
Overview
Design

Evaluation

Voldemort

Smruti R. Sarangi

Department of Computer Science
Indian Institute of Technology

New Delhi, India

Smruti R. Sarangi Leader Election 1/27

Overview
Design

Evaluation

Outline

1 Overview

2 Design
Overall Structure
Routing
Storage
Search and Load Balancing

3 Evaluation

Smruti R. Sarangi Leader Election 2/27

Overview
Design

Evaluation

Data Intensive Web Sites

Many data intensive sites contain the following features:
People you may know ...
Items you may like (recommendations)
Relationships between pairs of people
LinkedIn (135 million users) features many more such rela-
tionships

Phases
Three phases : data collection, processing, serving

Smruti R. Sarangi Leader Election 3/27

Overview
Design

Evaluation

LinkedIn

Voldemort is a key-value system for finally serving the data.
LinkedIn uses Voldemort (which is now open source)
Several other sites such eHarmony, and Nokia use Volde-
mort
A Hadoop engine processes all the data in LinkedIn’s data
store, and creates a read-only database that Voldemort uses
Support for : quick updates , load balancing
Optimized for serving bulk read-only data (quickly)
Twice as fast as MySQL (4TB of new data every day)

Smruti R. Sarangi Leader Election 4/27

Overview
Design

Evaluation

Related Work

Two MySQL solutions: MyISAM and InnoDB
MyISAM

Compact on-disk data structure
Creates index after loading the data file
Locks the complete table (during loading)

InnoDb
Supports fine-grained row-level locking
Very slow
Requires a lot of disk space

PNUTS (Yahoo)
CPUs are shared between data loading modules and data
serving modules
Reduces the performance of data serving modules

Smruti R. Sarangi Leader Election 5/27

Overview
Design

Evaluation

Overall Structure
Routing
Storage
Search and Load Balancing

Outline

1 Overview

2 Design
Overall Structure
Routing
Storage
Search and Load Balancing

3 Evaluation

Smruti R. Sarangi Leader Election 6/27

Overview
Design

Evaluation

Overall Structure
Routing
Storage
Search and Load Balancing

Overall Structure

Clusters, Nodes and Stores
A Voldemort cluster contains multiple nodes
A physical host can run multiple nodes
Each node has a given number of stores (database table)
Example:

Store : member id→ recommended group ids
Store : group id→ description

Attributes of a store:
Replication factor→ number of nodes that contain this store
Read/write quorum size
Serialization (XML/JSON) and compression
Storage engine: Berkeley DB or MySQL

Smruti R. Sarangi Leader Election 7/27

Overview
Design

Evaluation

Overall Structure
Routing
Storage
Search and Load Balancing

Responses and Requests

Client API

Conflict Resolution

Serialization

Conflict Resolution

Routing

Storage Engine

Network Client /
Server

Response

Request

Smruti R. Sarangi Leader Election 8/27

Overview
Design

Evaluation

Overall Structure
Routing
Storage
Search and Load Balancing

Outline

1 Overview

2 Design
Overall Structure
Routing
Storage
Search and Load Balancing

3 Evaluation

Smruti R. Sarangi Leader Election 9/27

Overview
Design

Evaluation

Overall Structure
Routing
Storage
Search and Load Balancing

Routing Module

Deals with partitioning and replication
Splits the hash ring into equal size partitions
Maps partitions to nodes
Each key is map to a preference list (of partitions)

Map to a primary partition (based on its hash)
N − 1 subsequent partitions (clockwise)

Pluggable Storage Layer
Traditional get and put functions
Block-read functions (streaming)
Read-only operations
Administrative Functions

Smruti R. Sarangi Leader Election 10/27

Overview
Design

Evaluation

Overall Structure
Routing
Storage
Search and Load Balancing

Routing Modes

Definition (Routing Modes)

Client Side Routing Retrieves meta-data and cluster topology.
Makes the routing decisions locally.

Server Side Routing Server takes all the routing decisions.

Smruti R. Sarangi Leader Election 11/27

Overview
Design

Evaluation

Overall Structure
Routing
Storage
Search and Load Balancing

Outline

1 Overview

2 Design
Overall Structure
Routing
Storage
Search and Load Balancing

3 Evaluation

Smruti R. Sarangi Leader Election 12/27

Overview
Design

Evaluation

Overall Structure
Routing
Storage
Search and Load Balancing

Shortcomings of MySQL and BDB

For bulk loading, multiple put requests is not the correct
solution.
We need to update the underlying B+ tree multiple times.
Alternative Solution

Maintain a separate server that maintains a copy of the database
Switch to the new copy instantaneously
DISADVANTAGE : Double the resources, bulk copy over-
head

Alternative Solution 2
Run Hadoop to generate indices offline
Atomically switch to the new set of indices
Problem of additional resources

Smruti R. Sarangi Leader Election 13/27

Overview
Design

Evaluation

Overall Structure
Routing
Storage
Search and Load Balancing

Requirements

Minimize the performance overhead of live requests.
Scaling and fault tolerance
Fast rollback capability
Ability to handle large datasets

Smruti R. Sarangi Leader Election 14/27

Overview
Design

Evaluation

Overall Structure
Routing
Storage
Search and Load Balancing

List of Steps

1 Driver program sends a message to HDFS – Trigger Build
2 The Hadoop+HDFS systems starts the build.
3 Driver program sends a message to the Voldemort cluster

– Trigger Fetch
4 The Voldemort cluster initiates a parallel fetch from the

Hadoop nodes
5 Driver program sends a message to the Voldemort cluster

– Trigger Swap
6 Voldemort executes the swap

Smruti R. Sarangi Leader Election 15/27

Overview
Design

Evaluation

Overall Structure
Routing
Storage
Search and Load Balancing

Storage Format

Voldemort is Java based (on a JVM), and uses the OS to
manage its memory
The input data destined for a node is split into multiple chunk
buckets
Each chunk bucket is split into multiple chunk sets
A chunk bucket is defined by the partition id and replica id
Each chunk set has a : data file and an index file
Naming convention of a chunk set file

partition id_replica id_chunk set id.{data,index}

Entry in the index file: top 8 bytes of MD5 signature + 4 byte
offset in the data file

Smruti R. Sarangi Leader Election 16/27

Overview
Design

Evaluation

Overall Structure
Routing
Storage
Search and Load Balancing

Structure of the Data File

Stores the number of collided tuples
Plus, list of collided tuples

key size, value size, key value

Smruti R. Sarangi Leader Election 17/27

Overview
Design

Evaluation

Overall Structure
Routing
Storage
Search and Load Balancing

Chunk Set Generation

Inputs: chunk sets per bucket, cluster topology, store defi-
nitions, input data locations in HDFS
Mapper

Emits upper 8 bytes of the MD5 key along with node id, par-
tition id, replica id, key, and value

Partitioner
Route data to the correct reducer based on the chunk set id

Reducer
Every reducer is responsible for only one chunk set
Hadoop sorts the inputs based on the keys
Each Voldemort node is a directory in HDFS files with files
for each chunk set.

Smruti R. Sarangi Leader Election 18/27

Overview
Design

Evaluation

Overall Structure
Routing
Storage
Search and Load Balancing

Data Versioning

Every store is represented by a directory
Every version of a store has a unique directory
The current version of a store points to the right directory
using a symbolic link
For moving to a new version:

Get a read-write lock on the previous version’s directory
Close all the files
Open the files in the new directory and map them to memory
Switch the symbolic link

Smruti R. Sarangi Leader Election 19/27

Overview
Design

Evaluation

Overall Structure
Routing
Storage
Search and Load Balancing

Data Loading

The driver triggers a Hadoop job to create a new version.
It then triggers a fetch request on all the Voldemort nodes.
Use a pull based modeling (traffic based fetch throttling)
Swap the version’s directory
Global atomic semantics
Takes 0.05 ms in LinkedIn

Smruti R. Sarangi Leader Election 20/27

Overview
Design

Evaluation

Overall Structure
Routing
Storage
Search and Load Balancing

Outline

1 Overview

2 Design
Overall Structure
Routing
Storage
Search and Load Balancing

3 Evaluation

Smruti R. Sarangi Leader Election 21/27

Overview
Design

Evaluation

Overall Structure
Routing
Storage
Search and Load Balancing

Retrieval

Calculate the MD5 of the key
Generate primary partition id, any replica id, chunk set id
(first 4 bits of MD5)
Find the chunk set index file
Locate the value in the chunk set data file
Searching in the index file is the most time consuming pro-
cess

Ensure that they are in main memory by fetching them at the
end
User interpolation search (O(log(log(N))))

Smruti R. Sarangi Leader Election 22/27

Overview
Design

Evaluation

Overall Structure
Routing
Storage
Search and Load Balancing

Schema Upgrades and Rebalancing

Schema Upgrades

Use version bits with each JSON file
The mapping of the version bits to the schema is saved in
the meta-data section of the store definition.

Rebalancing
We can dynamically add partitions.
Create a plan for moving partitions and their replicas.
Start moving the partitions, and lazily propagate information
about temporary topologies.

Smruti R. Sarangi Leader Election 23/27

Overview
Design

Evaluation

Setup

Simulated data set: Keys (random 1024 byte strings)
Linux based setup : Dual CPU
8 cores, 24 GB RAM
Number of nodes: 25, 940 GB data size per node, 123
stores, replication factor: 2, store size range (700 KB to
4.15 TB), maximum number of store swaps per day: 76

Smruti R. Sarangi Leader Election 24/27

Overview
Design

Evaluation

Build Time and Read Latency

If we increase the file size from 1 GB to 1700 GB
The build time for MySQL increases lineary from 0 till 350
minutes (for 125 GB). Results are not shown beyond 125
GB.
For Voldemort, the build time increases linearly from 0 to
40 mins.

Read latency (y axis) vs time since swap in minutes (x axis)

The MySQL median read latency reduces from 32ms (1
min) to 2ms (180 mins)
The interpolated and binary values for Voldemort reduce
from 2ms to 0.1 ms (same range)

Smruti R. Sarangi Leader Election 25/27

Overview
Design

Evaluation

Queries Per Second

For the same 100 GB dataset, the throughput (queries per
second) was varied and the latency was measured.
For MySQL the latency increased from 1.7 ms (100 qps)
to 3.3 ms (420 qps). The rate followed increased steeply
after 300 qps
Voldemort’s latency increased from 1.2 ms (100 qps) to 3.5
ms (700 qps).
Conclusion: For the same latency, Voldemort can support
twice the throughput.

Smruti R. Sarangi Leader Election 26/27

Overview
Design

Evaluation

People You May Know and Collaborative Filtering

The latency was measured after a swap for two data sets:
People You May Know (PYMK) and Collaborative Filtering
(CF)

PYMK : A suggested set of users that the given user may
like to establish connections with.
CF : Profiles similar to the visited member’s profile that were
viewed in the same session.

The latency was plotted after a swap .
In both cases the latencies decrease sub-linearly .
CF has a larger latency than PYMK because of the larger
size of the value .

Smruti R. Sarangi Leader Election 27/27

Overview
Design

Evaluation

Sumbaly, Roshan, et al. "Serving large-scale batch com-
puted data with project voldemort." Proceedings of the
10th USENIX conference on File and Storage Technologies.
USENIX Association, 2012.

Smruti R. Sarangi Leader Election 27/27

	Overview
	Design
	Overall Structure
	Routing
	Storage
	Search and Load Balancing

	Evaluation

