Cryptographic Primitives

A brief introduction

Ragesh Jaiswal
CSE, IIT Delhi

e
Cryptography: Introduction

o Throughout most of history:
° Cryptography = art of secret writing

® Secure communication

Key exchange protocol

Cryptography: Introduction

® Early history (- early 70s):
® Synonymous with secret communication.
® Restricted to Military and Nobility.

® More of art than rigorous science.

Cryptography: Introduction

® Early history (- early 70s):
® Synonymous with secret communication.
® Restricted to Military and Nobility.

® More of art than rigorous science.

Design protocol Protocol broken

e Modern Cryptography:

¢ Digital signatures, e-cash, secure computation, e—voting e

* Touches most aspects of modern lifesty]e.

® Rigorous science:

Reason about security gf protocols.

4 I
Cryptography: Provable security

Protoco
O

e

Cryptography: Provable security

[.................................

Protocol

We would like to argue:

* If the basic primitive/problem is secure/hard, then the constructed protocol is “secure”

e

Cryptography: Provable security

4\

Protocol

Construction

Protocci

:If there is an adversary that successfully attacks the protocol, then there is another

adversary that successfully attacks/solves at least one of the basic primitives/ problems.

Secure Communication

Secure communication

® Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

° Simple idea (Ceaser Cipher): Substitute each letter with the
letter that is the arth letter after the letter in the sequence
AB...Z

° Example (@ = 2): SENDTROOPS =

-

Secure communication

® Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

° Simple idea (Ceaser Cipher): Substitute each letter with the
letter that is the arth letter after the letter in the sequence
AB...Z

e Example (@ = 2): SENDTROOPS = UGPFVTQQRU

-

Secure communication

® Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

* Simple idea (Ceaser Cipher): Substitute each letter with the

letter that is the a'th letter after the letter in the sequence
AB...7Z

® Security was based on the fact that the encryption algorithm
was a secret (Security through obscurity)

-

Secure communication

® Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

o Simple idea (Ceaser Cipher): Substitute each letter with the
letter that is the ath letter after the letter in the sequence

AB...Z
o - Should be avoided at all cost!
® Security wasbased-on the fact that the - Algorithm should be public

was a secret (Qecurity through obscurity and security should come

—

from secret keys.

-

Secure communication

® Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

* Simple idea (Ceaser Cipher): Substitute each letter with the

letter that is the a'th letter after the letter in the sequence
AB...7Z

® Suppose we make the algorithm public and use the secret key
as . Can you break this protocol?

-

Secure communication

® Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

® Simple idea (Substitution Cipher): Let T be a permutation of
the English letters. Substitute each letter & with the letter
A (CZ) TT acts as the secret key.

e Example: Let m(A) = U,n(B) =T, n(C) = P, ...then
encryption of CAB is PUT.

-

Secure communication

® Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

° Simple idea (Substitution Cipher): Let T be a permutation of
the English letters. Substitute each letter & with the letter
A (CZ) TT acts as the secret key.

® Question: How much space you need to use to store the

secret key?

-

Secure communication

® Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

° Simple idea (Substitution Cipher): Let T be a permutation of
the English letters. Substitute each letter & with the letter
A (CZ) TT acts as the secret key.

® Consider a brute-force attack where you try to guess the
secret key. Is such an attack feasible?

-

Secure communication

® Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

® Simple idea (Substitution Cipher): Let 7T be a permutation of
the English letters. Substitute each letter & with the letter

(a).

® Can you break this scheme?

-

Secure communication

® Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

® Simple idea (Substitution Cipher): Let 7T be a permutation of
the English letters. Substitute each letter & with the letter

(a).

o Attack idea: E’s occur more frequently than Xs

-

Secure communication

0.14 - Frequency of letters in typical
English sentences.
0.12 -
0.1 4

0.08

0.06

0.04

0.02

abcdefghijkImnopgqrs tuvwuxy?z

Secure communication

® Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

® Simple idea (One Time Pad(OTP)):Let the message M be an
n binary string. Let K be an n bit binary string that is used as
a secret key. Add M and K modulo 2 to get the ciphertext.

* Example: M = 1101, K = 0101,
thenC = M+ K (mod?2) = M@ K = 1000

-

Secure communication

® Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

* Simple idea (One Time Pad(OTP)):Let the message M be an
N binary string. Let K be an n bit binary string that is used as
a secret key. Add M and K modulo 2 to get the Ciphertext.

® Can you break this scheme?

-

Secure communication

® Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the

communication.

® Perfect Secrecy (Information Theoretic Security):

® Let the message space be {O,l}n.
® For any two message My, My, and Ciphertext C
Pr[Ex(My) = C| = Pr[Ex(M;) = C]
where the probability is over uniformly random K in the
Keyspace.
® Given the ciphertext, all messages are equally likely to be the

secret message

Secure communication

® Perfect Secrecy (Information Theoretic Security):
® Let the message space be {0,1}".
* For any two message My, My, and Ciphertext C
Pr[Ex(My) = C| = Pr[Ex(M;) = C]
where the probability is over uniformly random K in the
Keyspace.
® OneTime Pad (OTP):
® The Keyspace is {0,1}".
cE,(M)=K&®& M
e D (C) =K C

® For any messages MO, M1 and ciphertext C:
Pr[Ex (M) = C] = Pr[Ex(M;) = C] =77

Secure communication

® Perfect Secrecy (Information Theoretic Security):
® Let the message space be {0,1}".
* For any two message My, My, and Ciphertext C
Pr[Ex(My) = C| = Pr[Ex(M;) = C]
where the probability is over uniformly random K in the
Keyspace.
® OneTime Pad (OTP):
® The Keyspace is {0,1}".
cE,(M)=K&®& M
e D (C) =K C

® For any messages MO, M1 and ciphertext C:
Pr[Ex(My) = C] = Pr|Ex(M;) = C| = 1/2"

Secure communication

® Perfect Secrecy (Information Theoretic Security):
® Let the message space be {0,1}".
* For any two message My, My, and Ciphertext C
Pr[Ex(My) = C] = Pr|Ex(M;) = C]
where the probability is over uniformly random K in the
Keyspace.
® OneTime Pad (OTP):
® The Keyspace is {0,1}".
cE,(M)=K®dM
e Dy (C)=KDC
® For any messages MO, M1 and ciphertext C:
Pr[Ex(Mo) = C| = Pr[Ex(M;) = C] =1/27

© Disadvantage: Key is as long as the message.

Secure communication

® Perfect Secrecy (Information Theoretic Security):
® Let the message space be {0,1}™.

® For any two message My, My, and Ciphertext C
Pr[Ex(My) = C| = Pr[Ex(M;) = C]
where the probability is over uniformly random K in the

Keyspace.
® OneTime Pad (OTP):
® The Keyspace is {0,1}™.
cEx(M)=K®M
® For any messages MO, M1 and ciphertext C:
Pr[Ex(Mo) = C| = Pr[Ex(M;) = C] =1/2"

. Disadvantage: Key is as long as the message.

e Fact: If [M| > |K]|, then no scheme is perfectly secure.

/

Secure communication

® Perfect Secrecy (Information Theoretic Security):
® Let the message space be {0,1}™.

* For any two message My, My, and Ciphertext C
Pr[Ex(My) = C| = Pr[Ex(M;) = C]
where the probability is over uniformly random K in the

Keyspace.
e Fact: If M| > |K]|, then no scheme is pertectly secure.

e How do we get around this problem?

Secure communication

® Perfect Secrecy (Information Theoretic Security):
® Let the message space be {0,1}™.

* For any two message My, My, and Ciphertext C
Pr[Ex(My) = C| = Pr[Ex(M;) = C]
where the probability is over uniformly random K in the

Keyspace.
e Fact: If M| > |K]|, then no scheme is pertectly secure.

e How do we get around this problem?

® Relax our notion of security: Instead of saying “It is impossible
to break the scheme”, we would like to say “it is computationally
infeasible to break the scheme”.

e

Pseudorandom generator

® Suppose there was a generator that stretches random bits.

001101011 =——p p— 00101001001010010100101011

® [dea:
® Choose a short key K randomly.
e Obtain K’ = G (K).
® Use K’ as key for the one time pad.

® [ssue:?

4 N
Pseudorandom generator

® Suppose there was a generator that stretches random bits.

001101011 =——p p— 00101001001010010100101011

G

¢ |dea:

® Choose a short key K randomly.

e Obtain K’ = G (K).

® Use K’ as key for the one time pad.
® [ssue:

® Such a generator is not possible!

* Any such generator produces a longer string but the string is
not random.

- /

4 N
Pseudorandom generator

® Suppose there was a generator that stretches random bits.

001101011 =——p p— 00101001001010010100101011

® Idea: G

® Choose a short key K randomly.

e Obtain K’ = G(K).

® Use K as key for the one time pad.
® [ssue:

® Such a generator is not possible!

* Any such generator produces a longer string but the string is not
random.

e What if we can argue that the output of the generator is
computationally indistinguishable from truly random string.

-

Stream Ciphers

Pseudorandom generators

\
Stream Ciphers: Pseudorandom generators

* A pseudorandom generator (PRG) is a function:
G:{0,1}° - {0,1}", n > s
such that G (x) “appears” to be a random 7 bit string,

® The input to the generator is called the seed. -
St[0

M St[1]

S

H-
=
s

Stream Ciphers: Pseudorandom generators

* A pseudorandom generator (PRG) is a function:
G:{0,1}° - {0,1}", n > s
such that G (x) “appears” to be a random 7 bit string,

® [et us see if we can rule out some popular random generators

based on this intuitive understanding of PRG:

® [inear Congruential Generator (LCG): parameters M, A, C:
R, = (a - R,_1 + ¢)(mod m), the seed is Ry and the output is
RiR>R5 ...

This has some nice statistical properties but it is “predictable”.

Never use such “predictable” random number generators for Cryptography.

Stream Ciphers: Pseudorandom generators

® [et us see if we can rule out some popular random generators
based on this intuitive understanding of PRG:

® Linear Congruential Generator(LCG):
® RC4: Used in SSL and WEP

K o = O T

(0 1 2 S[i1+S[]] i J 253 254 255\

J

(128 bits) N SR SR E

Seed used as secret key \

™~

e
Stream Ciphers

e How do we use a stream cipher?

PRG(K)

D
_________PROGD.

M @ PRG(K)

e What is the issue with this idea?

e What if there are more than one message that you want to

encrypt?

4 ™
Stream Ciphers

e How do we use a stream cipher?

PRG(K)

D
_________PROGD.

M @ PRG(K)

e What is the issue with this idea?

e What if there are more than one message that you want to

encrypt?

® Key reusability should always be avoided when using stream

ci ph ers.

- /

Stream Ciphers

e How do we use a stream cipher?

® Another idea: This is actually used in 128 bit WEP where [IV| =
24 and |K| = 104.

D
[= TGS W

RCA(IV||K)

v M @ RCA(IV||K)

e What is the issue with the above protocol?

® The IV gets repeated after 2%% frames.
® In some 802.11 cards, the IV is set to O after every power cycle.

/

Stream Ciphers

e How do we use a stream cipher?

® Another idea: This is actually used in 128 bit WEP where [IV| =
24 and |K| = 104.

D
[= TGS W

RCA(IV||K)

v M @ RCA(IV||K)

® What is the issue with the above protocol?
® The IV gets repeated after 224 frames.
® In some 802.11 cards, the IV is set to O after every power cycle.
* Related key attack: IV is incremented by 1 for each frame. So, the key

though different, are very similar and one may use the correlation
property to attack.

Stream Ciphers

e How do we use a stream cipher?

® Another idea: This is actually used in 128 bit WEP where [IV| =
24 and |K| = 104.

RCA(IV||K)

D
[= TGS W

v M @ RCA(IV||K)

128 bit WEP is insecure. DO NOT USE!

There are attacks that will figure out your secret

key in less than a minute. Check out aircrack-ptw.

Stream Ciphers

e How do we use a stream cipher?

® Another idea: This is actually used in 128 bit WEP where [IV| =
24 and |K| = 104.

D
[= TGS W

RCA(IV||K)

v M @ RCA(IV||K)

e So what is the fix? How do we use PRGs like RC4?

® Throw away initial few bytes of RC4 output.
® Use unrelated keys.

Stream Ciphers: Pseudorandom generators

® Linear Feedback Shift Registers (LFSR):
® Fast hardware implementation.
® Examples: DVD encryption (CSS), GSM encryption (A5/1,2).

® s this generator predictable?

Register

Output

Feedback

@ Feedback function

Stream Ciphers: Pseudorandom generators

® Linear Feedback Shift Registers (LFSR):
® Fast hardware implementation.
® Examples: DVD encryption (CSS), GSM encryption (A5/1,2).

® s this generator predictable?

Yes.
One solution that is used in practice is to use a combination of multiple
LFSRs.
Register
—
Output

Feedback

@ Feedback function

Block Ciphers

Block Ciphers

® Block ciphers work on “blocks” of message bits rather than a

“stream” of message bits.

® Main Idea:
® Suppose we encrypt in blocks of size 7.
o letkE: {0,1}k X {0,1}" - {0,1}" be a function.

* For a message block M of n bits, and key K, the ciphertext is
givenby C = E(K, M).

Block Ciphers

® Block ciphers work on “blocks” of message bits rather than a

“stream” of message bits.

® Main Idea:
* Suppose we encrypt in blocks of size 7.
o LetE: {0,1}k X {0,1}" - {0,1}" be a function.
* For a message block M of 1 bits, and key K, the ciphertext is
givenby C = E(K, M).
® What are properties that E should satisty?

Block Ciphers

® Block ciphers work on “blocks” of message bits rather than a

“stream” of message bits.

® Main Idea:
* Suppose we encrypt in blocks of size 7.
o LetE: {0,1}k X {0,1}" - {0,1}" be a function.
* For a message block M of 1 bits, and key K, the ciphertext is
givenby C = E(K, M).
® What are properties that E should satisty?

e Forall K € {0,1}k, the function Eg: {0,1}" — {0,1}" defined as
Ex (M) = E(K, M) is a one-one function. In other words, E is a

permutation.

-

Block Ciphers

® Block ciphers work on “blocks” of message bits rather than a

“stream” of message bits.

® Main Idea:

* Suppose we encrypt in blocks of size 7.
o LetE: {0,1}k X {0,1}" - {0,1}" be a function.
* For a message block M of n bits, and key K, the ciphertext is
givenby C = E(K, M).
® What are properties that E' should satisfy?

e Forall K € {0,1}k, the function Eg: {0,1}" — {0,1}" defined as
Ex (M) = E(K, M) is a one-one function. In other words, E is a

permutation.
e Both E (encryption function) and E 1 (decryption function) are efficient.

e E should be computationally indistinguishable from a random permutation.

™~
ECB Mode: Electronic Codebook Mode

M

Tee

c L a 1 &] &G]

e [s the encryption scheme using the ECM mode secure?

ECB Mode: Electronic Codebook Mode

CRYPTIX

H ,\ il

e

CTRC Mode

<ctr+1> <ctr+2> <ctr+m>

1—»69 2—»6]9

C1 Cz

® The encryption algorithm maintains a counter Ctr that is

initialized to O.

® For a m block message My, ..., My, the ciphertext
Co, Cy1, ... Cpyy is sent where Cy = ctr.

e

CBC$ Mode

1 M,

!

ﬁ

$_>CO_

Cl — Cz

* (y is chosen randomly from {0,1}".

® The ciphertext corresponding to My, ..., My, is
Co, Cy, ..., Cpy.

® Ex needs to be a block cipher (i.e., it should be invertible).

Key Distribution/Exchange

® How do Alice and Bob share a secret key in the first place?

Public key cryptography

Step 1. Give your public Step 2: Sender uses your public
key to sender. key to encrypt the plaintext,
‘ » ’_).:":
e G
plaintext ciphertext
encryption
Step 3: Sender gives Step 4: Use your private key (and
the ciphertext to you, passphrase) to decrypt the ciphertext.

ciphertext plaintext
decryption

* Generate a pair of related keys. One is called public key and other the secret key.
* Examples: RSA, El-gamal (using number theory you learnt in Discrete Math).

/

Hash Functions

Hash Functions: Introduction

* A hash function is a map h: D — {0,1}" that is compressing,
ie., |D|>2™.
* Usually ID| > 2" and n is small.

* Example:

D ={0,1}%
n = 128,160, 256 etc.

264 i.e., all binary strings of length at most 264

* Examples of Cryptographic Hash Functions:

I

MD4 128
MD5 128
SHA1 160
SHA-256 256
SHA-512 512

WHIRLPOOL 512

Hash Functions: Collision

Pigeonhole Principle: h(x;) = h(x,),x; # x,

Hash Functions: Applications

1. Password Authentication:

S stores Bob’s password
Bob, <pass>

Pass/fail

Bob Server

* Problem: If Eve hacks into the server or if the communication channel is

not secure, then Eve knows the password of Bob.

Hash Functions: Applications

1. Password Authentication:

S stores h(Bob’s password)
Bob, h(<pass>)

Pass/fail

Bob Server

* Eve can only get access to h(<pass>).

Hash Functions: Applications
2. Comparing files by hashing:

Fy

Yes/No

Server A Server B

* Problem: Files are usually very large and we would like to save

communication costs/ delays.

Hash Functions: Applications
2. Comparing files by hashing:

h(FA)

h(F,) =? h(Fp)

Server A Server B

Hash Functions: Applications

3. Downloading new software

Give me software X

XI

Web Server

e Problem: X' could be a virus-infected version of X .

Hash Functions: Applications

3. Downloading new software Stores X,
Also stores h(X) in read-only mode

Give me software X

X', h(X)

Web Server

Collision Resistance

® Password Authentication: If Eve is able to find a string S (perhaps
different from < pass >) such that
h(S) = h(< pass >)
then the scheme breaks.

* Comparing files: If there is a different file F/ ¢ such that
h(FS) = h(FB)
the servers may agree incorrectly.

e Downloading software: If Eve can find X’ # X such that h(X) =
h(X"), then software might cause problems.

® (Collision Resistance: It is computationally infeasible to find a pair
(x4, X,) such that x; # X, and

h(x;) = h(xy)

e If a hash function h is collision resistant, then the above two

problems are avoided.

Collision Resistance: Discussion

® Are there functions that are collision resistant?

® Fortunately, there are functions for which no one has been able to find a

collision!
e Example: SHA — 1: {0,1}? — {0,1}160
® Is the world drastically going to change if someone finds one or few
collision for SHA-17?

* Not really. Suppose the collision has some very specific structure, then
we may avoid such structures in the strings on which the hash function is
applied.

® On the other hand, if no one finds a collision then that is a very strong
notion of security and we may sleep peacefully without worrying about

maintaining complicated structures in the strings.

® We are once again going for a very strong definition of security for our

new primitive similar to Block Ciphers and Symmetric Encryption.

/

End

