda Distributed File System 29/34



Design
Design Details

Evaluation

Communication
Conflict Resolution
State Transformation

State Transformation – Repair and Migrate

A repair operation is used to fix inconsistent updates.
If we detect inconsistent updates, then the file is marked as
inconsistent and moved to a covolume.
All accesses to inconsistent objects fail.

Smruti R. Sarangi Coda Distributed File System 30/34



Design
Design Details

Evaluation

Implementation

Implemented on IBM workstations.
12 MB main memory, 70 MB Hard Disks

Each server had 400 MB disks
Uses the Camelot transaction facility for single site transac-
tions.
Uses the Andrew file system benchmark

70 files – 200 KB each

Smruti R. Sarangi Coda Distributed File System 31/34



Design
Design Details

Evaluation

Cost with Replication

Configuration Time Overhead
No Replication 21%
1 Extra Server 22%
2 Extra Servers 26%
3 Extra Servers 27%

Smruti R. Sarangi Coda Distributed File System 32/34



Design
Design Details

Evaluation

Benchmark Time vs Load

For AFS the elapsed time remains roughly constant at 400
seconds (1 to 10 load units).
For Coda the time increases from 400s to 650s roughly
quadratically for 1 to 10 load units. A load unit represents
the requests of 5 typical AFS users.

Smruti R. Sarangi Coda Distributed File System 33/34



Design
Design Details

Evaluation

Benchmark Time vs Load

Iterative Unicast: The network load in terms of packets in-
creases linearly from 5,000 to 60,000 while varying the load
units from 1 to 10.
Multicast: For the same range of load units the network load
increases linearly from 5,000 to 40,000.

Smruti R. Sarangi Coda Distributed File System 34/34



Design
Design Details

Evaluation

Coda: A Highly Available File System for a Distributed Work-
station Environment by Mahadev Satyanarayanan, James
Kistler, Puneet Kumar, Maria E. Okasaki, Ellen H. Siegel,
and David C. Steere, IEEE Transactions on Computers,
1990

Smruti R. Sarangi Coda Distributed File System 34/34


	Design
	Caching
	Semantics
	Replication

	Design Details
	Communication
	Conflict Resolution
	State Transformation

	Evaluation

