Learning from history

How studying software evolution
can make us wiser

Michael W. Godfrey
University of Waterloo %

Overview

What, exactly, is software evolution?

Evolution in open source software
— The Linux kernel

Copy/paste as a principled engineering tool

Learning from history

Joint work with

Daniel German

Cory Kapser

Abram H
Ric Holt
Qiang Tu

indle

What, exactly, is
software evolution?

And how does it differ from
software maintenance?

The bluegill sunfish So ...

* ...to understand how a “thing” evolves, you must
understand:
— the thing and its programming,

* Female
e “Paternal” male

° “" n”
Cuckolder” male — its environment, and

— Sneaker (age 2-3) — how they can influence each other.
— Satellite (age 4-5)

* ...and “hard coding” can still lead to flexible,

* An evolutionarily-stable)) .)
interesting run-time behaviours

‘ strategy (ESS) ... decided
Kin Recognition on at run-time *

and F’lr,)mxsculty
. = L 2

Evolution vs. Maintenance Responding to evolutionary pressures
. . * Software is expected to evolve
Maintenance Evolution — Lehman’s first law: Adapt or die
e “Keep it running” * Essential, design change — Software doesn’t decay physically

« Active, engineering view: * Passive, scientific view: * Rather, the environment and our expectations change

What ought be done and how? What happened and why? y . o
_ y " * “Intelligent design
* Study planned activities * Study “whatever happens _ Parnas: Design for change
e.g., unplanned phenomena such as * Info hiding, virtualize likely hotspots, design reviews
interface bloat, emergent uses _ 00 dev frameworks. AOSD

... but you can’t anticipate everything
... and flexibility has a cost

Responding to evolutionary pressures

* Selection and adaptation

— The deployment environment (users) “selects” individuals and
features for success

— Tho, unlike in biology, this can also be planned + evaluated

* Software systems often exhibit emergent properties
(cf. “spandrels”)
e.g., vmware as farm management + malware tool /tf'“"":"
XML as a DB
IM as a debugger
WWW as externalized memory

Evolution in open source software

A case study of the Linux kernel

Why study software evolution?

* To improve understanding

— Why is your system is designed as it is?
c.f. the “temporal layers” architectural pattern

— Quality assessment of third-party software

— Challenge perceived truths

* To better anticipate change and reduce risk

— Spot recurring problems, development bottlenecks

— Better informed decision making by management

Because we can :-)

Lehman’s Laws of Evolution

Continuing change — A system will
become progressively less satisfying
to its users over time, unless it is
continually adapted to meet new
needs.

Increasing complexity — A system
will become progressively more
complex, unless work is done to
explicitly reduce the complexity.
Self-regulation — The process of
software evolution is self regulating
with respect to the distributions of
the products and process artifacts
that are produced.

Conservation of organizational
stability — The average amount of
work that goes into each release is
about the same.

Conservation of familiarity — The
amount of new content in each
successive release of a system tends
to stay constant or decrease over
time.

Continuing growth — The amount of
functionality in a system will increase
over time, in order to please its users.

Declining quality — A system will be
perceived as losing quality over time,
unless its design is carefully
maintained and adapted to new

Feedback system — Successfully
evolving a software system requires
recognition that the development
process is a multi-loop, multi-agent,
multi-level feedback system.

Total LOC

Lehman’s Laws [in a nutshell] The S curve

* Observations
— (Most) useful software must evolve or die.

— As a software system gets bigger, its resulting complexity tends
to limit its ability to grow.

— Development progress/effort is (more or less) constant; growth
is at best constant.

Lehman/Turski’s model: y’=y + E/y2 ~ (3Ex)1/3
where y= # of modules, x = release number

* Advice size
— Need to manage complexity.
— Do periodic redesigns.

— Treat software and its development process as a feedback
system (and not as a passive theorem).

time e———)

Growth of Lines of Code (LOC) SS LOC as %age of total system

y = .21*x2 + 252*x + 90,055 r2=.997 700 -,
2,500,000
/ — . - -

2,000,000 T g £ .". . e ' * drivers
§° + arch
§ include

500,0 Va P 2 400 | « net

1,500,000 o x E 'S

vl £ + kemsl
A 3
el o
,,,,,, - e L] ipc

1 i —r]

Vs ot e 3 -~ fib
'7_,.4:’—/ g 200 4 WSS init
et
g : "
$00,000 - 7 E — ; . . . : s e, [Lo
- { & 100 - — e mmen T T VP
/f_q_;,.“‘ g 100 P S L S e T o T
H]
P Umomil mImpimms mmtmsessmmssamasse messess

Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1969 Apr 2001

SS LOC as %age of total system Average / median . h file size

300
§ 250
200

150

§ 100

-» Average h file size - dev. releases
50 -+ Average hfile size - stable releases
- ~a Median h file size - dev. releases.
¢ -« Median hfil size — stable releases
00

Change patterns and Change patterns and
evolutionary narratives evolutionary narratives

¢ “Band-aid evolution”

* Phenomena observed in Linux evolution . .
— just add a layer, temporal architecture

— “Open” encourages participation, from industry too

— Careful control of core code; more flexibility on R

)) i “Vestigial features”
contributed drivers, experimental features

— “Mostly parallel” enables sustained growth . “Convergent evolution”
* “Hard interfaces” make good neighbours.

* Loadable modules makes feature development easier . L.
* “Adaptive radiation” [Lehman]

— When conditions permit, encourage wild variation
— Later: evaluate, prune, and let “best” ideas live on

— “Clone and hack” makes sense!

Copy/paste as a principled

engineering tool

and this code ...

const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err = NULL) {
return err;
}
ap_threads_per_child = atoi(arg);
if (ap_threads_per_child > thread_limit) {
ap_log_error(APLOG_MARK, APLOG_STARTUP, 0, NULL,
"WARNING: ThreadsPerChild of %d exceeds ThreadLimit "
"value of %d threads,", ap_threads_per_child,
thread_limit);

ap_threads_per_child = thread_limit;

}

else if (ap_threads_per_child < 1) {
ap_log_error(APLOG_MARK, APLOG_STARTUP, 0, NULL,

"WARNING: Require ThreadsPerChild > 0, setting to 1");

ap_threads_per_child = 1;

}

return NULL;

Consider this code...

const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err = NULL) {
return err;
}
ap_threads_per_child = atoi(arg);
if (ap_threads_per_child > thread_limit) {
ap_log_error(APLOG_MARK, APLOG_STARTUP, 0, NULL,

"WARNING: ThreadsPerChild of %d exceeds ThreadLimit "

"value of %d", ap_threads_per_child,
thread_limit);

ap_threads_per_child = thread_limit;

}

else if (ap_threads_per_child < 1) {
ap_log_error(APLOG_MARK, APLOG_STARTUP, 0, NULL,

"WARNING: Require ThreadsPerChild > 0, setting to 1");

ap_threads_per_child = 1;
}
return NULL;

... or these two functions

gnumericin (FunctionEvalInfo *ei, GnmValue const * const
{

riiurn val_to_base (ei, argv[@], argv[l],

&)z,
7, GNM_cons,
V2B_STRINGS_MAXLEN V2B_STRINGS_BLANK_ZERO);

gnumer‘i-in (FunctionEvalInfo *ei, GnmValue const * const
{

return val_to_base (ei, argv[@], argv[1l],

@ 2;
-, GNM_cons(9999999999.15,
V2B_STRINGS_MAXTEN VZB_STRINGS_BLANK_ZERO);

*argv)

*argv)

Or this ...

static PyObject *
py_new_RangeRef_object (const GnmRangeRef *range_ref){
py_RangeRef_object *self;
self = PyObject_NEW py_RangeRef_object,
&py_RangeRef_object_type);
if (self == NULL) {
return NULL;
ks
self->range_ref = *range_ref;
return (PyObject *) self;

What’s in a clone?

* Cloning versus similarity

— “Software clones are segments of code that are similar according
fo some definition of similarity.

— Ira Baxter, 2002
— Hard to compare results!

* Bellon’s taxonomy:
Type 1: Program text identical; white space / comments may differ
Type 2: ... also literals + identifiers may be different
Type 3: ... gaps allowed (can add / delete sections)
Type 4: Two code segments have same semantics

... and this

static PyObject *
py_new_Range_object (GnmRange const *range) {
py_Range_object *self;

self = PyObject_NEW (py_Range_object,
&py_Range_object_type);

if (self == NULL) {
return NULL;

ks

self->range = *range;
return (PyObject *) self;

}

Code clone detection methods
* Strings i .

Time and complexity

* Tokens / prog lang dependence
* ASTs
* PDGs
* Metrics

* “Lightweight” semantics

Similar but different Quotes on source code cloning

* Problems related to software clone detection

FACTORING “Number one in the stink parade is
— Plagiarism detection, IP theft RHAUOR[A\(’ i

IMPROVING THE DESIGN dUp/iCOted code.

— DNA sequence anaIysis OF ExistinG Cobe

— Software compression e e b e If you see the same code structure

Wikl Oy e, s Dom Reberts

in more than one place, you can
be sure that your program will be
i better if you find a way to unify

— SPAM analysis, malware detection

I i them.”
— “Bad Smells” [Beck/Fowler in
Refactoring]
Why cloning is supposed to be bad What you are supposed to do instead
* Code bloat * |dentify commonalities across code base

|II

— Design becomes harder to understand, less “essentia

* Refactor duplicate functionality to one place in the
* Inconsistent maintenance likely code:
— Functions with parameters

* Ossified design, poor extensibility — Base class encapsulates commonalities, derived classes

— Cruft accrues as developers fear changing working code speC|a.I|ze LA .
— Need to keep doing same kinds of things, but there’s no — Generics / templates for classes / functions

easy way to automate it

‘Cloning considered harmful’
... considered harmful*

1. Forking 3. Customizing
— Hardware variation — Bug workarounds
— Platform variation
— Experimental variation

— Replicate + specialize

2. Templating
— Boilerplating
— APl / library protocols

— Generalized programming
idioms
— Parameterized code

*Best paper at 2006 Working Conference on Reverse Engineering

1. Forking: Platform variation

* Motivation:
— Different platforms = very different low level details

— Interleaving the platform-specific code in one place may be
very complex

* Advantages of cloning:
— Each (cloned) variant is simpler to maintain
— No risk to stability of older variants

— Platforms are likely to evolve independently, so
maintenance is likely to be “mostly independent”

1. Forking

* Often used to “springboard” new or experimental
development
— Clones will need to evolve independently
— Big chunks are copied!

¢ Works well when the commonalities and difference
of the end solutions are unclear.

1. Forking: Platform variation

* Disadvantages:

— Evolution in two dimensions: the user requirements and the support of
the platform.

— Change to the interface level means changes to many files

» Management and long-term issues:
— Factor out platform independent functionality as much as possible
— Document the variation points and platform peculiarities

— As number of platforms grows, the interface to the system
effectively hardens

1. Forking: Platform variation 2. Templating

* Structural manifestations: + Code embodying the desired behavior already exists
— Cloning usually happens at the file level. — ... but the impl. language does not provide strong support for the
+ Clones are often stored as files (or dirs) in the same source directory desired abstraction

+ Linked editing or source auto-generation can be used
* Well known examples:

— Linux kernel “arch” subsystem E |
— Apache Portable Runtime (APR) * xamples

+ Portable impl of functionality that is typically platform dependent, such as — COBOL boilerplate code
file and network access C routines that treat floats and ints analogously

* fileio -> {netware, o0s2, unix, win32} (old) Java code that could have used generics
* Typical changes: insertions of extra error checking or API calls. API usages for common tasks (eg GUI creation)
* Cloning is clearly obvious and is documented Language / platform idioms, such as safe pointer handling

3. Customization Two case studies

 Existing code solves a similar problem but you Group Pattern Good Harmful Good Harmful
can’t or won’t change it "

— May not own the code [Microsoft: “Clone and own”] 4 0

— May not want to risk change there N !

— Changing may be too complex 0 12

12 P

+ Examples: 0 0
— Replicate and specialize Total 36 28 32 67

= Bug workarounds Apache httpd 2.2.4 - 60 Tokens

CoDE CLONING IS

OFTEN VSEFVL
IN THE LONG RUN

The nature of software evolution

Change is essential to software development
[Brooks, Lehman]

“Maintenance” + “evolution” connote different ideas

— Maintenance: What should we do and how? (engineering)
— Evolution: What happened and why? (science)

— We need both views!

To understand the whole picture of how software
evolves, we need to study systems in context of use

Learning from history

Summing up

What history taught me

Study what you already have and understand
— Take it apart and see how it works (e.g., Linux study)

Challenge pre-conceived notions
— Create testable hypotheses + evaluate them (e.g., cloning)

Software archives contain lots of rich data
— But need to process, link, mine the artifacts

Need to continually re-examine reasonableness of
assumptions
— Don’t blindly trust the numbers; dig and validate!

References

“The past, present, and future of software evolution”
by Michael W. Godfrey and Daniel German

Proc. of the Frontiers of Software Maintenance track at the 2008
IEEE Intl. Conf. on Software Maintenance, Beijing, China.

“*Cloning considered harmful’ considered harmful”
by Cory J. Kapser and Michael W. Godfrey

Proc. of 2006 Working Conference on Reverse Engineering,
Benevento, Italy. (Best paper award)

“Evolution in open source software: A case study”
by Michael W. Godfrey and Qiang Tu

Proc. of the 2000 IEEE Intl. Conf. on Software Maintenance, San
Jose, CA.

Learning from history

How studying software evolution

can make us wiser

Michael W. Godfrey
University of Waterloo

