
A Knowledge Transaction Approach for the Request
Lifecycle in Application Maintenance

Himanshu Tyagi
Software Engineering and Technology

Labs
Infosys Technologies Limited

Manikonda Village, Lingampally
Rangareddy District

Hyderabad, India
91- 9703016128

Himanshu_Tyagi@infosys.com

 Kapil Shinde
Software Engineering and Technology

Labs
Infosys Technologies Limited

Plot no 1, Rajiv Gandhi InfoTech Park

Phase I Hinjawadi, Taluka Mulshi
Pune, India

91-9881135508

Kapil_Shinde@infosys.com

ABSTRACT

Software engineering, especially software maintenance, is a
knowledge intensive task. Detailed studies in the past have delved
on - program understanding, comprehension mental models,
application domain knowledge and maintenance ontology as some
of the ways in which knowledge can be effectively represented.
Significant insights have been extracted through these studies but
they remain discrete. Our study puts Request for Change/problem
ticket raised by a business user at the center stage and dwells upon
the interplay of different knowledge elements in the lifecycle,
under the request context. By treating the request lifecycle as a
transaction, forming a complete unit of work, knowledge
accumulation and reuse is demonstrated. We also discuss the
results of a survey of the software maintenance practitioner
community. We proposed and implemented a solution, where we
demonstrated, through the interplay of the problems tickets,
application domain knowledge, application code and test assets, a
maintenance process which enables creation and leveraging of
multi-dimensional knowledge on-the-fly.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
Interactive Environments.

D.2.7 [Software Engineering]: Distribution, Maintenance and
Enhancement – Documentation

General Terms

Management, Documentation, Experimentation

Keywords

Application Maintenance, Application Domain, Knowledge
Reuse, Maintenance Request Lifecycle, Knowledge Repository

1. INTRODUCTION
Application maintenance as a knowledge intensive activity is very
well recognized. Studies report that 40% to 60% of the software
maintenance effort is devoted to understanding the system [6, 7].
The knowledge aspect in software maintenance has been studied
from multiple perspectives. A significant work in this area has
been focused on understanding the comprehension process of
application code by the maintenance engineer. Work on the
program understanding aspect [11, 12] highlights the multi-level
switching approach between program, situation and top down
models. It also reveals that the current practice of documentation
and coding does not encourage understanding as it puts the
knowledge in silos and does not support the cognitive needs.

Additionally, in the program comprehension studies [1],
knowledge is classified in 3 domains: Domain knowledge,
FORTRAN/language knowledge and programming knowledge. A
wider scope study by Dias et al [5] has been on devising ontology
for maintenance: System Sub-ontology, skills sub-ontology,
modification process sub-ontology, organizational structure sub-
ontology and application domain sub-ontology.
There have been contradicting studies on the usefulness of domain
knowledge. One of the studies [9] points out low reuse of domain
knowledge. But in another study [10] the role of domain
knowledge in program understanding is deeply emphasized. The
interesting aspect here is the emphasis on having a relation
between the why (domain knowledge) and what (program
implementation) and the duo forming a coherent whole [10].

The work in the above mentioned studies has been significant and
encapsulates the knowledge needs for maintenance well. We, with
the experience of working on application maintenance across
diverse domains in a large IT consultancy firm, extend some of
the work and offer the practitioner’s perspective. Via a survey of
maintenance engineers and managers working on live applications
running in production, we have captured the point of view on the
utility of domain knowledge for application maintenance.
Targeting some of the current issues plaguing maintenance (as
highlighted in section 2 below), we have also created and
implemented a knowledge based solution that uses the “Request
for Change” (also referred to as “maintenance request” or
“request”) in the change life cycle as the focal point. It then tracks
and records the knowledge created in the form of domain
knowledge, impacted code and test cases, within the context of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

“Request for Change”. This knowledge is then made available for
reuse for similar requests for change. To illustrate, an error
reported by a business user in the booking creation of a domestic
courier management application is taken as the request for change.
The maintenance lifecycle for this request for change will span
across multiple knowledge types: the domain knowledge related
to booking creation, the programs and screens for creation of
booking in the application and the test cases for validation of the
fix carried out by maintenance team.

Each request for change is treated as a transaction which then is
pushed to a database resulting in a composite knowledge
repository that provides a powerful enabler for the maintenance
community. In effect, it provides a platform to leverage the past
experiences to solve the problem at hand.

The focus of our work has been adaptive and corrective
maintenance that are carried out to meet the expected and changed
requirements of the end user [4]. The work is initiated by briefly
highlighting the issues with the currently prevalent methodology
to execute adaptive and corrective maintenance. We then share the
result of a survey carried out with the participation of twenty five
practitioners involved in maintenance of applications from health
care, banking, telecom, manufacturing and retail domains. This
survey documents the value of domain knowledge in application
maintenance, as judged by the practitioner community. We then
introduce and elaborate on the “Business Process Driven
Maintenance- the transaction based approach” and with the
resolution of maintenance requests through the solution built on
this approach; we validate the vital role of persisting multi-
dimensional knowledge (maintenance request, application code,
application domain and test assets) in software maintenance.
Towards the end we highlight some of the problem areas that are
not covered by this approach and work that needs to be done
further.

2. CURRENTLY PREVALENT

PRACTICES AND ISSUES
Currently application maintenance is executed through well
designed quality processes and framework, supported by problem
management and engineering products that support the request
lifecycle from creation till closure. But despite a robust process
framework, there are challenges when it comes to providing an
efficient and effective solution. The robust quality process
framework ensures that the maintenance lifecycle is followed
consistently and repeatedly, deliverables are created, and reviews
are carried out. The engineering solutions ensure that there is
automation in impact analysis, in test management and in test
execution. But is the solution aligned to the need of the business
user and is the valuable learning, which the support team accrues
while working on the request, being captured? Why does a user
need the requested change, what is the business need, where are
the program and domain connected? [10]. Are these addressed,
and eventually recorded and leveraged for future use?
Unfortunately, the answer is that these aspects are not well
addressed.

The learning, which is combination of application domain
knowledge and business rules, is absorbed effectively during the
course of problem resolution, but it remains volatile and once the
request lifecycle is complete, this knowledge is lost. Since
program comprehension consumes more than 50% of resources of

software maintenance and evolution, the knowledge thus acquired
is a very valuable commodity [8]. Yet in current practice, that
value is lost. Despite high value offered by the application domain
knowledge, the current processes and associated tools do not
provide effective and efficient mechanism for capture of this
knowledge. Unstructured knowledge dominates this space, thus
creating knowledge silos. This also fosters dependency on Subject
Matter experts which is not a healthy practice.
Documentation and maintenance of domain knowledge is not
mandated as part of software maintenance lifecycle and thus is not
a focus area for the maintenance team.

Additionally, the programmer switches context between program,
situation and top down models [11, 12] and thus warrants the need
of a solution that provides a smooth transition between these
contexts.
Before we elaborate on the solution that attempts to address some
of the challenges, we share the results of the survey conducted
across the application maintenance community at our organization
on their viewpoint on the utility of application domain knowledge
for application maintenance.

3. SURVEY FINDINGS
A survey of 25 application maintenance practitioners was

conducted. The experience level of these practitioners in
maintaining their respective applications ranges from 1 year to 9
years. This sample space represents diverse domains viz.,
insurance and health care, retail, telecom, banking, manufacturing
etc with 23 out of 25 that is 92% respondents have been working
on the application maintenance for more than 2 years.

A total number of 11 questions were asked covering aspects
related to documentation, utility, usage and maintenance of
business process knowledge as applicable in application
maintenance. Apart from predefined multiple choice of answers,
some subjective responses were also elicited.

The survey questions are listed below.

1) How many years have you been working on the maintenance
of the current application?

2) What is the percentage of the tickets/requests (Bug fixes) that
require comprehension/knowledge of the business process to
fix the issue in the application code? (This is to eliminate
request fixes which are non-business intensive in nature for
example performance issue, change error description etc)-
Corrective Maintenance

3) What is the percentage of the enhancements (Major/Minor)
that require comprehension/knowledge of the business
process to deliver the enhancement? (Adaptive Maintenance)

4) Please rate the following phases based on the extent of
business process/functionality knowledge required to
successfully execute the phase. The ratings can be
repeated.(1-Always required, 2-Mostly required,3-
Required,4-Partially Required,5-Never Required)

Initial Analysis, Impact Analysis, Build (Code Fix and Unit
Testing), Functional Testing

5) Please rate the following phases on extent of business
process/functionality knowledge
acquired/gathered/assimilated/imbibed in executing the
phase. So in which of the application lifecycle phase is the

learning of business processes at its peak. The ratings can be
repeated.

(1-Always required, 2-Mostly required, 3-Required, 4-
Partially required, 5-Never Required)

Initial Analysis, Impact Analysis, Build/Code Fix and Unit
Testing, Functional Testing, Any other

6) What is the current process/mode to document the business
knowledge?

7) Currently, which is the most often used source of business
knowledge for you?

8) Is documentation of business knowledge as models that are
workflows and activities (business process modeling)
beneficial in maintenance?

9) What is the biggest challenge in documentation of
business/functional knowledge?

10) How can contribution to business knowledge be simplified?

11) What level of granularity, either through a business model or
text based, would best help assimilation of business
knowledge?

Key findings from the survey are listed below:

• 76% respondents believe that more than 40% bug-fix
requests (i.e. corrective maintenance) require
knowledge of the underlying business processes to fix
the issue in the application code. Hence underscoring
that business knowledge is useful even in corrective
maintenance.

• Adaptive maintenance, by definition, is a manifestation
of changing or changed business needs. Not
surprisingly, 80% of the responses said that more than
40% of enhancement requests require knowledge of the
underlying business to deliver the enhancement

• It is obvious that in the initial stages (post transition) of
application maintenance (i.e. initial 1-2 yrs) , the
familiarity with the application is less and hence there is
a greater perceived need for business knowledge during
maintenance. This is also brought out by the survey,
where we observed that almost 89% of respondents
from the 1-2 year experience category believed that
more than 40% of adaptive maintenance work required
knowledge of the underlying business process.

• Even when maintenance engineers gain familiarity with
the applications with more years of working with it, the
need for application domain knowledge does not seem
to diminish, according to our survey. 75% of the
respondents , who have been working with the
application for more than 2.5 years still believed that
business process knowledge was important for more
than 40% adaptive maintenance activities

• When it came to the mode of documentation of the
business knowledge, 84% respondents said they updated
the system appreciation documents. System appreciation
documents are usually created during the time of
application transition and are updated often during the
lifecycle.

• 60% respondents also said that the business knowledge
is also documented in request level deliverables. This
also emphasizes the importance of the request context in
a maintenance scenario, wherein documenting the
(change in) business functionality at this level of
granularity is probably more relevant and useful in a
maintenance scenario.

• Although the above two formats (i.e. system
appreciation documents and request level deliverables)
form a very useful repository of business knowledge, it
must be observed that both are an unstructured
knowledge format.

• During the maintenance activity, all the respondents
said they depended mainly on a subject matter expert
(SME) or self-investigation as their primary source of
business knowledge. This, along with the presence of
unstructured knowledge, highlights the human
dependency for knowledge retention.

• Owing to the Service Level Agreement (SLA) driven
turn-around times for maintenance activities, time
constraint is the most reported (80%) reason for not
documenting the (change in) business knowledge.

• 56% respondents said that that the lack of a SME
hampers the business knowledge documentation. This
could point to either incomplete transition or loss of
business knowledge through resource churn. This is a
good case for a formal, structured documentation of
business knowledge in a manner and format which
would be useful for maintenance.

• 36% respondents said that the lack of suitable tools is
hampering the business knowledge documentation
activity. This raises an important issue of how the
current methods of knowledge capture are either
inadequate or ineffective for maintenance.

• Considering that 80% of the respondents cited lack of
time as the main reason why business knowledge is not
documented, it is not surprising that almost 72% of the
respondents feel that a facility which would allow
'knowledge creation on- the-go' would be most effective
for business knowledge acquisition and maintenance.

• 60% respondents believe that making knowledge
creation a mandatory activity would help. This suggests
an inertia , which may be have been induced due to the
fact that there is an utter lack of proper knowledge
documentation tools for a severely time constrained
activity such as application maintenance.

• Another interesting response says that knowledge
maintenance should also be made a factor while
estimating, so that adequate time is allocated. This gains
importance in the light of the fact that 80% respondents
have cited time constraint as the main reason for not
documenting business knowledge.

4. BUSINESS PROCESS DRIVEN

MAINTENANCE – THE TRANSACTION

BASED APPROACH

4.1 Introduction
For a support engineer, working on a maintenance request (bug-
fix or an enhancement), the focus is primarily centered on the
piece of code to be written/amended, service level
agreement(SLA) to be met and providing the right solution. For
the IT department, “lights on” is the areas to be concerned of. For
an end user, early access to the desired business feature is the
prime demand. While business user is concerned with the
availability of system to enable him to execute the intended
business process correctly, IT department is concerned with
understanding this need and providing a solution in shortest
possible time while meeting the desired functional and non-
functional requirements. With apparently different key objectives,
both are committed to excellence in business.

Our approach, in business process driven maintenance, is centered
on the basic theme of improving the value to the business by
providing enabler to the maintenance team to perform their tasks
effectively.

Considering the multi-dimensional knowledge [11, 12] and the
issue of volatile knowledge [8], the solution attempts to tackle
these, by treating the problem resolution lifecycle as a

“knowledge transaction”.

Similar to the program comprehension studies [1], we have
narrowed down four critical key elements, “knowledge atoms” of
an application under maintenance. These four critical elements

are: Maintenance request, Application Code under maintenance,

Application domain knowledge represented as process workflows

and business rules; and the test asset repository. The key in the
approach is to enable documentation of this knowledge in a
minimally intrusive way and connect these knowledge elements to
build a navigable, dense knowledge repository. This can be
enabled by providing multiple medium to “document while you
browse” which implies wherever the user is, provide the user a
quick means to seamlessly transfer his learning to a repository.

The solution thus enables accruing the vital domain knowledge
and additionally provides navigation across the “knowledge
atoms”, supporting the cognitive needs of the user.

4.2 Knowledge Atoms
The four “knowledge atoms” of an application under maintenance
are:

Maintenance Request/Problem – Maintenance request or problem
(used interchangeably) is the starting point of the lifecycle in
corrective maintenance. It carries information of what is expected
by the end user to ensure business as usual and/or to cater to
changed/additional business needs.

Application Code - This is the implementation of the business
process rules and flow in the programming languages usually
accompanied with a database at the backend.

Application domain– In the current approach, the application
domain knowledge is primarily created as business processes via a
process modeling solution.

Test Asset Repository- These are the test cases, to validate that the
solution delivered for the maintenance request meets the business
requirement.

Each day the support engineer, as part of the request examines the
application code, comprehends the business rules from application
code or inherits from the Subject Matter Experts, makes the code
changes and runs the test cases. But all the knowledge remains
tacit except for mandated deliverables.

The approach and solution to enable effective documentation and
utilization of this tacit knowledge distributed across the
knowledge atoms is “Business process driven maintenance”.
This is a bottom up approach. The lifecycle of a maintenance
request is treated as a “knowledge transaction” similar to a

database transaction. This request can be treated as a transaction
as there is a logical knowledge capsule that is built from the
starting point when the user begins the analysis, till the user
commits and releases the problem resolution. Similar to a
database transaction, there are checks built-in to ensure the
completeness of transaction

So, aligned to a database transaction, the widely accepted ACID
(Atomicity, Consistency, Isolation, and Durability) [2, 3] property
of a knowledge transaction has been implemented as follows:-

Atomicity- Following an “all or nothing” rule, the system, marks
the transaction as complete once all the knowledge atoms to be
created are available. So a request for change can be closed if and
only if the impacted application domain, code and test assets are
connected to the maintenance request.

Consistency - ensures that the knowledge repository remains in a
consistent state before the start of the transaction and after the
transaction is over.

Isolation- refers to the fact that till the problem resolution is
complete and hence the knowledge transaction is fit to use, other
transactions cannot access the same.

Durability- refers to the guarantee that once the user has
completed the problem resolutions, the transaction will persist
thus resulting in a repository rich with historical data.

By applying ACID property to the knowledge transaction, sanity
of the knowledge, which spans across multiple knowledge atoms,
has been ensured. It guarantees that the knowledge persisted in the
repository is complete and hence fit to use.

4.3 Master Data and Transaction Data

This is another database concept that has been effectively
deployed in the approach.

The “Master Data” comprises of application domain (business
processes), test case and application code elements and their
relationship, which is largely static.

The problem resolution produces transaction data which
comprises of relationship between maintenance request and other
knowledge atoms.

The master data and transaction data together provide

transactional knowledge, which drives this approach.

4.4 Implementation Scenarios
The solution is implemented through a proprietary maintenance
platform. Listed below are two problem resolution scenarios that
help illustrate the solution.

“Scenario 1” is a transaction that results in creation of knowledge.

In the “Scenario 2”, the transaction reuses the knowledge created
in “Scenario 1” and updates the knowledge, if necessary.

The maintenance lifecycle here has been simplified to follow the
phases Request for change, Planning phase (Program
comprehension, Change impact analysis), Change
implementation, Verification and validation [13].

4.4.1 Scenario 1-Knowledge Generation
The transaction (problem resolution) begins with a maintenance
request. The transaction owner is provided with the ability to
document the expected business behavior through the modeling
solution.

After comprehension of the problem from the application domain
perspective, the user will then move ahead with identification of
application code components that need to undergo change.

Then, the user will carry out build and proceed with functional
testing. For this, the user will create a test plan with test case and
execute, resulting in test results. The Figure 1 depicts the lifecycle
as executed on the solution platform.

For the user to be able to commit the transaction (close the
maintenance request), the knowledge constraints should
be satisfied. A user will be allowed to close the maintenance
request (commit transaction) if and only if the integrity
constraints, for the transaction type, are satisfied and the
repository is in a consistent state. In this scenario, establishment
of a context between the application domain and the various
technology components constitutes the constraint.

At the end of transaction, a knowledge mesh is created with the
knowledge atoms, viz. maintenance request, application domain,
application code and test cases.

The problem resolution, through a combination of tool based
enablers for each of the maintenance phase and a transaction
driven approach, results in the creation of a multi-dimensional
knowledge linking together maintenance request, application
code, application domain knowledge and test assets, hence
offering a comprehensive knowledge unit for problems in the
same space.

4.4.2 Scenario 2-Knowledge Reuse
The basic assumption here is that the knowledge created during
problem resolution scenario 1 can be reused partially or
completely during the scenario 2. The reusability factor might
vary across maintenance landscape. The reuse is auto-determined
based on matching context between the problem in scenario 2 and
the context in the repository from previous transactions.

The transaction begins with the availability of maintenance
request in the platform. The system then searches through the
repository for knowledge that can be reused. The search result
provides user a narrowed down turf for further investigation. The
various knowledge atoms constitute the search results. The search
can be carried out on any of the knowledge atoms mentioned
earlier, since searching on one knowledge atom automatically
reveals the other related knowledge atoms due to the linkages
already established.

The access to historical transactions allows a user to arrive at the
probable list of components. Through ready access to solution
record of problems solved in past, the user can effectively
leverage experiential knowledge.

The access to application domain knowledge through this
approach enables the support engineer to understand the “Why” of
the problem from the business user need.

By narrowing down the application code components, the user is
able to narrow down on the problem area faster and deliver
changes with greater accuracy.

The user can reuse this knowledge and based on the additional
learning, amend and update the knowledge repository.

The user can also search the knowledge repository based on user-
defined criteria and also browse though the knowledge repository.

Thus in scenario 2, the problem resolution was simplified by pin-
pointing the vital knowledge atoms, ready to use resolution data,
all with seamless modes of knowledge access. With domain
knowledge as the driver, it helps address the vital “Why” of
application maintenance [10].

4.5 Validation
The solution has been implemented as part of a Proof of Concept
in a COBOL/DB2 based maintenance project. One such scenario,
(keeping the real customer request context hidden) has been listed
below

Request 1- Error in booking creation for hazardous cargo

1) To initiate, a critical business process, booking creation,
as identified by the Subject Matter Expert, was
modeled.

2) One of the requests related to the business process
identified above was picked up and a context was
established with the model as also with the application
code and test case components.

3) The complete cycle was executed by a resource familiar
with the part of the application selected for this
validation. Interview with the resource revealed that via
the transaction based approach creation of “knowledge
atoms” was simplified, as the knowledge could be
created ’on-the-fly’.

Request 2- Booking creation for domestic cargo errors out
Figure 1. Master and transaction data in

maintenance lifecycle

1) For the second problem, in the same domain, a support
engineer who was aware of the project set up but was
not familiar with the relevant application domain was
chosen.

2) This user was then asked to use the knowledge
transaction based approach for resolving the problem.
This user, through searching for similar requests for the
starting point, identified the relevant business model to
develop a better understanding of the entire problem
domain. Based on the linkages created earlier for
solving request 1, the affected technology components
were broadly identified. To make the change, the user
did have to resort to studying these components in
further detail.

At the end of problem resolution, the interview with the user
confirmed that the knowledge transaction approach helped in
narrowing down the turf of investigation to few objects. The
advantages, as highlighted by the user, were better comprehension
of complete problem domain and ease in identification of affected
components for investigation. The user also validated the
prevention of knowledge loss acquired during analysis via this
approach.

5. CHALLENGES AND FUTURE WORK
The utility of the approach is primarily limited to corrective and
adaptive maintenance space. A key factor here is the extent of
application domain breadth that can be covered because the
creation of knowledge is limited to areas where the problems are
reported. The repeatability of problem within the problem domain
is also a factor for the success of this approach.

During implementation we noticed maintenance teams putting
lesser emphasis on modeling the application domain and thus
there is a need to educate and encourage them to invest effort in
doing so. The granularity of the domain knowledge also needs to
be made flexible. Since the current validation was carried out on a
legacy system, in a limited way, the future work will also require
carrying out more validations, for a longer period, across web
technologies and open systems, for varied application sizes.

6. CONCLUSION
 The usefulness of domain knowledge for application maintenance
has been strongly expressed by the maintenance teams. The
domain knowledge, along with other knowledge elements of
maintenance request, application code and test assets forms a
comprehensive knowledge unit and thus a system which allows
seamless creation and usage of this knowledge as a coherent
whole has been found effective for carrying out maintenance. But
as a future work, there is need to establish efficient ways to
document the domain knowledge and identify the granularity level
for this knowledge accumulation. There is also a need to carry out
extended validation across diverse application and technology
domains.

7. ACKNOWLEDGMENTS
We would like to express sincere gratitude to Girish Rama, Dr.
Srinivas Padmanabhuni, Haresh Khemani and Virendra Paliwal

for their guidance and support and also the practitioners at our
organization for sparing their valuable time to respond to the
survey.

8. REFERENCES
[1] Clayton R., Rugaber S., Wills L. On the Knowledge

Required to Understand a Program. Proc. Working
Conference on Reverse Engineering. Oct.1998, 69–78.

[2] Gray. J. The transaction concepts: Virtues and limitations. In
Proceedings of the International Conference on Very Large
Data Bases, 1981, 144-154.

[3] Haerder T. and Reuter. A. Principles of transaction-oriented
database recovery. ACM Computing Surveys, 15(4),
December1983, 287-317.

[4] Lientz B. P., Swanson E. B. Software Maintenance
Management. Addison Wesley, Reading, MA. 1980.

[5] Márcio Greyck Batista Dias, Nicolas Anquetil, Káthia
Marçal de Oliveira. Organizing the knowledge used in
Software Maintenance Journal of Universal Computer
Science, vol. 9, no. 7 (2003), 641-658

[6] Pfleeger, S. L. Software Engineering: Theory and Practice.
2nd Edition.New- Jersey, Prentice Hall, 2001.

[7] Pigoski, T. M. Practical software maintenance: best practices
for managing your software investment. John Wiley & Sons.
Dec. 1996, 87-102.

[8] Rajlich V., Varadajan S., Using the Web for Software
Annotations, Int. Journal of Software Engineering and
Knowledge Engineering vol. 9, 1999, 55 – 72.

[9] Ramal, M. F., Meneses, R. d., and Anquetil, N. 2002. A
Disturbing Result on the Knowledge Used during Software
Maintenance. In Proceedings of the Ninth Working
Conference on Reverse Engineering (Wcre'02) (October 29 -
November 01, 2002). WCRE. IEEE Computer Society,
Washington, DC, 277

[10] Rugaber, S. 2000. The use of domain knowledge in program
understanding. Ann. Softw. Eng. 9, 1-4 (Jan. 2000), 143-192

[11] Vonmayrhauser, A.& Vans, A. (1993b) . From code
understanding needs to reverse engineering tool capabilities.
Proceedings of the 6th International Workshop on Computer-
Aided Software Engineering (CASE99), Singapore. July,
1993, 230-239.

[12] Vonmayrhauser, A. & Vans, A. (1994). Comprehension
processes during large scale maintenance. Proceedings of the
16th International Conference on Software Engineering,
Sorrento, Italy, May 1994, 39-48.

[13] Yau, S.S., Collofello J.S., MacGregor T., Ripple effect
analysis of software maintenance, In proceedings of
Compsac, IEEE Computer Society Press, Los Alamitos, CA.
1978.40,60–65

