
Ragesh Jaiswal
CSE, IIT Delhi

Cryptographic Primitives
A brief introduction

Cryptography: Introduction
y Throughout most of history:

y Cryptography = art of secret writing
y Secure communication

𝑲 𝑲
Key exchange protocol

𝑀

𝐶 = 𝐸𝐾(𝑀)

𝑀 = 𝐷𝐾(𝐶)

Cryptography: Introduction
y Early history (- early 70s):

y Synonymous with secret communication.
y Restricted to Military and Nobility.
y More of art than rigorous science.

Design protocol Protocol broken

Cryptography: Introduction
y Early history (- early 70s):

y Synonymous with secret communication.
y Restricted to Military and Nobility.
y More of art than rigorous science.

y Modern Cryptography:
y Digital signatures, e-cash, secure computation, e-voting …
y Touches most aspects of modern lifestyle.
y Rigorous science:

y Reason about security of protocols.

Design protocol Protocol broken

Cryptography: Provable security

Factoring AES MD5Discrete log

Protocol
Construction

Protocol

Cryptography: Provable security

Factoring AES MD5Discrete log

Protocol
Construction

Protocol

We would like to argue:
• If the basic primitive/problem is secure/hard, then the constructed protocol is “secure”

Cryptography: Provable security

Factoring AES MD5Discrete log

Protocol
Construction

Protocol

• :If there is an adversary that successfully attacks the protocol, then there is another
adversary that successfully attacks/solves at least one of the basic primitives/problems.

Secure Communication

Secure communication
y Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the
communication.

y Simple idea (Ceaser Cipher): Substitute each letter with the
letter that is the 𝛼th letter after the letter in the sequence
AB...Z

y Example (𝛼 = 2): SEND TROOPS Æ

Secure communication
y Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the
communication.

y Simple idea (Ceaser Cipher): Substitute each letter with the
letter that is the 𝛼th letter after the letter in the sequence
AB...Z

y Example (𝛼 = 2): SEND TROOPS Æ UGPF VTQQRU

y Secure communication: Alice wants to talk to Bob without
Eve (who has access to the channel) knowing the
communication.

y Simple idea (Ceaser Cipher): Substitute each letter with the
letter that is the 𝛼th letter after the letter in the sequence
AB...Z

y Security was based on the fact that the encryption algorithm
was a secret (Security through obscurity)

Secure communication

y Secure communication: Alice wants to talk to Bob without
Eve (who has access to the channel) knowing the
communication.

y Simple idea (Ceaser Cipher): Substitute each letter with the
letter that is the 𝛼th letter after the letter in the sequence
AB...Z

y Security was based on the fact that the encryption algorithm
was a secret (Security through obscurity)

- Should be avoided at all cost!
- Algorithm should be public
and security should come
from secret keys.

Secure communication

y Secure communication: Alice wants to talk to Bob without
Eve (who has access to the channel) knowing the
communication.

y Simple idea (Ceaser Cipher): Substitute each letter with the
letter that is the 𝛼th letter after the letter in the sequence
AB...Z

y Suppose we make the algorithm public and use the secret key
as 𝛼. Can you break this protocol?

Secure communication

Secure communication
y Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the
communication.

y Simple idea (Substitution Cipher): Let 𝜋 be a permutation of
the English letters. Substitute each letter 𝛼 with the letter
𝜋 𝛼 . 𝜋 acts as the secret key.

y Example: Let 𝜋 𝐴 = 𝑈, 𝜋 𝐵 = 𝑇, 𝜋 𝐶 = 𝑃,…then
encryption of CAB is PUT.

Secure communication
y Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the
communication.

y Simple idea (Substitution Cipher): Let 𝜋 be a permutation of
the English letters. Substitute each letter 𝛼 with the letter
𝜋 𝛼 . 𝜋 acts as the secret key.

y Question: How much space you need to use to store the
secret key?

Secure communication
y Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the
communication.

y Simple idea (Substitution Cipher): Let 𝜋 be a permutation of
the English letters. Substitute each letter 𝛼 with the letter
𝜋 𝛼 . 𝜋 acts as the secret key.

y Consider a brute-force attack where you try to guess the
secret key. Is such an attack feasible?

Secure communication
y Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the
communication.

y Simple idea (Substitution Cipher): Let 𝜋 be a permutation of
the English letters. Substitute each letter 𝛼 with the letter
𝜋 𝛼 .

y Can you break this scheme?

Secure communication
y Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the
communication.

y Simple idea (Substitution Cipher): Let 𝜋 be a permutation of
the English letters. Substitute each letter 𝛼 with the letter
𝜋 𝛼 .

y Attack idea: E’s occur more frequently than X’s

Secure communication
Frequency of letters in typical
English sentences.

Secure communication
y Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the
communication.

y Simple idea (One Time Pad(OTP)):Let the message 𝑀 be an
𝑛 binary string. Let 𝐾 be an 𝑛 bit binary string that is used as
a secret key.Add 𝑀 and 𝐾 modulo 2 to get the ciphertext.

y Example: 𝑀 = 1101, 𝐾 = 0101,
then 𝐶 = 𝑀 + 𝐾 (𝑚𝑜𝑑 2) = 𝑀⊕𝐾 = 1000

Secure communication
y Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the
communication.

y Simple idea (One Time Pad(OTP)):Let the message 𝑀 be an
𝑛 binary string. Let 𝐾 be an 𝑛 bit binary string that is used as
a secret key.Add 𝑀 and 𝐾 modulo 2 to get the Ciphertext.

y Can you break this scheme?

Secure communication
y Secure communication: Alice wants to talk to Bob without

Eve (who has access to the channel) knowing the
communication.

y Perfect Secrecy (Information Theoretic Security):
y Let the message space be 0,1 𝑛.
y For any two message 𝑀0,𝑀1, and Ciphertext 𝐶

Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶
where the probability is over uniformly random 𝐾 in the
Keyspace.

y Given the ciphertext, all messages are equally likely to be the
secret message

Secure communication
y Perfect Secrecy (Information Theoretic Security):

y Let the message space be 0,1 𝑛.
y For any two message 𝑀0,𝑀1, and Ciphertext 𝐶

Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶
where the probability is over uniformly random 𝐾 in the
Keyspace.

y One Time Pad (OTP):
y The Keyspace is 0, 1 𝑛.
y 𝐸𝐾 𝑀 = 𝐾⊕𝑀
y 𝐷𝐾 𝐶 = 𝐾⊕ 𝐶
y For any messages 𝑀0,𝑀1 and ciphertext 𝐶:

Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶 = ? ?

Secure communication
y Perfect Secrecy (Information Theoretic Security):

y Let the message space be 0,1 𝑛.
y For any two message 𝑀0,𝑀1, and Ciphertext 𝐶

Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶
where the probability is over uniformly random 𝐾 in the
Keyspace.

y One Time Pad (OTP):
y The Keyspace is 0, 1 𝑛.
y 𝐸𝐾 𝑀 = 𝐾⊕𝑀
y 𝐷𝐾 𝐶 = 𝐾⊕ 𝐶
y For any messages 𝑀0,𝑀1 and ciphertext 𝐶:

Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶 = 1/2𝑛

Secure communication
y Perfect Secrecy (Information Theoretic Security):

y Let the message space be 0,1 𝑛.
y For any two message 𝑀0,𝑀1, and Ciphertext 𝐶

Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶
where the probability is over uniformly random 𝐾 in the
Keyspace.

y One Time Pad (OTP):
y The Keyspace is 0, 1 𝑛.
y 𝐸𝐾 𝑀 = 𝐾⊕𝑀
y 𝐷𝐾 𝐶 = 𝐾⊕ 𝐶
y For any messages 𝑀0,𝑀1 and ciphertext 𝐶:

Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶 = 1/2𝑛
y Disadvantage: Key is as long as the message.

Secure communication
y Perfect Secrecy (Information Theoretic Security):

y Let the message space be 0,1 𝑛.
y For any two message 𝑀0,𝑀1, and Ciphertext 𝐶

Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶
where the probability is over uniformly random 𝐾 in the
Keyspace.

y One Time Pad (OTP):
y The Keyspace is 0, 1 𝑛.
y 𝐸𝐾 𝑀 = 𝐾⊕𝑀
y 𝐷𝐾 𝐶 = 𝐾⊕ 𝐶
y For any messages 𝑀0,𝑀1 and ciphertext 𝐶:

Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶 = 1/2𝑛
y Disadvantage: Key is as long as the message.

y Fact: If 𝑀 > |𝐾|, then no scheme is perfectly secure.

Secure communication
y Perfect Secrecy (Information Theoretic Security):

y Let the message space be 0,1 𝑛.
y For any two message 𝑀0,𝑀1, and Ciphertext 𝐶

Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶
where the probability is over uniformly random 𝐾 in the
Keyspace.

y Fact: If 𝑀 > |𝐾|, then no scheme is perfectly secure.
y How do we get around this problem?

Secure communication
y Perfect Secrecy (Information Theoretic Security):

y Let the message space be 0,1 𝑛.
y For any two message 𝑀0,𝑀1, and Ciphertext 𝐶

Pr 𝐸𝐾 𝑀0 = 𝐶 = Pr 𝐸𝐾 𝑀1 = 𝐶
where the probability is over uniformly random 𝐾 in the
Keyspace.

y Fact: If 𝑀 > |𝐾|, then no scheme is perfectly secure.
y How do we get around this problem?

y Relax our notion of security: Instead of saying “it is impossible
to break the scheme”, we would like to say “it is computationally
infeasible to break the scheme”.

Pseudorandom generator
y Suppose there was a generator that stretches random bits.

001101011 00101001001010010100101011

y Idea:
y Choose a short key 𝐾 randomly.
y Obtain 𝐾’ = 𝐺(𝐾).
y Use 𝐾’ as key for the one time pad.

y Issue: ?

𝐺

Pseudorandom generator
y Suppose there was a generator that stretches random bits.

001101011 00101001001010010100101011

y Idea:
y Choose a short key 𝐾 randomly.
y Obtain 𝐾’ = 𝐺(𝐾).
y Use 𝐾’ as key for the one time pad.

y Issue:
y Such a generator is not possible!
y Any such generator produces a longer string but the string is

not random.

𝐺

Pseudorandom generator
y Suppose there was a generator that stretches random bits.

001101011 00101001001010010100101011

y Idea:
y Choose a short key 𝐾 randomly.
y Obtain 𝐾’ = 𝐺(𝐾).
y Use 𝐾’ as key for the one time pad.

y Issue:
y Such a generator is not possible!
y Any such generator produces a longer string but the string is not

random.
y What if we can argue that the output of the generator is

computationally indistinguishable from truly random string.

𝐺

Stream Ciphers
Pseudorandom generators

Stream Ciphers: Pseudorandom generators

y A pseudorandom generator (PRG) is a function:
𝐺: 0, 1 𝑠 → 0, 1 𝑛, 𝑛 ≫ 𝑠

such that 𝐺 𝑥 “appears” to be a random 𝑛 bit string.
y The input to the generator is called the seed.

𝑅

𝑆𝑡𝑆𝑡

𝑆𝑡[0]

𝑅[1]

𝑆𝑡[1]

𝑅[2]𝑀
𝑆𝑡[1]

𝑅[3]𝑀

𝑀

𝑀

Stream Ciphers: Pseudorandom generators

y A pseudorandom generator (PRG) is a function:
𝐺: 0, 1 𝑠 → 0, 1 𝑛, 𝑛 ≫ 𝑠

such that 𝐺 𝑥 “appears” to be a random 𝑛 bit string.
y Let us see if we can rule out some popular random generators

based on this intuitive understanding of PRG:
y Linear Congruential Generator (LCG): parameters 𝑚, 𝑎, 𝑐:

y 𝑅𝑛 = 𝑎 ⋅ 𝑅𝑛−1 + 𝑐 (𝑚𝑜𝑑 𝑚), the seed is 𝑅0 and the output is
𝑅1𝑅2𝑅3 …

y This has some nice statistical properties but it is “predictable”.
y Never use such “predictable” random number generators for Cryptography.

Stream Ciphers: Pseudorandom generators

y Let us see if we can rule out some popular random generators
based on this intuitive understanding of PRG:
y Linear Congruential Generator(LCG):
y RC4: Used in SSL and WEP

𝐾
(128 bits)
Seed used as secret key

Stream Ciphers

y What is the issue with this idea?
y What if there are more than one message that you want to

encrypt?

𝑀

𝑃𝑅𝐺(𝐾)

⊕

𝑀⊕𝑃𝑅𝐺(𝐾)

y How do we use a stream cipher?

Stream Ciphers

y What is the issue with this idea?
y What if there are more than one message that you want to

encrypt?
y Key reusability should always be avoided when using stream

ciphers.

𝑀

𝑃𝑅𝐺(𝐾)

⊕

𝑀⊕𝑃𝑅𝐺(𝐾)

y How do we use a stream cipher?

Stream Ciphers

y What is the issue with the above protocol?
y The 𝐼𝑉 gets repeated after 224 frames.
y In some 802.11 cards, the 𝐼𝑉 is set to 0 after every power cycle.

𝑀

𝑅𝐶4(𝐼𝑉||𝐾)

⊕

𝑀⊕𝑅𝐶4(𝐼𝑉||𝐾)

y How do we use a stream cipher?
y Another idea: This is actually used in 128 bit WEP where 𝐼𝑉 =
24 and 𝐾 = 104.

𝐼𝑉

Stream Ciphers

y What is the issue with the above protocol?
y The 𝐼𝑉 gets repeated after 224 frames.
y In some 802.11 cards, the 𝐼𝑉 is set to 0 after every power cycle.
y Related key attack: 𝐼𝑉 is incremented by 1 for each frame. So, the key

though different, are very similar and one may use the correlation
property to attack.

𝑀

𝑅𝐶4(𝐼𝑉||𝐾)

⊕

𝑀⊕𝑅𝐶4(𝐼𝑉||𝐾)

y How do we use a stream cipher?
y Another idea: This is actually used in 128 bit WEP where 𝐼𝑉 =
24 and 𝐾 = 104.

𝐼𝑉

Stream Ciphers

𝑀

𝑅𝐶4(𝐼𝑉||𝐾)

⊕

𝑀⊕𝑅𝐶4(𝐼𝑉||𝐾)

y How do we use a stream cipher?
y Another idea: This is actually used in 128 bit WEP where 𝐼𝑉 =
24 and 𝐾 = 104.

𝐼𝑉

128 bit WEP is insecure. DO NOT USE!
There are attacks that will figure out your secret
key in less than a minute. Check out aircrack-ptw.

Stream Ciphers

𝑀

𝑅𝐶4(𝐼𝑉||𝐾)

⊕

𝑀⊕𝑅𝐶4(𝐼𝑉||𝐾)

y How do we use a stream cipher?
y Another idea: This is actually used in 128 bit WEP where 𝐼𝑉 =
24 and 𝐾 = 104.

𝐼𝑉

y So what is the fix? How do we use PRGs like RC4?
y Throw away initial few bytes of RC4 output.
y Use unrelated keys.

Stream Ciphers: Pseudorandom generators

y Linear Feedback Shift Registers (LFSR):
y Fast hardware implementation.
y Examples: DVD encryption (CSS), GSM encryption (A5/1,2).
y Is this generator predictable?

⊕

taps

Output

Feedback
Feedback function

Register

Stream Ciphers: Pseudorandom generators

y Linear Feedback Shift Registers (LFSR):
y Fast hardware implementation.
y Examples: DVD encryption (CSS), GSM encryption (A5/1,2).
y Is this generator predictable?

y Yes.
y One solution that is used in practice is to use a combination of multiple

LFSRs.

⊕

taps

Output

Feedback
Feedback function

Register

Block Ciphers

Block Ciphers
y Block ciphers work on “blocks” of message bits rather than a

“stream” of message bits.
y Main Idea:

y Suppose we encrypt in blocks of size 𝑛.
y Let 𝐸: 0,1 𝑘 × 0,1 𝑛 → 0,1 𝑛 be a function.
y For a message block 𝑀 of 𝑛 bits, and key 𝐾, the ciphertext is

given by 𝐶 = 𝐸(𝐾,𝑀).

Block Ciphers
y Block ciphers work on “blocks” of message bits rather than a

“stream” of message bits.
y Main Idea:

y Suppose we encrypt in blocks of size 𝑛.
y Let 𝐸: 0,1 𝑘 × 0,1 𝑛 → 0,1 𝑛 be a function.
y For a message block 𝑀 of 𝑛 bits, and key 𝐾, the ciphertext is

given by 𝐶 = 𝐸(𝐾,𝑀).
y What are properties that 𝐸 should satisfy?

Block Ciphers
y Block ciphers work on “blocks” of message bits rather than a

“stream” of message bits.
y Main Idea:

y Suppose we encrypt in blocks of size 𝑛.
y Let 𝐸: 0,1 𝑘 × 0,1 𝑛 → 0,1 𝑛 be a function.
y For a message block 𝑀 of 𝑛 bits, and key 𝐾, the ciphertext is

given by 𝐶 = 𝐸(𝐾,𝑀).
y What are properties that 𝐸 should satisfy?

y For all 𝐾 ∈ 0,1 𝑘, the function EK: 0,1 n → 0,1 𝑛 defined as
𝐸𝐾 𝑀 = 𝐸 𝐾,𝑀 is a one-one function. In other words, 𝐸𝐾 is a
permutation.

Block Ciphers
y Block ciphers work on “blocks” of message bits rather than a

“stream” of message bits.
y Main Idea:

y Suppose we encrypt in blocks of size 𝑛.
y Let 𝐸: 0,1 𝑘 × 0,1 𝑛 → 0,1 𝑛 be a function.
y For a message block 𝑀 of 𝑛 bits, and key 𝐾, the ciphertext is

given by 𝐶 = 𝐸(𝐾,𝑀).
y What are properties that 𝐸 should satisfy?

y For all 𝐾 ∈ 0,1 𝑘, the function EK: 0,1 n → 0,1 𝑛 defined as
𝐸𝐾 𝑀 = 𝐸 𝐾,𝑀 is a one-one function. In other words, 𝐸𝐾 is a
permutation.

y Both 𝐸𝐾 (encryption function) and 𝐸𝐾−1 (decryption function) are efficient.

y E should be computationally indistinguishable from a random permutation.

ECB Mode: Electronic Codebook Mode

y Is the encryption scheme using the ECM mode secure?

𝑀1 𝑀2 𝑀3

𝑀

𝐸 𝐸 𝐸𝐾 𝐾 𝐾

𝐶1 𝐶2 𝐶3

𝐶 𝐶1 𝐶2 𝐶3

ECB Mode: Electronic Codebook Mode

CTRC Mode

y The encryption algorithm maintains a counter 𝑐𝑡𝑟 that is
initialized to 0.

y For a 𝑚 block message 𝑀1,… ,𝑀𝑚 the ciphertext
𝐶0, 𝐶1, …𝐶𝑚 is sent where 𝐶0 = 𝑐𝑡𝑟.

𝐸𝐾

⊕𝑀1

< 𝑐𝑡𝑟 + 1 >

𝐶1

𝐸𝐾

⊕𝑀2

< 𝑐𝑡𝑟 + 2 >

𝐶2

𝐸𝐾

⊕𝑀𝑚

< 𝑐𝑡𝑟 + 𝑚 >

𝐶𝑚

CBC$ Mode

y 𝐶0 is chosen randomly from 0,1 𝑛.
y The ciphertext corresponding to 𝑀1,… ,𝑀𝑚 is
𝐶0, 𝐶1, … , 𝐶𝑚.

y 𝐸𝐾 needs to be a block cipher (i.e., it should be invertible).

𝐹

⊕

𝑀1

𝐶1

𝐹

𝑀2

𝐶2

𝐹

⊕

𝑀𝑚

𝐶𝑚𝐶0

⊕

$

Key Distribution/Exchange

y How do Alice and Bob share a secret key in the first place?

K
K

Public key cryptography

• Generate a pair of related keys. One is called public key and other the secret key.
• Examples: RSA, El-gamal (using number theory you learnt in Discrete Math).

Hash Functions

Hash Functions: Introduction
y A hash function is a map ℎ: 𝐷 → 0,1 𝑛 that is compressing,

i.e., 𝐷 > 2𝑛.
y Usually 𝐷 ≫ 2𝑛 and 𝑛 is small.

y Example:
y 𝐷 = 0,1 ≤264 i.e., all binary strings of length at most 264.
y 𝑛 = 128, 160, 256 etc.

y Examples of Cryptographic Hash Functions:
ℎ 𝒏

MD4 128

MD5 128

SHA1 160

SHA-256 256

SHA-512 512

WHIRLPOOL 512

Hash Functions: Collision

𝐷
2𝑛

𝑥1

𝑥2

Pigeonhole Principle: ℎ(𝑥1) = ℎ(𝑥2), 𝑥1 ≠ 𝑥2

ℎ

Hash Functions: Applications
1. Password Authentication:

Bob Server

Bob, <pass>

Pass/fail

• Problem: If Eve hacks into the server or if the communication channel is
not secure, then Eve knows the password of Bob.

S stores Bob’s password

Hash Functions: Applications
1. Password Authentication:

Bob Server

Bob, h(<pass>)

Pass/fail

• Eve can only get access to ℎ(<pass>).

S stores ℎ(Bob’s password)

Hash Functions: Applications
2. Comparing files by hashing:

Server B

Yes/No

• Problem: Files are usually very large and we would like to save
communication costs/delays.

S has FB

Server A

S has FA 𝐹𝐴

Hash Functions: Applications
2. Comparing files by hashing:

Server B

S has FB

Server A

S has FA ℎ(𝐹𝐴)

ℎ 𝐹𝐴 =? ℎ(𝐹𝐵)

Hash Functions: Applications
3. Downloading new software

Web Server

Give me software 𝑋

𝑋′

• Problem: 𝑋′ could be a virus-infected version of 𝑋.

Stores 𝑋

Hash Functions: Applications
3. Downloading new software

Web Server

Give me software 𝑋

𝑋′, ℎ(𝑋)

Stores 𝑋,
Also stores ℎ(𝑋) in read-only mode

Collision Resistance
y Password Authentication: If Eve is able to find a string 𝑆 (perhaps

different from < 𝑝𝑎𝑠𝑠 >) such that
ℎ(𝑆) = ℎ(< 𝑝𝑎𝑠𝑠 >)

then the scheme breaks.
y Comparing files: If there is a different file 𝐹𝑆 such that

ℎ(𝐹𝑆) = ℎ(𝐹𝐵)
the servers may agree incorrectly.

y Downloading software: If Eve can find 𝑋′ ≠ 𝑋 such that ℎ 𝑋 =
ℎ(𝑋′), then software might cause problems.

y Collision Resistance: It is computationally infeasible to find a pair
(𝑥1, 𝑥2) such that 𝑥1 ≠ 𝑥2 and

ℎ(𝑥1) = ℎ(𝑥2)
y If a hash function ℎ is collision resistant, then the above two

problems are avoided.

Collision Resistance: Discussion
y Are there functions that are collision resistant?

y Fortunately, there are functions for which no one has been able to find a
collision!

y Example: 𝑆𝐻𝐴 − 1: 0,1 𝐷 → {0,1}160

y Is the world drastically going to change if someone finds one or few
collision for SHA-1?
y Not really. Suppose the collision has some very specific structure, then

we may avoid such structures in the strings on which the hash function is
applied.

y On the other hand, if no one finds a collision then that is a very strong
notion of security and we may sleep peacefully without worrying about
maintaining complicated structures in the strings.

y We are once again going for a very strong definition of security for our
new primitive similar to Block Ciphers and Symmetric Encryption.

End

