
Synchronous Systems
Asynchronous Systems

Synchronization
Physical Clocks, Logical Clocks

Smruti R. Sarangi

Department of Computer Science
Indian Institute of Technology

New Delhi, India

Smruti R. Sarangi Logical and Physical Clocks 1/26



Synchronous Systems
Asynchronous Systems

Outline

1 Synchronous Systems
Physical Clocks

Quartz Clocks
Atomic Clocks
GPS

Network Time Protocol
Totally Ordered Multicast

2 Asynchronous Systems
Happens-Before Relationship
Totally Ordered Mutual Exclusion

Smruti R. Sarangi Logical and Physical Clocks 2/26



Synchronous Systems
Asynchronous Systems

Physical Clocks
Network Time Protocol
Totally Ordered Multicast

Outline

1 Synchronous Systems
Physical Clocks

Quartz Clocks
Atomic Clocks
GPS

Network Time Protocol
Totally Ordered Multicast

2 Asynchronous Systems
Happens-Before Relationship
Totally Ordered Mutual Exclusion

Smruti R. Sarangi Logical and Physical Clocks 3/26



Synchronous Systems
Asynchronous Systems

Physical Clocks
Network Time Protocol
Totally Ordered Multicast

Quartz Based Clock

Quartz Oscillator
Computers clock use a quartz crystal to generate a clock
signal.
Quartz is a piezoelectric material – generates a voltage,
when subjected to mechanical stress.
Resistant to temperature fluctuations.

quartz oscillator

equivalent circuit

Smruti R. Sarangi Logical and Physical Clocks 4/26



Synchronous Systems
Asynchronous Systems

Physical Clocks
Network Time Protocol
Totally Ordered Multicast

Quartz Clock II

feedback

AMP

output

The quartz oscillator is a part of a self-feedback loop.
It typically oscillates at 32 KHz.
Processors generate a higher frequency by dividing this clock.
The clock drift is ±15 seconds per month (6 ppm).
A regular quartz clock is not suitable for large distributed
systems.

Smruti R. Sarangi Logical and Physical Clocks 5/26



Synchronous Systems
Asynchronous Systems

Physical Clocks
Network Time Protocol
Totally Ordered Multicast

Atomic Clock

Atomic Clock
Uses a Caesium-133 atom as an oscillator.
Uses a similar feedback based circuit as the quartz clock.
Accuracy : 10−8 ppm

Smruti R. Sarangi Logical and Physical Clocks 6/26



Synchronous Systems
Asynchronous Systems

Physical Clocks
Network Time Protocol
Totally Ordered Multicast

Use of Atomic Clock: GPS

Each satellite broadcasts its position (xi , yi , zi) and time ti
The time is obtained through an atomic clock.

Smruti R. Sarangi Logical and Physical Clocks 7/26



Synchronous Systems
Asynchronous Systems

Physical Clocks
Network Time Protocol
Totally Ordered Multicast

Finding the Position through GPS

Current position: (x , y , z)
The drift between the receiver clock and the atomic clocks
is d .
The time at which the receiver receives the message is tr .
Setup equation:√

(x − xi)2 + (y − yi)2 + (z − zi)2 = (tr − ti + d)× c

c is the speed of light
For four unknowns x , y , z,d , we need at least four equa-
tions

Hence, we need at least four satellites.

Smruti R. Sarangi Logical and Physical Clocks 8/26



Synchronous Systems
Asynchronous Systems

Physical Clocks
Network Time Protocol
Totally Ordered Multicast

Finding the Position through GPS

Current position: (x , y , z)
The drift between the receiver clock and the atomic clocks
is d .
The time at which the receiver receives the message is tr .
Setup equation:√

(x − xi)2 + (y − yi)2 + (z − zi)2 = (tr − ti + d)× c

c is the speed of light
For four unknowns x , y , z,d , we need at least four equa-
tions

Hence, we need at least four satellites.

Smruti R. Sarangi Logical and Physical Clocks 8/26



Synchronous Systems
Asynchronous Systems

Physical Clocks
Network Time Protocol
Totally Ordered Multicast

Outline

1 Synchronous Systems
Physical Clocks

Quartz Clocks
Atomic Clocks
GPS

Network Time Protocol
Totally Ordered Multicast

2 Asynchronous Systems
Happens-Before Relationship
Totally Ordered Mutual Exclusion

Smruti R. Sarangi Logical and Physical Clocks 9/26



Synchronous Systems
Asynchronous Systems

Physical Clocks
Network Time Protocol
Totally Ordered Multicast

Network Time Protocol

There are a set of network time servers that have accurate
clocks (stratum 1).
These servers might in turn synchronize with servers that
have even more accurate clocks (stratum 0).
A client machine needs to contact a NTP time server and
find the drift between the clocks.
There are different clock synchronization algorithms.

Smruti R. Sarangi Logical and Physical Clocks 10/26



Synchronous Systems
Asynchronous Systems

Physical Clocks
Network Time Protocol
Totally Ordered Multicast

Cristian’s Algorithm

1 Client sends a request to the server at its local time t1.
2 Server receives it at its local time t2.
3 Server sends a reply at its local time t3.
4 Client receives the reply at t4.

Calculating the Drift - ∆

If we assume that the jitter in the network is 0, then the request
and response take the same amount of time. We have

t2 − (t1 + ∆) = t4 + ∆− t3

⇒∆ =
(t2 − t1) + (t3 − t4)

2

(1)

Shift the clock of the client by ∆

Smruti R. Sarangi Logical and Physical Clocks 11/26



Synchronous Systems
Asynchronous Systems

Physical Clocks
Network Time Protocol
Totally Ordered Multicast

Cristian’s Algorithm

1 Client sends a request to the server at its local time t1.
2 Server receives it at its local time t2.
3 Server sends a reply at its local time t3.
4 Client receives the reply at t4.

Calculating the Drift - ∆

If we assume that the jitter in the network is 0, then the request
and response take the same amount of time. We have

t2 − (t1 + ∆) = t4 + ∆− t3

⇒∆ =
(t2 − t1) + (t3 − t4)

2

(1)

Shift the clock of the client by ∆

Smruti R. Sarangi Logical and Physical Clocks 11/26



Synchronous Systems
Asynchronous Systems

Physical Clocks
Network Time Protocol
Totally Ordered Multicast

Berkeley Algorithm

A master is chosen by some method among a group of
nodes.
The master uses Cristian’s algorithm to find the clock drift
with each slave.
The master computes the mean value of the drift.
The master sends an update to each slave regarding the
amount that the slave needs to shift its clock.
This ensures that the clocks of most slaves are relatively
synchronized with each other.
The algorithm also aims to minimize the amount by which
each slave needs to adjust its clock.

Smruti R. Sarangi Logical and Physical Clocks 12/26



Synchronous Systems
Asynchronous Systems

Physical Clocks
Network Time Protocol
Totally Ordered Multicast

Outline

1 Synchronous Systems
Physical Clocks

Quartz Clocks
Atomic Clocks
GPS

Network Time Protocol
Totally Ordered Multicast

2 Asynchronous Systems
Happens-Before Relationship
Totally Ordered Mutual Exclusion

Smruti R. Sarangi Logical and Physical Clocks 13/26



Synchronous Systems
Asynchronous Systems

Physical Clocks
Network Time Protocol
Totally Ordered Multicast

Totally Order Multicast with Synchronized Clocks

Problem
Nodes randomly send messages to a subset of other nodes.
The network has a non-deterministic delay. It is bounded by ∆.
Ensure that all the messages are delivered in the same order at
all nodes.

Solution
Sender: Timestamp every message with the local time.
Receiver:

1 For a message with timestamp t , transfer it to the receive
queue at time t + ∆.

2 Deliver the messages in the receive queue in the order of
their timestamps.

Smruti R. Sarangi Logical and Physical Clocks 14/26



Synchronous Systems
Asynchronous Systems

Happens-Before Relationship
Totally Ordered Mutual Exclusion

Outline

1 Synchronous Systems
Physical Clocks

Quartz Clocks
Atomic Clocks
GPS

Network Time Protocol
Totally Ordered Multicast

2 Asynchronous Systems
Happens-Before Relationship
Totally Ordered Mutual Exclusion

Smruti R. Sarangi Logical and Physical Clocks 15/26



Synchronous Systems
Asynchronous Systems

Happens-Before Relationship
Totally Ordered Mutual Exclusion

Definitions

Our distributed system does not have a notion of global
time.
It contains a set of processes.
Each process issues its own set of events.
A process can send a message to another process.

Happens-before relationship(→)
1 If a process issues event a before b, then a→ b.
2 If event a is the sending of a message by one process and

b is its receipt by another process. Then a→ b.
3 If a→ b and b → c, then a→ c

Smruti R. Sarangi Logical and Physical Clocks 16/26



Synchronous Systems
Asynchronous Systems

Happens-Before Relationship
Totally Ordered Mutual Exclusion

Definitions - II

If a 9 b and b 9 a, then a ./ b(concurrent)
If a happens before b, then we say that a causally affects
b
Let us assign a number to each event: τ(a)

We want it to satisfy some conditions
Clock Condition : (a→ b)⇒ τ(a) < τ(b)
C1: If a → b and they belong to the same process, then
τ(a) < τ(b)
C2: If a represents a send, and b is its receipt, then τ(a) <
τ(b)

Smruti R. Sarangi Logical and Physical Clocks 17/26



Synchronous Systems
Asynchronous Systems

Happens-Before Relationship
Totally Ordered Mutual Exclusion

Enforcing the Clock Condition

Every process keeps a clock that is initialized to 0. Process
i ’s clock is τi .
Each process increments τi between two successive events.
If event a is the sending of a message by process i , then
this process embeds τi(a) in the message.

τ(a) = τi (a)

Let b be the receive event at process j .
τj = τj (b) = max(τj , τi (a)) + 1
τ(b) = τj (b)

This method provides a partial ordering.

Smruti R. Sarangi Logical and Physical Clocks 18/26



Synchronous Systems
Asynchronous Systems

Happens-Before Relationship
Totally Ordered Mutual Exclusion

Vector Clocks: Motivation

Clock Condition: a→ b implies τ(a) < τ(b)

Is it true that: τ(a) < τ(b) implies a→ b
This would mean that a ./ b implies τ(a) = τ(b)
Not True

c

a b

Smruti R. Sarangi Logical and Physical Clocks 19/26



Synchronous Systems
Asynchronous Systems

Happens-Before Relationship
Totally Ordered Mutual Exclusion

Vector Clocks: Design

Vector Clock
If there are n processes, every process maintains an n-element
array Vi
Process i increments Vi(i) before sending or receiving a message,
and on every internal event.
Every message is timestamped with the vector clock of the sender
The receiver merges the clocks:

Assume: i sends a message to j
∀k ,Vj (k) = max(Vi (k),Vj (k))

Vi < Vj ⇒ (∀k ,Vi(k) ≤ Vj(k)) ∧ (∃k ,Vi(k) < Vj(k))

Additional Properties
1 Va < Vb ⇔ a→ b

2 (Va � Vb) ∧ (Va � Vb)⇔ a ./ b

Smruti R. Sarangi Logical and Physical Clocks 20/26



Synchronous Systems
Asynchronous Systems

Happens-Before Relationship
Totally Ordered Mutual Exclusion

Outline

1 Synchronous Systems
Physical Clocks

Quartz Clocks
Atomic Clocks
GPS

Network Time Protocol
Totally Ordered Multicast

2 Asynchronous Systems
Happens-Before Relationship
Totally Ordered Mutual Exclusion

Smruti R. Sarangi Logical and Physical Clocks 21/26



Synchronous Systems
Asynchronous Systems

Happens-Before Relationship
Totally Ordered Mutual Exclusion

Total Ordering⇒

Let us consider two events a and b belonging to processes
i and j

a⇒ b, if τi (a) < τj (b)
a⇒ b, if τi (a) = τj (b), and i ≺ j

Ordered Mutual Exclusion Problem
A certain resource can be owned by only one process. It
must be explicitly granted and released.
Different requests must be granted in the order in which they
were made.
If no process hangs forever after taking the resource, every
request is ultimately granted.

Smruti R. Sarangi Logical and Physical Clocks 22/26



Synchronous Systems
Asynchronous Systems

Happens-Before Relationship
Totally Ordered Mutual Exclusion

Lamport’s Algorithm for the Mutual Exclusion Problem

Resource Request
1 To request a resource, Pi sends a message: (TM , i) to all

nodes, and also puts the message in its request queue.
TM = τi (Lamport clocks with FIFO channels)

2 When Pj receives (TM , i), it places it in its request queue,
and sends a timestamped acknowledgement.

Resource Access
Access the resource when both these conditions are met:

1 (TM , i) is the earliest message in the queue.
2 The process has received a message with timestamp

greater than TM from every other process.

Smruti R. Sarangi Logical and Physical Clocks 23/26



Synchronous Systems
Asynchronous Systems

Happens-Before Relationship
Totally Ordered Mutual Exclusion

Algorithm - II

Resource Release
1 Pi removes any (TM , i) messages in its queue, and sends a

timestamped Pi releases message to all other processes.
2 When process Pj receives a release message from process

i , it removes any request message from process i in its re-
quest queue.

Smruti R. Sarangi Logical and Physical Clocks 24/26



Synchronous Systems
Asynchronous Systems

Happens-Before Relationship
Totally Ordered Mutual Exclusion

Proof – Main Idea

Objectives
1 If the resource is free, then some process will get it.
2 No two processes can get the resource at the same time.
3 Processes get the resource in the order of the requests.

Discussion
If a process is getting a resource, then there are two possi-
bilities

1 It has seen requests by all other processes.
2 It has not seen the request of some set of processes, but it

has seen messages that precede them.

Smruti R. Sarangi Logical and Physical Clocks 25/26



Synchronous Systems
Asynchronous Systems

Happens-Before Relationship
Totally Ordered Mutual Exclusion

Proof – Details

Assume that two processes i and j are accessing the re-
source at the same time.
Let τi < τj (break ties by the process id).
This means that j must have gotten a message from i with
timestamp > τj before acquiring the resource.
This means that i must have sent its request before sending
this message, else τi > τj . i ’s message would have been in
j ’s queue, when it accessed the resource.
Given that τi < τj , j could not have accessed the resource
without i releasing it first. Contradiction
Total: 3 (N-1) messages

Smruti R. Sarangi Logical and Physical Clocks 26/26



Synchronous Systems
Asynchronous Systems

Happens-Before Relationship
Totally Ordered Mutual Exclusion

Time, clocks, and the ordering of events in a distributed sys-
tem by Leslie Lamport, Communications of the ACM, 1978

Smruti R. Sarangi Logical and Physical Clocks 26/26


	Synchronous Systems
	Physical Clocks
	Network Time Protocol
	Totally Ordered Multicast

	Asynchronous Systems
	Happens-Before Relationship
	Totally Ordered Mutual Exclusion


