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Comparison with Pastry

Chord vs Pastry
Each node and each key’s id is hashed to a unique value.
The process of lookup tries to find the immediate successor
to a key’s id.
The routing table at each node contains O(log(n)) entries.
Inserting and deleting nodes requires O(log(n)2) mes-
sages.
Sarangi View , : More robust than Pastry, and more ele-
gant.
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Comparison with other Systems

The Globe system assigns objects to locations, and is
hieararchial. Chord is completely distributed and decentral-
ized.
CAN

Uses a d-dimensional co-ordinate space.
Each node maintains O(d) state, and the lookup cost is
O(dN1/d ).
Maintains a lesser amount of state than Chord, but has a
higher lookup cost.
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Features of Chord

Automatic load balancing
Fully distributed
Scalable in terms of state per node, bandwidth, and lookup
time.
Always available
Provably correct.
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Consistent Hashing

Definition
Consistent Hashing: It is a hashing technique that adapts very
well to resizing of the hash table. Typically k/n elements need to
be reshuffled across buckets. k is the number of keys and n is the
number of slots in a hash table.
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Structure of Chord

Each node and key is assigned a m bit identifier.
The hash for the node and key is generated by using the
SHA-1 algorithm.
The nodes are arranged in a circle (recall Pastry).
Each key is assigned to the smallest node id that is larger
than it. This node is known as the successor .

Objective

For a given key, efficiently locate its successor.

Efficiently manage addition and deletion of nodes.
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Properties of Chord’s Hashing Algorithm

For n nodes, and k keys, with high probability
1 Each node stores at most (1 + ε)k/n keys
2 Addition and deletion of nodes leads to a reshuffling of O(k/n)

keys

Previous papers prove that ε = O(log(n))
There are techniques to reduce ε using virtual nodes.

Each node contains log(n) virtual nodes.
Not scalable ( Not necessarily required )
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Chord’s Routing(Finger) Table

Let m be the number of bits in an id
Node n contains m entries in its finger table.

successor→ next node on the identifier circle
predecessor→ node on the identifier circle

The i th finger contains:
finger[i].start = (n + 2i−1) mod 2m, (1 ≤ i ≤ m)
finger[i].end = (n + 2i − 1) mod 2m

finger[i].node = successor(finger[i].start)

Basic Operation
findSuccessor(keyId)→ nodeId
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Finger Table- II
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Algorithms

Algorithm 1: findSuccessor in Chord

1 n.findSuccessor(id) begin
2 n’← findPredecessor(id)

return n’.successor(id)

3 end
4 n.findPredecessor(id) begin
5 n′ ← n

while id /∈ (n′,n′.successor()) do
6 n’← n’.closestPrecedingFinger(id)
7 end
8 return n’
9 end
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closestPrecedingFinger(id)

1 n.closestPrecedingFinger(id) begin
2 for i← m to 1 do
3 if finger[i].node ∈ (n, id) then
4 return finger [i].node
5 end
6 end
7 return n
8 end
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O(log(n)) Routing Complexity
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Node Arrival

Each node maintains a predecessor pointer
Initialize the predecessor and the fingers of the new node.
Update the predecessor and fingers of other nodes
Notify software that the node is ready
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Node Arrival - II

n initially contacts n′

1 n.join(n′) begin
2 n.initFingerTable(n′)

updateOthers()

3 end
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Algorithm 2: initFingerTable in Chord

1 n.initFingerTable(n′) begin
2 finger[1].node← n′.findSuccessor(finger[1].start)

successor← finger[1].node
predecessor← successor.predecessor
successor.predecessor← n
predecessor.successor← n
for i← 1 to m-1 do

3 if finger[i+1].start ∈ (n, finger[i].node) then
4 finger[i+1].node← finger[i].node

5 end
6 else
7 finger[i+1].node← n’.findSuccessor(finger[i+1].start)

8 end
9 end
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updateOthers()

1 n.updateOthers() begin
2 for i ← 1 to m do
3 pred ← findPredecessor (n - 2i−1)

pred .updateFingerTable(n, i)

4 end
5 end
6 pred.updateFingerTable(n, i) begin
7 if n ∈ (pred , finger [i].node) then
8 finger[i].node← n

p ← predecessor
p.updateFingerTable(n,i)

9 end
10 end

Smruti R. Sarangi Chord 20/28



Overview
Design of Chord

Results

Basic Structure
Algorithm to find the Successor
Node Arrival and Stabilization

Stabilization of the Network (run periodically)

1 n.stabilize() begin
2 x ← successor.predecessor

if x ∈ (n, successor) then
3 successor← x

4 end
5 successor.notify(n)

6 end
7 n.notify(n’) begin
8 if (predecessor is null) OR (n′ ∈ (predecessor, n)) then
9 predecessor← n′

10 end
11 end
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Stabilization-II

1 n.fix_fingers() begin
2 i← random()

finger[i].node← find_successor (finger[i].start)
3 end
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Evaluation Setup

Network consists 104 nodes
Number of keys : 105 to 106

Each experiment is repeated 20 times
The major results are on a Chord protocol simulator
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Effect of Virtual Nodes

The number of keys per node decreases with the number of
virtual nodes .
For 1 virtual node, we can have up to 500 keys per node
(mean 100).
For 10 virtual nodes, we can have roughly 50 to 200 keys
per node (mean 100).

source [1]
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Average Path Length

The path length in Chord grows with the number of nodes.
It is roughly normally distributed about the mean. For a
mean of 6 nodes (path length), the ±3σ range varies from
1 to 11.

Number of nodes Path length (approx.)
10 2
100 3

1000 4.3
10000 6.2

source [1]
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Other DHT Systems: Tapestry

Tapestry
160-bit block id, Octal digits
Routing table like Pastry (digit based hypercube)
Does not have a leaf set or neighborhood table.
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Other DHT Systems: Kademlia

Kademlia
Basis of BitTorrent
Each node has a 128-bit id
Each digit contains only 1 bit
Find the closest node to a key
Values are stored at several nodes
Nodes can cache the values of popular keys.
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Other DHT Systems: CAN

CAN – Content Addressable Network
It uses a d-dimensional multi-torus as its overlay network.
Node uses standard routing algorithms for tori. It uses O(d)
space. (Note: This is independent of n)
Each node contains a virtual co-ordinate zone.
Node Arrival: Split a zone
Node Departure: Merge a zone
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Chord: A Peer-to-Peer Lookup Service for Internet Applica-
tions, by I. Stoica, R. Morris, D. Karger, F. Kaashoek, H. Bal-
akrishnan, Proc. ACM SIGCOMM, San Diego, CA, Septem-
ber 2001.
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