
Design and Implementation of the Workflow of
an Academic Cloud

Abhishek Gupta, Jatin Kumar, Daniel Mathew, Sorav Bansal, Subhashis
Banerjee and Huzur Saran

IIT Delhi

Abstract. In this work, we discuss the design and implementation of
an academic cloud service, which we call Baadal. Tailored for academic
and research requirements, Baadal bridges the gap between a private
cloud and the requirements of an institution where request patterns and
infrastructure are quite different from commercial settings. For example,
researchers typically run simulations requiring hundreds of Virtual Ma-
chines (VMs) all communicating through message-passing interfaces to
solve complex problems. We describe our experience with designing and
developing a cloud workflow to support such requirements. Our workflow
is quite different from that provided by other commercial cloud vendors
(which we found not suited to our requirements).
Another salient difference in academic computing infrastructure from
commercial infrastructure is the physical resource availability. Often, a
university has a small number of compute servers connected to shared
SAN or NAS based storage. This may often not be enough to service the
computation requirements of the whole university. Apart from this in-
frastructure, universities typically have a few hundred to a few thousand
“workstation” which are commodity desktops with local disk-attached-
storage. Most of these workstations remain grossly underutilized. Our
cloud infrastructure utilizes this idle compute capacity to provide higher
scalability for our cloud implementation.

Keywords: Virtualization, Hypervisors

1 Introduction

Cloud Computing is becoming increasingly popular for its better usability, lower
cost, higher utilization, and better management. Apart from publicly available
cloud infrastructure such as Amazon EC2, Microsoft Azure, or Google Ap-
pEngine, many enterprises are setting up “private clouds”. Private clouds are
internal to the organization and hence provide more security, privacy, and also
better control on usage, cost and pricing models. Private clouds are becoming
increasingly popular not just with large organizations but also with medium
sized organizations which run a few tens to a few hundreds of IT services.

An academic institution (university) can benefit significantly from private
cloud infrastructure to service its IT, research, and teaching requirements. In



this paper, we discuss our experience with setting up a private cloud infras-
tructure in Indian Institute of Technology (IIT) Delhi, which has around 8000
students, 450 faculty members, more than 1000 workstations, and around a hun-
dred server-grade machines to manage our IT infrastructure. With many differ-
ent departments and research groups requiring compute infrastructure for their
teaching and research work, and other IT services, IIT Delhi has many different
“labs” and “server rooms” scattered across the campus. We aim to consolidate
this compute infrastructure by setting up a private cloud and providing VMs
to the campus community to run their workloads. This can significantly reduce
hardware, power, and management costs, and also relieve individual research
groups of management headaches.

We have developed a cloud infrastructure with around 30 servers, each with
24 cores, 10 TB shared SAN-based storage, all connected with 10Gbps fibre. We
run Virtual Machines on this hardware infrastructure using KVM[4] and manage
these hosts using our custom management layer developed using Python and
libvirt[1].

1.1 Salient Design Features of Our Academic Cloud

While implementing our private cloud infrastructure, we came across several
issues that have previously not been addressed by commercial cloud offerings.
We describe some of the main challenges we faced below:

Workflow : In an academic environment we are especially concerned about
simplicity and usability of the workflow for researchers (e.g., Ph.D. students, re-
search staff, faculty members) and administrators (system administrators, policy
makers and enforcers, approvers for resource usage).

For authentication, we integrate our cloud service with a campus-wide LDAP
server to leverage existing authentication mechanisms. We also integrate the
service with our campus-wide mail and Kerberos servers.

A researcher creates a request which which should be approved by the con-
cerned faculty member before it is approved by the cloud administrator. Both
the faculty member and cloud administrator can change the request parameters
(e.g., number of cores, memory size, disk size, etc.) which is followed by a one
click installation of the virtual machine. As soon as the virtual machine is in-
stalled, the faculty and the students are informed about the same with a VNC
console password that they can use to access the virtual machine.

Cost and Freedom : In an academic setting, we are most concerned about
both cost and freedom to tweak the software. For this reason, we choose to
rely solely on free and open-source infrastructure. Enterprise solutions like those
provided by VMware are both expensive and restrictive.

Our virtualization stack comprising of KVM[4], Libvirt[1], and Web2py[2] is
open-source and available freely.



Workload Performance : Our researchers typically need large number of VMs
executing complex simulations communicating with each other through message-
passing interfaces like MPI[3]. Both compute and I/O performance is critical for
such workloads. We have arranged our hardware and software to provide the
maximum performance possible. For example, we ensure that the bandwidths
between the physical hosts, storage arrays, and external network switches are
the best possible with available hardware. Similarly, we use the best possible
emulated devices in our Virtual Machine Monitor. Whenever possible, we use
para-virtual devices for maximum performance.

Maximizing Resource Usage : We currently use dedicated high-performance
server-class hardware to host our cloud infrastructure. We use custom scheduling
and admission-control policies to provide maximal resource usage. In future, we
plan to use the idle capacity of our lab and server rooms to implement larger
cloud infrastructure at minimal cost. We discuss some details on this below.

A typical lab contains tens to a few hundred commodity desktop machines,
each having one or more CPUs, a few 100 GBs of storage, connected over
100Mbps or 1Gbps ethernet. Often these clusters of computers are also con-
nected to a shared Network-Attached Storage (NAS) device. For example, there
are around 150 commodity computers in the Computer Science department. Typ-
ical utilization of these desktop computers is very low (1-10%). We intend to use
this “community” infrastructure for running our cloud service. The VMs will
run in background, causing no interference to the applications and experience of
the workstation user. This can significantly improve the resource utilization of
our lab machines.

1.2 Challenges

Reliability : In lab environments, it is common for desktops to randomly
switch-off or become disconnected. These failures can be due to several rea-
sons including manual reboots, pulling out of network cables, power outages, or
physical hardware failures. We are working on techniques to have redundant VM
images to be able to recover from such failures.

Network and Storage topology : Most cloud offerings use shared storage
(SAN/NAS). Such shared storage can result in a single point of failure. Highly-
reliable storage arrays tend to be expensive. We are investigating the use of disk-
attached-storage in each computer to provide a high-performance shared storage
pool with built-in redundancy. Similarly, redundancy in network topology is
required to tolerate network failures.

Scheduling : Scheduling of VMs on server-class hardware has been well-studied
and is implemented on current cloud offerings. We are developing scheduling al-
gorithms for commodity hardware where network bandwidths are lower, storage



is distributed, and redundancy is implemented. For example, our scheduling al-
gorithm maintains redundant copies of a VM in separate physical environments.

Encouraging Responsible Behaviour : Public clouds charge their users for
CPU, disk, and network usage on per CPU-hour, GB-month, and Gbps-month
metrics. Instead of a strict pricing model, we use the following model which relies
on good community behaviour:

– Gold : The mode is meant for virtual machines requiring proportionally
more CPU resources than other categories and are well suited for compute-
intensive applications. We follow a provisioning ratio of 1:1, that is we don’t
overprovision as it is expected that the user will be using all the resources
that he has asked for. We expect Gold instances to run only during actual
experiments and simulations. The user is sent daily reminders about the
running Gold instance, and requested to switch it off if not in heavy use.

– Silver : This mode is recommended for moderately heavy jobs. We typically
follow a overprovisioning ratio of 2:1 implying that we allocate twice as much
as resources as the server should ideally host. The user is sent a reminder
every week for a running Silver instance. We expect researchers to use this
mode during testing their software.

– Bronze : The mode is meant for virtual machines with a small amount of
consistent CPU resources typically required when we are working on some
code and before the actual run of the code. We expect users performing
development activities (e.g., text editor, etc.) to use this mode (this mode
is also called edit-mode for this reason). We follow a 4:1 provisioning ratio
which means that we typically allow the resources to be overprisioned by a
factor of four.

– Shut-Down : In this mode user simply shut down the virtual machine and
the user is charged minimally.

The user can switch between the modes with the ease of a click and no reboot-
ing of the virtual machine is required.,We use live migration capabilities of the
hypervisor to implement these modes seamlessly.

The rest of this paper is structured as follows: in Section 2 we talk about
our experiences with other Cloud Offerings. Section 3 describes key aspects of
our design and implementation. Section 4 evaluates the performance of some
relevant benchmarks on our virtualization stack over a range of VMs running
over different hosts. Section 5 reviews related work, and Section 6 discusses
future work and concludes.

2 Experiences with Other Cloud Offering

We tried some off-the-shelf cloud offerings before developing our own stack. We
describe our experiences below.



2.1 Ubuntu Enterprise Cloud

Ubuntu Enterprise Cloud is integrated with the open source Eucalyptus private
cloud platform, making it possible to create a private cloud with much less
configuration than installing Linux first, then Eucalyptus. Ubuntu/Eucalyptus
internal cloud offering is designed to be compatible with Amazon’s EC2 public
cloud service which offers additional ease of use.

On the other side, there is a need to familiarize with both Ubuntu and Eu-
calyptus, as were frequently required to search beyond Ubuntu documentation
following the Ubuntu Enterprise Cloud’s dependence on Eucalyptus. For exam-
ple, we observed that Ubuntu had weak documentation for customizing images,
which is an important step in deploying their cloud. Further even though the ar-
chitecture is quite stable and worth using, it doesn’t serve the requirements of a
custom tailored interface which should suit an academic or research environment
like ours.

2.2 VMware vCloud

VMware vCloud offers on demand cloud infrastructure such that end users can
consume virtual resources with maximum agility. It offers consolidated datacen-
ters and an option to deploy workloads on shared infrastructure with built-in
security and role-based access control. Migration of workloads between different
clouds and integration of existing management systems using customer exten-
sions, APIs, and open cross-cloud standards serves as one of the most convincing
arguments to use the same for a private cloud.

Despite these features and one of the most stable cloud platforms VMware
vCloud might not be an ideal solution to be deployed by an academic institution
owing to the high licensing costs attached to it, though it might prove ideal for
an Enterprise with sufficiently good budget.

3 Baadal: Our Workflow Management Tool for Academic
Requirements

Currently Baadal is based on KVM as the hypervisor and the Libvirt API which
serves as a toolkit to interact with the virtualization capabilities. The choice of
libvirt is guided by the fact that libvirt can work on variety of hypervisors includ-
ing KVM, Xen, and VMWare. Thus, we can change the underlying hypervisor
technology at any later stage with minimal efforts.

We export our management software in two layers namely Web based and
Command-line interface (CLI). While our web based interface is built using
web2py, a MVC based python framework, we continue to use python for the
command line interface as well. The choice of the python as the primary language
for the entire project is supported by the excellent support and documentation
by libvirt community.



Fig. 1. Virtualization Stack.

3.1 Deconstructing Baadal

Baadal consists of four components:

Web Server : The web server provides a web-based interface for management
of the virtual machines. Our implementation is based on web2py.

Fig. 2. List of VMs in Baadal’s database along with their current status and some
quick actions.

Hosts : Multiple hosts are configured and registered in the Baadal database
using the web server interface. The hosts run the virtual machines and a common
storage based on NAS provides seamless storage to allow live migration of VMs.

Clients : Any remote client which would access the virtual machines using
remote desktops or for example say ssh connections.

VNC Server : The server receives requests from the clients regarding the VNC
console access. IPtables have been setup for port forwarding so the requests that
came to the server are forwarded to the appropriate hosts, and consequently
served from there. The server can be same or different from the web server
based on the traffic that is needed to be handled.



Table 1. Some tests performed on different kind of Hardware Infrastucture.

Test1 KVM+Desktop2 KVM+Blade Server3 VMware+Blade Server4

Empty Loop(10000000) 21840µs 44321µs 44553µs

Fork(1000000) 29.72 s 6.88 s 3.97 s

Wget(685.29 MB) 54.09 s 20.36 s 9.5 s

cp(685.29 MB) 71.97 s 11.65 s 26.07 s

iscp(685.29 MB) 29.64 s 52.34 s 4.75 s

oscp(685.29 MB) 73.54 s 83.68 s 4.86 s

Ping Hypervisor(5 packets) .2886 s .3712 s .1204 s
Note: 1-All the Virtual Machines under test have 1GB RAM, 1 vCPU and 10 GB

Harddisk.
2-VM with KVM as hypervisor running on Lab Desktop (4GB RAM, C2D, 500GB

HDD, 1Gbps Network)
3-VM with KVM as hypervisor running on HP Proliant BL460c G7 (16GB RAM, 24

CPU, 10Gbps Network)
4-VM with VMware as hypervisor runningon Dell PowerEdge R710 (24GB RAM, 16

CPU, 10Gbps Network)

3.2 Workflow

Client requests a VM from Baadal using the web/command-line interface. The
request once approved by administrator leads to spawning of a VM on any of the
hosts. The host selected for spawning is determined by the Scheduling algorithm
as described in the following section.

Once the VM has been setup the VM can be administered by the user which
includes changing the run-level of the VM apart from normal operations like
shutting down, rebooting the VM.

4 Implementation

While designing Baadal following have been implemented:

4.1 IPTables Setup

For accessing the graphical console of the VM users can use VNC console. Due
to migrations of VMs the host of a VM may change and it can be troublesome
if we provide a fixed combination of host IP address and port to for connecting
to the VNC console. Baadal uses IP Tables and thus setup port forwarding
connections to the VNC server. Clients can connect to the VNC console with
the IP address of the VNC Server and a dedicated port which will be forwarded
to the appropriate host which is currently hosting the VM of client. Incase of
migration we change the port forwarding tables in background without causing
any kind of inconvenience or delays to the user. So the user always connects to
the VNC server with a fixed port number. The packets from user are forwarded
by the VNC server to the appropriate host and all requests are served from there.



Fig. 3. Workflow of the working of Baadal.

4.2 Cost Model

We have been observing that in an academic environment some people tend to
reserve VMs with high resources which are never used optimally by them. To
reduce such number of occurrences we have implemented a cost model accounting
for the usage case put up by the user (which can be dynamically changed by
him) and the time the machine is running. We have defined three levels 1,2,3
with 1:a,1:b,1:c as the over-provisioning ratios respectively and have associated
a decreasing order of cost with each of them. So if a user defines his run-level to
be one then we will schedule his VM with an over-provisioning ratio a. So if k
GB of ram is left then I can provision this VM if my requirements for the ram on
the VM are less than k/a GB. The user is expecting to switch between different
run-levels according to his requirement. The overall process is defined in a way
leading to better utilization without any need for policing. Since, the run levels
are associated with different cost factors users tend to follow the practice.

4.3 Scheduler

When the run-level for any VM is switched by the user we need to schedule
his VM into an appropriate host. So we have designed and tested a scheduling
algorithm which uses the greedy strategy for finding the host satisfying the given
constraints (VM run-level and configuration of the hosts and the VM).

As a general observation it is hardly the case when all the VMs are used
optimally used. The usage is reduced to a further extent during the off-peak
hours when we can probably save on our costs and energy by trying to condense
the number of hosts actually running and switching off the others. While doing



this proper care is taken so as to ensure that the VM doesn’t see a degradation
of the services when the migration is done.

5 Cost and Performance Comparisons

As both libvirt and KVM have undergone a rigorous testing phase before they
are released as stable releases (which we are using), we need not do rigorous
benchmark tests against the standard tests. We have subjected our scheduling
algorithms to rigorous testing in an order to see if they are behaving as intended.
The testing has also lead us to further optimization of the algorithms as we are
sometimes introduced to some cases that we didn’t take proper care of.

A second part of testing/experimentation involved in identifying the con-
stants a,b and c so as to optimize the cost model. The constants may vary from
institution to institution but generally tends to be closer to 1,2 and 3 respec-
tively.

6 Future Work and Conclusions

6.1 Future Work

In a laboratory setup of any academic institution is genearlly observed to be as
low as 1-10%. Thus quite a few of the resources goes underutilized. If we can run
a community based cloud model on these underutilized community infrastruc-
ture we would be able to over-provision resources (like providing each student
with its own VM), thereby improving the overall utilization of the physical in-
frastructure without compromising on the user’s experience with the desktop. A
significant rise as high as from 1-10% to 40-50% is expected in the utilization of
the resources.

It is common in such environment for desktops to randomly be rebooted/switched-
off/disconnected. Also, hardware/disk failure rates are higher in these settings,
compared to tightly-controlled blade server environments. Being able to support
VMs with a high degree of reliability is a challenge. The solution we intend to
investigate is to run redundant copies of VMs simultaneously to provide much
higher reliability guarantees, than what the physical infrastructure can provide.
Doing this requires the ability to efficiently run multiple copies of identical VMs
simultaneously and seamlessly switching between them. We at IIT Delhi have
implemented Record/Replay feature in Linux/KVM (an open source Virtual Ma-
chine Monitor) which allows efficient synchronization of virtual machine images
at runtime. We intend to use this implementation to provide higher reliability
guarantees to cloud users on community infrastructure.

Currently, we support VMs that run atop the KVM hypervisor, but plan to
add support for KVM/QEMU, VMware, and others in the near future. Also, we
plan to optimize the software with storage specific plugins. For example, if one
is using Netapp storage for his cloud he can take advantage of the highly opti-
mized copy operation provided by Netapp rather than using the copy operation
provided by an Operating system.



Due to the diversity in hardware characteristics and network topologies, we
expect new challenges in performance measurements and load balancing in this
scenario.

6.2 Conclusions

Baadal, our solution for private cloud for academic institutions, will allow ad-
ministrators and researchers to deploy an infrastructure where users can spawn
multiple instances of VMs and control them using a web-based or command
line interface atop existing resources. The system is highly modular, with each
module represented by a well-defined API, enabling researchers to replace com-
ponents for experimentation with new cloud-computing solutions.

To summarize this work illustrates an important segment of cloud computing
that has been filled by Baadal by providing a system that is easy to deploy atop
existing resources, that lends itself to experimentation by the modularity that is
inherent in the design of Baadal and the virtualization stack that is being used
in the model.

References

1. Libvirt, the virtualization api. http://www.libvirt.org.
2. Massimo DiPierro. Web2py Enterprise Web Framework, 2nd Ed. Wiley Publishing,

2nd edition, 2009.
3. Fagg Gabriel, Edgar, Graham, Bosilca, George, Angskun, Thara, Dongarra, Jack,

Squyres, Jeffrey, Sahay, Vishal, Kambadur, Prabhanjan, Barrett, Brian, Lumsdaine,
Andrew, Castain, Ralph, Daniel, David, Graham, Richard, Woodall, and Timothy.
Open mpi: Goals, concept, and design of a next generation mpi implementation. In
Dieter Kranzlmller, Pter Kacsuk, and Jack Dongarra, editors, Recent Advances in
Parallel Virtual Machine and Message Passing Interface, volume 3241 of Lecture
Notes in Computer Science, pages 353–377. Springer Berlin / Heidelberg, 2004.

4. Laor Kivity, Kamay, Lublin, and Liguori. kvm: the linux virtual machine monitor.
Virtualization Technology for Directed I/O. Intel Technology Journal, 10:225–230,
July 2007.


