
Architecture Reconstruction from Code for Business
Applications - A Practical Approach

Santonu Sarkar
Accenture Technology Labs, Bangalore, India

santonu.sarkar@accenture.com

Vikrant Kaulgud
Accenture Technology Labs, Bangalore, India

vikrant.kaulgud@accenture.com

ABSTRACT
During application development or maintenance, the appli-
cation (or a family of applications) under consideration often
co-exists with several existing applications. This obviously
requires the team members to be aware of the underlying ar-
chitecture of these applications. To comprehend a complex
code base it is necessarily to create multiple views (such
as functional, technical, deployment etc.) of these applica-
tions, at multiple levels of abstraction. In absence of any
formal documentation, and due to unavailability of any au-
tomated tool, the practitioner ends up creating a partially
complete, ambiguous design from code and thereafter con-
tinuously struggle to keep it up-to-date. Most of the state-
of-art tools reconstruct a low-level design from a code base.
For a typical business application having a large code base,
extracted low-level design is extremely complex to compre-
hend due to overwhelmingly large number of fine grained
entities and their relationships. In this paper, we describe a
semi-automated, iterative approach, called the ”Design Dis-
covery Method”(DDM), to model the hierarchical functional
architecture of a family of applications at three levels of ab-
straction. We have experimented DDM on a few real life
systems with multiple applications written in Java and re-
ceived encouraging feedback from the practitioners on the
overall approach.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.10 [Software Engineering]: Design—Repre-
sentation

General Terms
Design

Keywords
Technical Design, COTS, Ontology, Architecture Style

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWRE’10, Feb 25, 2010, Mysuru, Karnataka, India

1. INTRODUCTION
In an application development project, the system under

construction, often co-exists with several existing applica-
tions. This obviously requires the designers to be aware of
the underlying architecture of existing applications. In a
maintenance scenario, the team inherits a large code base
of a family of applications, and struggles thereafter, to com-
prehend the code base by manually reconstructing various
views of the software. Comprehension of the underlying ar-
chitecture of business applications at different levels of ab-
straction is paramount for their development and mainte-
nance. An appropriately reconstructed architecture (or de-
sign) of a family of applications can significantly help the
design, development and maintenance team to accomplish
their tasks. An important question here is that what sort
of design should be reconstructed? Most of the state-of-art
tools reconstruct a low-level design from a code base. This
serves the purpose of visualization of the code very well, but
the question remains whether code visualization is sufficient
for comprehension. For a typical business application hav-
ing a large code base, extracted low-level design is extremely
complex to comprehend due to overwhelmingly large num-
ber of fine grained entities and their relationships. Through
our interactions with the practitioners, we found the follow-
ing issues with current tools:

1. The low level design of a system does not help the prac-
titioners to understand the functional model of system,
without which, the reconstructed low-level design by
the tool remains a poor comprehension aid.

2. Current tools do not provide the ”top level view” of
the application environment- specifically other exist-
ing applications with which a particular application
co-exists and collaborates. Without this, practitioners
never understand the overall context and find it diffi-
cult to gauge the complexity of a feature enhancement,
or a change request.

To address these concerns, we have implemented an it-
erative mechanism, called the ”Design Discovery Method”
(DDM), to model the hierarchical functional architecture of
a family of applications and link it with the codebase. The
iterative mechanism combines automated discovery of the
design from the code and the functional expert’s viewpoint
of the system. This project is currently in progress. In this
paper we provide an outline of the approach.

The paper has been organized as follows. In the next sec-
tion we provide a short survey of the existing works in design
recovery and provide motivation behind our approach. In



Section 3 we briefly discuss the approach we have adopted,
and the response we have obtained from our experiments.
Finally we conclude the paper by discussing the issues re-
lated to the current approach and future plans.

2. BACKGROUND AND RELATED WORK
A representation of an application or a family of applica-

tions, that models the structural organization of these ap-
plications in terms of constituent components, their interac-
tions among each other and with the environment is known
as the software architecture [1]. Software architecture in it-
self, is complex and multidimensional, and it is expressed as
different views [3]. An architecture consists of one or more
architecture styles such as pipe and filter, and layered archi-
tecture to name a few [3]. The architecture also documents
various quality attributes of the application, namely perfor-
mance, security, reliability and so on. A software architec-
ture of a family of applications, containing the above men-
tioned aspects, has always been deemed necessary for com-
prehension, analysis and implementation. In reality, how-
ever, the practitioners often find it difficult to represent the
architecture containing all these aspects. Furthermore, as
applications continuously evolve, the underlying code drifts
away from the original architecture. This calls for an au-
tomated architecture recovery mechanism [6]. Discovery of
all the architectural aspects from the code (different views,
styles, quality attributes and so on) is extremely challeng-
ing; the underlying programming language is not capable
of capturing the architectural characteristics. The architec-
ture reconstruction, therefore, can’t be fully automated; it
has to be iterative, and interactive [5]. Ducasse et al. [4]
have given a comprehensive survey of various architecture
recovery approaches. Ducasse et al. have classified the ap-
proaches into three categories, namely bottom-up, top-down,
and hybrid approach. A bottom up approach extracts low
level implementation information from the source code and
provides a visualization mechanism to view the extracted
information. A typical top-down approach such as the Re-
flexion mechanism[7] allows the designer to define the high
level architectural model in terms of modules and their in-
teractions. Then the designer describes how this model is
mapped to the source code. The discovery tool then uses
the mapping information to link code elements with the high
level model. The hybrid approach is a combination of these
two. For instance, the approach proposed by Sartipi [11]
uses the low-level information extracted from the code as
well as the high level design elements to reconstruct the ar-
chitecture. Our earlier paper [9] also uses a hybrid approach
to discover layered architecture style from the source code.
The approach proposed by Sangal et al. [8] also extracts
layered architecture style only based on structural charac-
teristics of the code.

3. PROPOSED APPROACH
We model the architecture of a family of applications as

the hierarchy modules, with three levels of abstractions. The
idea has been explained in Figure 1. We explain the model
in the following subsection.

3.1 Model
The topmost level of abstraction in this figure captures

the application itself, or a family of applications, and the

Figure 1: Functional Architecture- Hierarchical
Model

environment. Interactions of these applications among each
other and with the environment are captured in the model.
Each application, if necessary, is then hierarchically decom-
posed as a collection of coarse grained functional compo-
nents. Thereafter, each component is further broken down in
terms of packages, fine grained implementation classes and
their interactions as illustrated in Figure 1. Finally, each im-
plementation class and package are linked to the codebase.
Such a hierarchical representation can manage the under-
lying complexity of the system through abstraction. Thus,
this approach helps practitioners to easily understand the
application; starting from its environment, and navigating
down to its implementation details.

To represent the hierarchical representation, we have used
Acme [12] as the architecture description language. The lan-
guage supports hierarchical decomposition. Furthermore,
the language allows us to define new component types which
are extremely useful to capture the notion of a business ap-
plication, external systems, database and so on. With the
help of component types such business application, databases,
external systems we can model the family of applications,
their interactions and the environment. One may refer to
our earlier publication [10] for a detailed description of the
type system.

3.2 Process
Our approach falls under the hybrid mechanism as de-

scribed in [4]. DDM uses a combination of a manual top-
down and an automated bottom up approach to construct
the architecture, at three levels of abstraction, shown in Fig-
ure 1. The process has been shown in Figure 2.

Bottom-up. In the bottom up approach, the tool uses avail-
able fact extractors to extract code facts from the source
code. It creates the implementation level view in terms of
implementation classes and packages. Next, in the ”Discover
Functional Modules” step in Figure 2, the tool constructs a
set of coarser grained functional components at the next
higher level of abstraction. The heuristics utilizes the direc-



Figure 2: Architecture Extraction Process

tory structure of the codebase, since developers often uses
directory structure to organize the code elements related
to a functional component. Currently the tool decides the
component name from the name of a directory residing at a
certain depth. The depth is decided by analyzing the direc-
tory tree and the maximum fanout.

Top-down. In the top-down approach, the designer manu-
ally creates the architecture at the highest level of abstrac-
tion; here the human expert defines the topmost view, in
terms of a family of applications in Acme. At this level the
designer typically defines the applications under consider-
ation, external systems and third party applications using
our own architecture family [10]. The DDM tool then as-
sists the practitioners to link this architecture model with
the extracted mid-level components as shown in Figure 2.
We have also defined a lightweight process to keep the re-
constructed model in sync with the system (or the family of
systems) as it evolves. In the following section we illustrate
this process in more details with the help of an example.

4. DISCUSSION
In this section we illustrate the approach using a familiar

example of Java “Petstore”. A Petstore is a simple on-line
application that allows user to log in to a portal and buy
pets. The example illustrates various aspects of a web-based
distributed application. For our purpose we have chosen the
Petstore version 2.0[2]. The top level and mid level archi-
tecture of Petstore has been shown in Figure 3 and Figure 4
respectively. As discussed in the beginning of Section 3, the
top level architecture in Figure 3 is created manually. Here
the architect defines the applications such as the petstore,
and other external systems with which it interacts such as
the document search module (SearchEngine), map and geo-
location identifier (GeoMap), RSS feeds (RSSFeeder) and
credit card payment module (Paypal). Next, by analyzing
the petstore code base, DDM finds out the set of classes,

Figure 3: Petstore Architecture- Top Level

their interactions and packages. This forms the design at
the lowest level of abstraction. The classes and packages are
then grouped together to form higher level components, as
shown in Figure 4. This forms the design at the next higher
level abstraction. The tool decides the name of the compo-
nent from the name of package hierarchy. For Petstore, the
selected names are: controller, search, model, util,

captcha, mapviewer and proxy. These components are then
manually linked to the petstore application in Figure 3 so
that they become subcomponents of “petstore”. To link
these components, we utilize the notion of representation
in Acme. Note that a representation of a component in
Acme models hierarchical decomposition of the component
into more fine grained (sub)components. After the linking
is complete, we now get the architecture of petstore system
at three levels of hierarchy.

We have experimented DDM on a few other real life sys-
tems with multiple applications written in Java. Specifically,
we wanted to understand the usefulness of the model and the
effort required for complete reconstruction. The initial feed-
back is encouraging. Even for a large codebase, the bulk



Figure 4: Petstore Architecture- Next Level

of the effort to construct the lower level views, are created
automatically (with manual correction) by the bottom-up
approach. The top-down views are not effort intensive at
all even for large family of applications. This is due to fact
that at the highest level of abstraction, the number of ex-
tremely coarse grained components are not that many and
can be easily created by hand. We believe that the complex-
ity of maintenance of the model can be managed through our
process. Project teams felt that the architecture at multi-
ple levels of abstraction helps in integrating the functional
knowledge of business applications with design reconstruc-
tion techniques to create a unified, hierarchical model. Most
importantly, we found the model to be an effective commu-
nication mechanism between the business analysts (who are
functional experts) and the designers. We hope that such a
representation will eventually lead to a better comprehen-
sion for application development or maintenance work.

5. CONCLUSION
In this paper we describe an approach to extract the func-

tional architecture at multiple levels of hierarchy from code.
The architecture consists of three levels of hierarchy, mod-
eled using Acme architecture description language. In this
paper we illustrate this approach using Petstore as the ex-
ample. Representing the architecture at multiple levels of
hierarchy is an effective mechanism to comprehend the sys-
tem. Our interaction with the practitioners have validated
this hypothesis. The notion of integrating the top level func-
tional view with the low level detailed design view has its
own challenges. The current heuristics to construct the mid
level components is relatively naive. This can certainly be
improved to get a more accurate set of components.

Extraction of information from source code can only pro-
vide the structural information of the application. Unfortu-
nately this information hardly provides any clue to various
other architectural information such as the architecture style
used, the technical components, non-functional attributes
and other stuff. Recovering those aspects from source code
only is not always possible. User-assisted automatic discov-
ery of these architectural characteristics will be an interest-
ing research area to explore.

As the next step, we intend to improve the heuristics to
recover higher level components. We also intend to analyze
other artifacts such as SQL table schema, configuration files,
use case documents and discover their relationships with the
source code. While interacting with the practitioners, we re-

alized that keeping the extracted model up-to-date with the
latest development will be an important factor. We intend to
take up some of the above challenges as the future research
direction.

6. REFERENCES
[1] IEEE Recommended Practice for Architectural

Description of Software-Intensive Systems, 2000.

[2] M. Basler, S. Brydon, D. Nourie, and I. Singh.
Introducing the Java Pet Store 2.0 Application. 2007.

[3] P. Clements, F. Bachman, L. Bass, D. Garlan,
J. Ivers, R. Little, R. Nord, and J. Stafford.
Documenting Software Architecture. Addison Wesley,
September 2002.

[4] S. Ducasse and D. Pollet. Software Architecture
Reconstruction: A Process-Oriented Taxonomy. IEEE
Transactions on Software Engineering, 35(4):573–591,
2009.

[5] J. Grundy and J. Hosking. High-Level Static and
Dynamic Visualisation of Software Architectures. In
Symp. of Visual Languages, pages 5–12, 2000.

[6] N. Medvidovic and V. Jakobac. Using Software
Evolution to Focus Architectural Recovery. In
Automated Software Engineering, volume 13, pages
225–256, 2006.

[7] G. C. Murphy, D. Notkin, and K. J. Sullivan. Software
Reflexion Models: Bridging the Gap between Design
and Implementation. IEEE Transactions on Software
Engineering, 27:364–380, 2001.

[8] N. Sangal, E. Jordan, V. Sinha, and D. Jackson. Using
dependency models to manage complex software
architecture. In Proceedings of OOPSLA’05, pages
167–176, 2005.

[9] S. Sarkar, G. Maskeri, and S. Ramachandran.
Discovery of Architectural Layers and Measurement of
Layering Violations in Source Code. Journal of
Systems and Software, 82(11):1891–1905, 2009.

[10] S. Sarkar and A. Panayappan. Formal Architecture
Modeling of Business Application− Software
Maintenance Case Study. In IEEE Tencon, Region 10.
IEEE, 2008.

[11] K. Sartipi. Software Architecture Recovery based-on
Pattern Matching. PhD thesis, School of Computer
Science, University of Waterloo, 2003.

[12] B. Schmerl and D. Garlan. AcmeStudio: Supporting
Style-Centered Architecture Development. In
Proceedings of the 26th International Conference on
Software Engineering, 2004.


