
Overview
Design of Chord

Results

Distributed Hash Tables
Chord

Smruti R. Sarangi

Department of Computer Science
Indian Institute of Technology

New Delhi, India

Smruti R. Sarangi Chord 1/28

Overview
Design of Chord

Results

Outline

1 Overview

2 Design of Chord
Basic Structure
Algorithm to find the Successor
Node Arrival and Stabilization

3 Results

Smruti R. Sarangi Chord 2/28

Overview
Design of Chord

Results

Comparison with Pastry

Chord vs Pastry
Each node and each key’s id is hashed to a unique value.
The process of lookup tries to find the immediate successor
to a key’s id.
The routing table at each node contains O(log(n)) entries.
Inserting and deleting nodes requires O(log(n)2) mes-
sages.
Sarangi View , : More robust than Pastry, and more ele-
gant.

Smruti R. Sarangi Chord 3/28

Overview
Design of Chord

Results

Comparison with other Systems

The Globe system assigns objects to locations, and is
hieararchial. Chord is completely distributed and decentral-
ized.
CAN

Uses a d-dimensional co-ordinate space.
Each node maintains O(d) state, and the lookup cost is
O(dN1/d).
Maintains a lesser amount of state than Chord, but has a
higher lookup cost.

Smruti R. Sarangi Chord 4/28

Overview
Design of Chord

Results

Features of Chord

Automatic load balancing
Fully distributed
Scalable in terms of state per node, bandwidth, and lookup
time.
Always available
Provably correct.

Smruti R. Sarangi Chord 5/28

Overview
Design of Chord

Results

Basic Structure
Algorithm to find the Successor
Node Arrival and Stabilization

Outline

1 Overview

2 Design of Chord
Basic Structure
Algorithm to find the Successor
Node Arrival and Stabilization

3 Results

Smruti R. Sarangi Chord 6/28

Overview
Design of Chord

Results

Basic Structure
Algorithm to find the Successor
Node Arrival and Stabilization

Consistent Hashing

Definition
Consistent Hashing: It is a hashing technique that adapts very
well to resizing of the hash table. Typically k/n elements need to
be reshuffled across buckets. k is the number of keys and n is the
number of slots in a hash table.

1

2

3

4

5
bucket 1

bucke
t 2

bu
ck

et
 3

Smruti R. Sarangi Chord 7/28

Overview
Design of Chord

Results

Basic Structure
Algorithm to find the Successor
Node Arrival and Stabilization

Structure of Chord

Each node and key is assigned a m bit identifier.
The hash for the node and key is generated by using the
SHA-1 algorithm.
The nodes are arranged in a circle (recall Pastry).
Each key is assigned to the smallest node id that is larger
than it. This node is known as the successor .

Objective

For a given key, efficiently locate its successor.

Efficiently manage addition and deletion of nodes.

Smruti R. Sarangi Chord 8/28

Overview
Design of Chord

Results

Basic Structure
Algorithm to find the Successor
Node Arrival and Stabilization

Properties of Chord’s Hashing Algorithm

For n nodes, and k keys, with high probability
1 Each node stores at most (1 + ε)k/n keys
2 Addition and deletion of nodes leads to a reshuffling of O(k/n)

keys

Previous papers prove that ε = O(log(n))
There are techniques to reduce ε using virtual nodes.

Each node contains log(n) virtual nodes.
Not scalable (Not necessarily required)

Smruti R. Sarangi Chord 9/28

Overview
Design of Chord

Results

Basic Structure
Algorithm to find the Successor
Node Arrival and Stabilization

Chord’s Routing(Finger) Table

Let m be the number of bits in an id
Node n contains m entries in its finger table.

successor→ next node on the identifier circle
predecessor→ node on the identifier circle

The i th finger contains:
finger[i].start = (n + 2i−1) mod 2m, (1 ≤ i ≤ m)
finger[i].end = (n + 2i − 1) mod 2m

finger[i].node = successor(finger[i].start)

Basic Operation
findSuccessor(keyId)→ nodeId

Smruti R. Sarangi Chord 10/28

Overview
Design of Chord

Results

Basic Structure
Algorithm to find the Successor
Node Arrival and Stabilization

Outline

1 Overview

2 Design of Chord
Basic Structure
Algorithm to find the Successor
Node Arrival and Stabilization

3 Results

Smruti R. Sarangi Chord 11/28

Overview
Design of Chord

Results

Basic Structure
Algorithm to find the Successor
Node Arrival and Stabilization

Finger Table- II

1

3

8

11
15

22

40

3+1, 3+2, 3+4

3+8

3+16

3+32

14
key

Smruti R. Sarangi Chord 12/28

Overview
Design of Chord

Results

Basic Structure
Algorithm to find the Successor
Node Arrival and Stabilization

Algorithms

Algorithm 1: findSuccessor in Chord

1 n.findSuccessor(id) begin
2 n’← findPredecessor(id)

return n’.successor(id)

3 end
4 n.findPredecessor(id) begin
5 n′ ← n

while id /∈ (n′,n′.successor()) do
6 n’← n’.closestPrecedingFinger(id)
7 end
8 return n’
9 end

Smruti R. Sarangi Chord 13/28

Overview
Design of Chord

Results

Basic Structure
Algorithm to find the Successor
Node Arrival and Stabilization

closestPrecedingFinger(id)

1 n.closestPrecedingFinger(id) begin
2 for i← m to 1 do
3 if finger[i].node ∈ (n, id) then
4 return finger [i].node
5 end
6 end
7 return n
8 end

Smruti R. Sarangi Chord 14/28

Overview
Design of Chord

Results

Basic Structure
Algorithm to find the Successor
Node Arrival and Stabilization

O(log(n)) Routing Complexity

1

3

8

1115

22

35

3+2

3+2i

i-1

17
node

predecessor

2
i-1

2
i-1

<

Smruti R. Sarangi Chord 15/28

Overview
Design of Chord

Results

Basic Structure
Algorithm to find the Successor
Node Arrival and Stabilization

Outline

1 Overview

2 Design of Chord
Basic Structure
Algorithm to find the Successor
Node Arrival and Stabilization

3 Results

Smruti R. Sarangi Chord 16/28

Overview
Design of Chord

Results

Basic Structure
Algorithm to find the Successor
Node Arrival and Stabilization

Node Arrival

Each node maintains a predecessor pointer
Initialize the predecessor and the fingers of the new node.
Update the predecessor and fingers of other nodes
Notify software that the node is ready

Smruti R. Sarangi Chord 17/28

Overview
Design of Chord

Results

Basic Structure
Algorithm to find the Successor
Node Arrival and Stabilization

Node Arrival - II

n initially contacts n′

1 n.join(n′) begin
2 n.initFingerTable(n′)

updateOthers()

3 end

Smruti R. Sarangi Chord 18/28

Overview
Design of Chord

Results

Basic Structure
Algorithm to find the Successor
Node Arrival and Stabilization

Algorithm 2: initFingerTable in Chord

1 n.initFingerTable(n′) begin
2 finger[1].node← n′.findSuccessor(finger[1].start)

successor← finger[1].node
predecessor← successor.predecessor
successor.predecessor← n
predecessor.successor← n
for i← 1 to m-1 do

3 if finger[i+1].start ∈ (n, finger[i].node) then
4 finger[i+1].node← finger[i].node

5 end
6 else
7 finger[i+1].node← n’.findSuccessor(finger[i+1].start)

8 end
9 end

10 end Smruti R. Sarangi Chord 19/28

Overview
Design of Chord

Results

Basic Structure
Algorithm to find the Successor
Node Arrival and Stabilization

updateOthers()

1 n.updateOthers() begin
2 for i ← 1 to m do
3 pred ← findPredecessor (n - 2i−1)

pred .updateFingerTable(n, i)

4 end
5 end
6 pred.updateFingerTable(n, i) begin
7 if n ∈ (pred , finger [i].node) then
8 finger[i].node← n

p ← predecessor
p.updateFingerTable(n,i)

9 end
10 end

Smruti R. Sarangi Chord 20/28

Overview
Design of Chord

Results

Basic Structure
Algorithm to find the Successor
Node Arrival and Stabilization

Stabilization of the Network (run periodically)

1 n.stabilize() begin
2 x ← successor.predecessor

if x ∈ (n, successor) then
3 successor← x

4 end
5 successor.notify(n)

6 end
7 n.notify(n’) begin
8 if (predecessor is null) OR (n′ ∈ (predecessor, n)) then
9 predecessor← n′

10 end
11 end

Smruti R. Sarangi Chord 21/28

Overview
Design of Chord

Results

Basic Structure
Algorithm to find the Successor
Node Arrival and Stabilization

Stabilization-II

1 n.fix_fingers() begin
2 i← random()

finger[i].node← find_successor (finger[i].start)
3 end

Smruti R. Sarangi Chord 22/28

Overview
Design of Chord

Results

Results

Evaluation Setup

Network consists 104 nodes
Number of keys : 105 to 106

Each experiment is repeated 20 times
The major results are on a Chord protocol simulator

Smruti R. Sarangi Chord 23/28

Overview
Design of Chord

Results

Effect of Virtual Nodes

The number of keys per node decreases with the number of
virtual nodes .
For 1 virtual node, we can have up to 500 keys per node
(mean 100).
For 10 virtual nodes, we can have roughly 50 to 200 keys
per node (mean 100).

source [1]

Smruti R. Sarangi Chord 24/28

Overview
Design of Chord

Results

Average Path Length

The path length in Chord grows with the number of nodes.
It is roughly normally distributed about the mean. For a
mean of 6 nodes (path length), the ±3σ range varies from
1 to 11.

Number of nodes Path length (approx.)
10 2
100 3

1000 4.3
10000 6.2

source [1]

Smruti R. Sarangi Chord 25/28

Overview
Design of Chord

Results

Other DHT Systems: Tapestry

Tapestry
160-bit block id, Octal digits
Routing table like Pastry (digit based hypercube)
Does not have a leaf set or neighborhood table.

Smruti R. Sarangi Chord 26/28

Overview
Design of Chord

Results

Other DHT Systems: Kademlia

Kademlia
Basis of BitTorrent
Each node has a 128-bit id
Each digit contains only 1 bit
Find the closest node to a key
Values are stored at several nodes
Nodes can cache the values of popular keys.

Smruti R. Sarangi Chord 27/28

Overview
Design of Chord

Results

Other DHT Systems: CAN

CAN – Content Addressable Network
It uses a d-dimensional multi-torus as its overlay network.
Node uses standard routing algorithms for tori. It uses O(d)
space. (Note: This is independent of n)
Each node contains a virtual co-ordinate zone.
Node Arrival: Split a zone
Node Departure: Merge a zone

Smruti R. Sarangi Chord 28/28

Overview
Design of Chord

Results

Chord: A Peer-to-Peer Lookup Service for Internet Applica-
tions, by I. Stoica, R. Morris, D. Karger, F. Kaashoek, H. Bal-
akrishnan, Proc. ACM SIGCOMM, San Diego, CA, Septem-
ber 2001.

Smruti R. Sarangi Chord 28/28

	Overview
	Design of Chord
	Basic Structure
	Algorithm to find the Successor
	Node Arrival and Stabilization

	Results

