Introduction to Computer Architecture Why, How, and What for ???

Smruti R. Sarangi

Department of Computer Science Indian Institute of Technology New Delhi, India

くロト (過) (目) (日)

ъ

Outline

2 History

- Ancient Age
- Middle Age
- Modern Age
- 3 Theoretical Developments
 - Abstract Machine Models
 - Theoretical Instruction Sets

э

ъ

What is Computer Architecture?

Figure 1: Courtesy: www.psychology-today.com

Computer Architecture

- The CPU is the brain of a computer system.
- It works both consciously and subconsciously.
- Consciously : Executes a program
- Sub-consciously : Runs the operating system, coordinates with I/O devices

Computer Architecture : Study of the CPU and the peripherals and the second

Where does it fit in?

Figure 2: courtesy: www.coolnerds.com

Example

- Computer Architecture -> Brain
- Networking -> Nervous and Circulatory System
- Computer Vision -> Eyes
- Operating System-> Endocrine and Immune System
- Databases -> Memory
- Algorithms -> Intelligence
- Prog. Languages -> Linguistic Center

• ...

Why Study Computer Architecture?

Understanding

- Learn the inner workings of processors
- Understand hardware/software interaction
- Design better operating systems and compilers
- Career Prospects
 - · Companies directly working in architecture
 - Intel, AMD, Sun/Oracle, Arm, IBM
 - Systems Software
 - Google, Samsung, VMWare, Wind River, McAfee

• Higher Studies ...

く 同 と く ヨ と く ヨ と

Introduction History Middle Age Modern Age

Outline

- 2 History
 - Ancient Age
 - Middle Age
 - Modern Age
 - 3 Theoretical Developments
 - Abstract Machine Models
 - Theoretical Instruction Sets

< 🗇 ▶

→ Ξ → < Ξ →</p>

э

Ancient Age Middle Age Modern Age

History of Computing

Smruti R. Sarangi Introduction to Computer Architecture

ヘロト 人間 とくほとくほとう

Ancient Age Middle Age Modern Age

History of Computing

• 2400 BC: The babylonians invented the abacus.

イロト 不得 とくほ とくほとう

3

History of Computing

- 2400 BC: The babylonians invented the abacus.
- 500 BC: Mathematicians in India started using zero.
- 500 BC: Indian grammarian, gave the first Turing complete grammar for programming languages. This led to the famous paradigm, *Panini-Backus* form.

ヘロト ヘ戸ト ヘヨト ヘヨト

History of Computing

- 2400 BC: The babylonians invented the abacus.
- 500 BC: Mathematicians in India started using zero.
- 500 BC: Indian grammarian, gave the first Turing complete grammar for programming languages. This led to the famous paradigm, *Panini-Backus* form.

ヘロト ヘ戸ト ヘヨト ヘヨト

History of Computing

- 2400 BC: The babylonians invented the abacus.
- 500 BC: Mathematicians in India started using zero.
- 500 BC: Indian grammarian, gave the first Turing complete grammar for programming languages. This led to the famous paradigm, *Panini-Backus* form.
- 300 BC: Indian mathematician, Pingala, proposed the binary number system.

(4回) (日) (日)

History of Computing

- 2400 BC: The babylonians invented the abacus.
- 500 BC: Mathematicians in India started using zero.
- 500 BC: Indian grammarian, gave the first Turing complete grammar for programming languages. This led to the famous paradigm, *Panini-Backus* form.
- 300 BC: Indian mathematician, Pingala, proposed the binary number system.
- 100 BC: Chinese invent negative numbers.

(4回) (1日) (日)

History of Computing

- 2400 BC: The babylonians invented the abacus.
- 500 BC: Mathematicians in India started using zero.
- 500 BC: Indian grammarian, gave the first Turing complete grammar for programming languages. This led to the famous paradigm, *Panini-Backus* form.
- 300 BC: Indian mathematician, Pingala, proposed the binary number system.
- 100 BC: Chinese invent negative numbers.
- 60 BC: Heron of Alexandria invented a mechanical machine, which follows completed a sequential series of actions.

くロト (過) (目) (日)

History of Computing

- 2400 BC: The babylonians invented the abacus.
- 500 BC: Mathematicians in India started using zero.
- 500 BC: Indian grammarian, gave the first Turing complete grammar for programming languages. This led to the famous paradigm, *Panini-Backus* form.
- 300 BC: Indian mathematician, Pingala, proposed the binary number system.
- 100 BC: Chinese invent negative numbers.
- 60 BC: Heron of Alexandria invented a mechanical machine, which follows completed a sequential series of actions.
- 600 AD: Indian mathematician, Brahmagupta, described the place value system.

ヘロト ヘアト ヘビト ヘビト

æ

Introduction Ancie History Middle Theoretical Developments Mode

Ancient Age Middle Age Modern Age

Outline

- 2 HistoryAncient Age
 - Middle Age
 - Modern Age
 - 3 Theoretical Developments
 - Abstract Machine Models
 - Theoretical Instruction Sets

< 🗇 ▶

→ Ξ → < Ξ →</p>

э

History of Computing - II

- 1206 AD: Arab engineer, Al Jazari, invented a basic robot. This was a human mannequin, which could move its hands. It was hydro powered.
- 1400 AD: Kerala school of astronomy, mathematicians, invent the floating point number system.
- 1492 AD: Leonardo Da Vinci invents the mechanical calculator.
- 1622 AD: William Oughtred invented the slide rule.

・ 同 ト ・ ヨ ト ・ ヨ ト

Ancient Age Middle Age Modern Age

Russian Mechanical Calculator

Figure 3: courtesy wikipedia

Smruti R. Sarangi Introduction to Computer Architecture

ヘロト ヘ戸ト ヘヨト ヘヨト

э

Ancient Age Middle Age Modern Age

Slide Rule

Figure 4: courtesy wikipedia

Smruti R. Sarangi Introduction to Computer Architecture

イロン 不同 とくほ とくほ とう

æ

History of Computing - Middle Age

• 1642: Blaise Pascal made the first widely used mechanical calculator, Pascaline. It could add, subtract, multiply, and divide. it consisted of a series of wheels.

Figure 5: The Pascaline, courtesy wikipedia

Introduction Ancient Age History Middle Age Theoretical Developments Modern Age

History of Computing - Middle Age - II

• 1801: Joseph-Marie Jacquard developed an automatic loom. This loom was controlled by punch cards. First example of a stored program machine.

ヘロト 人間 ト ヘヨト ヘヨト

History of Computing - Middle Age - II

- 1801: Joseph-Marie Jacquard developed an automatic loom. This loom was controlled by punch cards. First example of a stored program machine.
- 1834: Charles Babbage designed the first general purpose mechanical computer called the Analytical Engine.
 - It had the notion of a program. This was stored in punch cards.
 - It had an arithmetic unit that could perform all arithmetic operations, compare numbers, and compute square roots.
 - It had the notion of a memory that could save programs and data.
- 1848: British mathematician, George Boole, invented Boolean algebra.

ヘロア 人間 アメヨア 人口 ア

Ancient Age Middle Age Modern Age

Punch Cards

Figure 6: Punched Card, courtesy wikipedia

イロト イポト イヨト イヨト

3

Ancient Age Middle Age Modern Age

Jacquard Mill

Figure 7: Jacquard Mill, courtesy wikipedia

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

æ

Introduction Ancient Age History Middle Age Theoretical Developments Modern Age

Outline

2 History

- Ancient Age
- Middle Age
- Modern Age
- Theoretical Developments
 - Abstract Machine Models
 - Theoretical Instruction Sets

< 🗇 ▶

→ Ξ → < Ξ →</p>

э

History of Computing - Modern Age

- 1890: Herman Hollerith won a competition to build a machine for the US census bureau. He founded the Computing Tabulating and Recording Corporation. This company went on to become IBM.
- 1892: Burroughs found the Arithmetic Arithmometer Company. This computer went on to become Burroughs, and then Unisys.
- 1900-1950: Computers started using vacuum tubes and electro-mechanical relays.
- 1900-1950: Other than two world wars, something else happened in the world of computing.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Abstract Machine Models Theoretical Instruction Sets

How do we solve problems?

Let us rewind back to 1900 AD ...

- Computing was still at its infancy.
- We could at the most add a few hundred numbers.
- Very limited storage space.
- Computers weighed a few tons.
- Uses limited to: accounting, surveying

What about the rest of the engineering fraternity?

Abstract Machine Models Theoretical Instruction Sets

State of the Art in 1939

What did the 19th and the early 20th century give us ...

- Steel
- Electricity
- Internal Combustion Engine
- Telegraph and Telephone
- Railroads
- Antiseptics, Anaesthesia, Antibiotics
- X-Rays
- Discovery of the atomic structure
- Skyscrapers

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Abstract Machine Models Theoretical Instruction Sets

The Empire State Building

Figure 8: courtesy wikipedia

Did computers help us design this wonder of the world ... , WHY NOT $\hfill \eqref{eq:starter}$

Smruti R. Sarangi Introduction to Computer Architecture

프 🕨 🗉 프

Abstract Machine Models Theoretical Instruction Sets

What was missing?

• Computer Architecture is a marriage of two things:

- A theoretical model of computation
- A realization of this model on practical devices

Answer: We had none

Why

Without any formal models of computation, and with extremely slow electro-mechanical devices like manually turned knobs, water powered computers, or vacuum tubes, the computing industry was very primitive.

イロト イポト イヨト イヨト

Abstract Machine Models Theoretical Instruction Sets

Outline

2 History

- Ancient Age
- Middle Age
- Modern Age
- 3 Theoretical Developments
 - Abstract Machine Models
 - Theoretical Instruction Sets

★ E > < E >

э

Abstract Machine Models Theoretical Instruction Sets

The Turing Machine

Figure 9: The Turing Machine

Turing Machine

- It consists of an unbounded tape divided into slots. Each slot contains a symbol.
- The tape head is associated with a state.
- At any step we have the following transition:

< Symbol, State >=>< NewSymbol, NewState, Left|Right >

Turing Machine - II

- This machine is powerful enough to do most common computations.
 - All kinds of arithmetic operations, solving differential equations, algebraic formulae, ...
 - Programs of arbitrary complexity, recursive function calls

Definition (Turing Complete)

A programming language, or a computational machine, is said to be **Turing Complete** if it can be used to simulate a Turing Machine.

ヘロト 人間 ト ヘヨト ヘヨト

Other Models

At the same time, other models were proposed, which are equivalent to a Turing machine ...

- American mathematician, Alonzo Church, proposed λ calculus.
 - It only consists of one input functions.
 - Two operations : Function definition and application
 - Forms the basis of functional languages like Scheme & ML
- Church along with Kleene and Rosser, formed a new formalism based on repeated function recursion.

ヘロト ヘアト ヘビト ヘビト

1

Abstract Machine Models Theoretical Instruction Sets

Church-Turing Thesis

Question

- Can I design a computer that can compute anything from differential equations to estimating the number of people who like Chicken Tandoori in Delhi ???
- What if in the future, I get a problem, which this problem cannot compute? For example, that only does addition and subtraction, it is impossible to write a program that prints out my name *n* times. *n* is an user input.

イロト イポト イヨト イヨト

Abstract Machine Models Theoretical Instruction Sets

Church Turing Thesis - II

Answer

Everything computable is computable by a Turing machine.

- This is a thesis, not a theorem.
- It has held for the last 75 years.
- There are some functions that are not computable by a Turing machine.
 - Write a function to find if a program contains an infinite loop.

99.9999 ... 999% of the programs that we encounter everyday, can be solved by a Turing Machine.

イロト イポト イヨト イヨト

Abstract Machine Models Theoretical Instruction Sets

Outline

2 History

- Ancient Age
- Middle Age
- Modern Age

3 Theoretical Developments

- Abstract Machine Models
- Theoretical Instruction Sets

→ Ξ → < Ξ →</p>

< 🗇 🕨

э

Abstract Machine Models Theoretical Instruction Sets

Von Neumann Machine

•

Smruti R. Sarangi Introduction to Computer Architecture

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Abstract Machine Models Theoretical Instruction Sets

One Instruction Set Computer

Smruti R. Sarangi Introduction to Computer Architecture

ヘロト 人間 とくほとくほとう

Abstract Machine Models Theoretical Instruction Sets

Basic Instructions

Smruti R. Sarangi Introduction to Computer Architecture

ヘロト 人間 とくほとくほとう