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Abstract

Air pollution poses serious health concerns in developing countries, such as In-1

dia, necessitating large-scale measurement for correlation analysis, policy rec-2

ommendations, and informed decision-making. However, fine-grained data col-3

lection is costly. Specifically, static sensors for pollution measurement cost sev-4

eral thousand dollars per unit, leading to inadequate deployment and coverage.5

To complement the existing sparse static sensor network, we propose a mobile6

sensor network utilizing lower-cost PM2.5 sensors mounted on public buses in7

the Delhi-NCR region of India. Through this exercise, we introduce a novel8

dataset comprising PM2.5 and PM10 measurements. This dataset is made pub-9

licly available at https: // www. cse. iitd. ac. in/ pollutiondata , serving10

as a valuable resource for machine learning (ML) researchers and environmen-11

talists. We present two key contributions with the release of this dataset. Firstly,12

through in-depth statistical analysis, we demonstrate that the released dataset13

significantly differs from existing pollution datasets, highlighting its uniqueness14

and potential for new insights. Secondly, we conduct a benchmarking exercise15

(https: // github. com/ sachin-iitd/ DelhiPMDatasetBenchmark ), eval-16

uating state-of-the-art methods for interpolation, feature imputation, and forecast-17

ing on this dataset, which is the largest publicly available PM dataset to date.18

The results of the benchmarking exercise underscore the substantial disparities in19

accuracy between the proposed dataset and other publicly available datasets. This20

finding highlights the complexity and richness of our dataset, emphasizing its value21

for advancing research in the field of air pollution.22

1 Introduction23

Air pollution has reached life-threatening levels in Delhi-National Capital Region (NCR), India [Tri-24

pathi et al., 2019; Mannucci and Franchini, 2017], which is one of the most densely populated urban25

centers. The population of Delhi-NCR exceeds 46 million people [Nagar et al., 2017] and it has been26

reported that 50% of all children staying in this region suffer from irreversible lung damage [Chatterji,27

2021; ORF, 2021]. Particulate Matter (PM) is especially dangerous, since our breathing cannot filter28

out the ultra-fine particles. To mitigate the effects of air pollution, there is an urgent need to identify29

causes of pollution and strategies to curb its spread. It is suggested Sahu et al. [2020]; Sutaria [2022]30
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to use one sensor per km2 for better pollution analysis. The Central Pollution Control Board (CPCB)31

and Delhi Pollution Control Committee (DPCC) have only 81 realtime air pollution measurement32

centers in Delhi-NCR Sutaria [2022] along with 65 manually monitored centers, which are thoroughly33

inadequate Guttikunda et al. [2023]; ET [2022] to cover the vast geography of 55, 000 km2 NCRPB34

[2018].35

In the literature, several models have been proposed for predicting pollution levels at same/future time36

points [Patel et al., 2022; Gao and Li, 2021; Kurt et al., 2008; Tsai et al., 2018; Le et al., 2020], and37

identifying factors affecting pollution [Apte et al., 2011; Google, 2014; Messier et al., 2018; Apte et38

al., 2017; Alexeeff et al., 2018]. There exists interpolation models [Qiao et al., 2019; Rasmussen and39

Williams, 2005; Hamilton et al., 2017; Patel et al., 2022] to reliably predict pollution levels at unseen40

locations based on a sufficient number of pre-installed sensors. These models can improve with41

fine-grained pollution data. The interpolation and forecasting models are supervised in nature and42

hence can do better with more training data. Unfortunately, collecting pollution data using realtime43

centers is highly expensive as each instrument costs thousands of US Dollars.44

In this work, we aim to mitigate the problem of lack of sufficient data in a cost-effective manner. We45

design a low-cost sensing mechanism (thoroughly compared in quality against high cost sensors)46

that allows us to collect PM data over a subset of the Delhi-NCR region at a fine spatio-temporal47

granularity. The key highlights and contributions of our work are:48

1. Quality dataset: As it is not cost-effective to repeat even the low cost sensors per km2, we49

establish a low-cost vehicle-mounted PM sensing network and release the largest PM2.5 dataset from50

one of the most polluted regions in the world. This dataset is shown to be as good as the data collected51

from the few high-cost static-sensor deployed in the same region. As it is very challenging to collect52

such dataset in a developing country due to constraints in infrastructure and government permissions,53

we document our data collection experience briefly in the paper. (§ 3.2).54

2. Unique dataset: This dataset complements the static sensor data available from the government55

deployed instruments in important ways. The static sensors are located at the top of high towers to56

get precise recordings of ambient pollution values, not affected by local sources. Our mobile sensors,57

on the other hand, are installed in the bus driver’s cabin to measures the ground level pollution that58

daily commuters breathe in. We also perform a thorough comparison with PM datasets available59

from other parts of the world and establish that the released dataset is unique in terms of scale and60

statistical characteristics. Hence, it can be of immense value to environmental think tanks. (§ 3.3).61

3. Utility for ML modeling: Through extensive benchmarking using state-of-the-art Machine62

Learning (ML) algorithms, we demonstrate the utility of this new dataset for modeling problems63

using ML, like spatio-temporal interpolation, missing data imputation and forecasting. The dataset64

is shown to be more challenging to model with ML algorithms, compared to previously available65

datasets, as Delhi has much higher variance in PM across space and time. This dataset, therefore66

opens opportunities for ML researchers for designing and benchmarking new ML algorithms, to67

reduce the interpolation, missing data imputation or forecasting errors. (§ 4).68

2 Related Work69

Spatio-temporal (ST) interpolation involves predicting air quality at unmonitored locations in the70

past and/or present time using training data observed from the sensors during the past and present71

time. Zheng et al. [2013] developed a co-training-based approach for ST interpolation using PM2.572

values captured every hour from ground stations of 4 cities in China which are converted to AQI73

(Air Quality Index), along with meteorological and traffic data. Cheng et al. [2018] proposed an74

attention-based hybrid model involving LSTM and dense layers and Patel et al. [2022] proposed a75

domain-inspired non-stationary Gaussian process model for ST interpolation which can also be used76

for ST forecasting. The two used 36 monitoring stations in Beijing with the collection time interval77

of 1 hour (with the latter additionally using London data), alongside meteorological data.78

Missing data imputation problem can be considered a variation of spatio-temporal interpolation where79

observations on the spatio-temporal cube are missing at random and we want to impute the missing80

data. Models that work for ST interpolation can mostly be adapted readily for this problem.81

2



Spatio-temporal forecasting aims to predict air quality at a particular location in future using the past82

and current data available at all the installed sensors. Kurt et al. [2008] developed an online neural83

network based approach to predict air quality maximum 3 days ahead in time using 1 year PM10 data84

for 1 region in Turkey. Zheng et al. [2015] develop and deploy a machine learning based air quality85

forecasting system with the Chinese Ministry of Environmental Protection. Yi et al. [2018] develop86

a deep learning based approach to provide short-term, long-term air quality forecasts. The two87

used meteorological data along with pollution data generated every hour from 2,296 stations in 30288

Chinese cities, and converted these concentrations into corresponding (individual) AQIs according89

to Chinese AQI standards. Air quality forecasting was posed as a challenge in KDD2018, where90

Luo et al. [2019] presented a winning solution based on a combination of classical machine learning91

and deep learning models using the provided data from stations in Beijing and London. Gao and Li92

[2021] propose a graph-based LSTM model for air quality forecasting and evaluate on Northwest93

China hourly data from 32 china stations.94

All these prior arts utilize the static ground stations Air Quality data for the analysis, which enforces95

a restricted spatial coverage. They also use meteorological data from the respective regions. There96

also have been studies on low cost sensors available in market for developed (EU) regions Karagulian97

et al. [2019] only. Also, a project about installing low cost sensors at different roadside locations98

Schneider et al. [2023] to complement the existing expensive static sensor network is done recently,99

but they kept the sensors at fixed locations. We are working on the PM data collected with mobile100

sensors, which is fine-grained and provides better spatio-temporal coverage, and our benchmarked101

models do not rely on other meteorological factors.102

3 Dataset Description103

3.1 Dataset Collection Challenges104

Creating the mobile PM dataset (as a replacement for low cost static PM dataset and high-cost ground105

station PM dataset) required us to design and implement our own embedded platform, choosing106

and calibrating appropriate sensors for maximum accuracy at low cost. We opted to install our107

device in public buses, to utilize their pre-defined/fixed and frequent routes of travel. Packaging108

was challenging to securely mount the instruments in the public buses, avoiding theft and ensuring109

enough ambient air to measure PM. Cellular connectivity was intermittent as the buses traversed110

the city, requiring us to augment real time data transfer when signal was present, with local storage111

to save data when signal strength dropped. Finally, getting permissions from different government112

entities to instrument the public bus fleet needed strict safety certifications that our devices do not113

interfere with the electrical and mechanical functioning of the bus.114

We mounted pollution tracking sensors on the permissible 13 public buses in Delhi for 3 months (Nov115

1st, 2020 to Jan 31st, 2021), in collaboration with Delhi Integrated Multimodal Transport System,116

after rigorous tests for automotive safety certification and appropriate permissions and letters of117

support from the Delhi Ministry of Transport and Delhi Pollution Control Committee. The inside118

of our custom-made instrument comprising (a) PM sensor measuring PM2.5, PM10 and PM1, (b)119

GPS sensor to locate the bus, (c) 4G radio to communicate data from bus to server, (d) SD card for120

locally storing data when 4G signal is unavailable, (e) BME sensor BME [2023], a sensor especially121

developed for mobile applications and wearables, to record temperature and relative humidity and (f)122

(a) Measuring device (b) Mounting location (c) Mounted device (d) Bus trajectories
Figure 1: (a) Inside of our PM measuring IoT unit. (b) Mounting location in bus driver’s cabin in non air-
conditioned public bus (below the existing white box). (c) Mounted IoT unit in the bus (below the existing white
box). (d) Government deployed static sensors installed in and around our bus trajectories, as location icons.
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micro-controller to orchestrate the sense-store-communicate software (See Fig. 1a). The mounting123

location in the bus driver’s cabin, next to two open windows to allow enough air-flow (Fig. 1b-1c).124

Each bus commutes for 16-20 hours per day, and our instruments collect data at a fine granularity125

of 20 samples per minute. Overall, the bus trajectories cover 559 km2, along the main arterial126

roads in North-West, North, North-East and South-East Delhi (Fig. 1d). The dataset has been made127

available at https: // www. cse. iitd. ac. in/ pollutiondata/ with proper documentation,128

under a Creative Commons Attribution 4.0 International License CC-by4 [2013].129

3.2 Data Quality Analysis130

Fig. 2a plots PM2.5 values measured by two low cost PM sensors built by us (cost USD 30), and the131

same measured by an industry grade reference instrument TSI DustTrak (cost USD 9500), while all132

three instruments are placed close to each other. The plot shows hours of the day along x-axis and133

sensed PM2.5 values along y-axis, for 10 sample days Jul 21-31, 2021. This is after the deployment134

of the low cost sensors in the buses is over, and the sensors have been brought back to the lab. Fig. 2b135

shows the histogram of difference of hourly mean PM between DustTrak and one mobile sensor, and136

two low cost mobile sensors, for the same 10 days. While the cost gap between the instruments is137

huge, the gap between their sensed PM2.5 values, as seen in this graph, is negligible. This pattern has138

been observed consistently by us and other researchers [Zheng et al., 2018; Cheng et al., 2014; Gao139

et al., 2015; Rai et al., 2017; Jiao et al., 2016; Zheng et al., 2019].140
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Figure 2: (a) PM2.5 values measured by our low-cost mobile PM sensors (USD 30) vs. TSI DustTrak (USD
9500) between Jul 21-31, 2021. (b) Histogram of pointwise differences of PM2.5 values measured by DustTrak
and low cost mobile PM sensors. The values are almost identical.

We additionally compare the distribution of PM values recorded by our mobile sensors vs. those141

by the high-cost static sensors, deployed at sparse locations by CPCB and DPCC in Delhi-NCR.142

Fig. 3a(Left) shows hours of day along x-axis and average PM2.5 for that hour, as measured by143

reference grade static monitors, with standard-deviation bars along y-axis. Fig. 3a(Right) shows the144

same averaged over all bus mounted sensors. We select the static sensors that are within 1km of145

mobile sensor trajectory for each hour, and plot for 7 sample days. Fig. 3a reveal that both static and146

bus mounted sensors show similar PM distributions for each day, in spite of the difference in heights147
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Figure 3: (a) Distribution of PM2.5 collected by our low-cost sensor and gold standard sensor over 7 random
days. The distributions are similar across the two sets of instruments. (b) Heat Maps (darker locations contain
more samples).
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they have been installed at, and the difference in PM measurement technique. We see this agreement148

for the entire 3 months deployment period. The agreement between low cost mobile sensors, and a149

co-located high cost TSI Dusttrak, as well as reference grade static monitors, give us confidence to150

release the dataset to the research community.151

Heat Map: During our analysis, we discovered variations in data availability across different152

timestamps and spatial locations. It was evident that certain timestamps were not available at all153

spatial locations. Furthermore, some spatial locations, which were situated along routes with fewer154

bus visits throughout the day, exhibited limited temporal samples. As illustrated in Fig. 3b, a typical155

day (Dec 15, 2020) demonstrated this pattern, where the outermost locations (depicted in light/pink156

color) contained samples from 4 hours duration within the 16.5-hour effective temporal window.157

Conversely, the darker/brown locations near the bottom right of the figure displayed a higher number158

of samples, ranging from 14 to 16.5 hours. These locations are associated with common bus routes159

that connect with the depot.160

3.3 Dataset Novelty161

Tables 1 and 2 summarize the statistics of the dataset. While vehicle mounted air pollution sensing162

has been conducted [Apte et al., 2011; Google, 2014; Apte et al., 2017; Alexeeff et al., 2018; Guo163

et al., 2016; Adams and Corr, 2019; Li et al., 2012], our dataset is unique in characteristics and164

scale. Specifically, only two studies from Ontario, Canada [Adams and Corr, 2019] and Zurich,165

Switzerland [Li et al., 2012] have made their datasets publicly available. The Zurich dataset does166

not include PM values. Compared to the Canada dataset, our dataset is 1000 times larger and has167

a significantly different distribution of PM values (See Tables 1 and 2). This is understandable as168

Delhi-NCR is an air pollution hotspot, whereas Zurich and Ontario have negligible PM levels. We169

also compare our dataset with a recent USA AQI dataset Bhattacharyya et al. [2022] collected from170

Air Quality Open Data Platform.171

Table 1: Details of Delhi, India and Hamilton, Ontario, Canada and USA datasets.

Metric Delhi-NCR Canada USA

Total area 559 km2 1138 km2 54 cities
Total samples 12,542,183 46,080 35,596
Samples with PM2.5 12,542,183 12,154 35,134
Pollutants covered PM1, PM2.5 and PM10 CO, NO, NO2, SO2, O3, CO, NO2, SO2, O3,

PM1, PM2.5 and PM10 PM2.5 and PM10

Sensor source Public bus Commercial van OpenDataPlatform
Monitoring days 91 114 668

Table 2: Statistical comparison of PM values in Delhi, Canada and USA datasets.

Metric Delhi-NCR Canada USA

PM1 PM2.5 PM10 PM1 PM2.5 PM10 PM2.5 AQI PM10 AQI

Mean 120.35 207.92 226.11 12.15 15.08 46.45 31.15 17.67
Std-dev 57.27 114.36 123.86 9.02 12.87 97.36 17.11 11.00
Missing % 0 0 0 71.71 73.62 72.24 1.30 52.34

4 ML Modeling Benchmarks172

In this section, we benchmark the machine learning problems of (1) spatio-temporal interpolation,173

(2) spatio-temporal data imputation and (3) spatio-temporal forecasting on the proposed and the174

Canada datasets. This benchmarking study serves two roles. First, it allows us to compare the175

complexities of the two datasets beyond just statistical characterization. Secondly, spatio-temporal176

interpolations, data imputations, and forecasting methods are crucial for environmental research,177

policy-making, and individual decision-making. They empower various stakeholders to gain a178

comprehensive understanding of air pollution, proactively address potential increases in pollution179

levels, and make informed choices to reduce personal exposure. In order to harness the full potential180

of spatio-temporal forecasting, interpolations, and data imputations, it is crucial to benchmark and181

evaluate the performance of algorithms designed to tackle these problems.182
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4.1 Dataset Pre-processing and Evaluation Metrics for the Analysis183

To benchmark ML modeling algorithms, we process and split the data into two parts for visible and184

held-out/hidden. For the Delhi dataset, we focus on the data collected from Nov 12, 2020, to Jan 30,185

2021, excluding the initial days when there were fewer instruments on the buses and limited sample186

data. Additionally, we exclude the nightly data between 10 PM IST and 5:30 AM IST when buses187

remain stationary at a confined bus-depot. To facilitate analysis, we divide the geographical area into188

square spatial grids with a side length of 1 km. These grids are further converted into spatio-temporal189

cells with a time interval of 30 minutes. To obtain representative PM values, we compute the average190

of all samples within each spatio-temporal cell. Subsequently, we employ K-fold cross-validation to191

partition the data into K PM visible / held-out sets for each day. The results obtained from the Delhi192

dataset are denoted as Delhi (Day) in the generated plots.193

Additionally, we utilize two open-sources PM datasets, from Hamilton in Ontario, Canada Adams194

and Corr [2019] and from USA Bhattacharyya et al. [2022]. For the Canada dataset, we process195

the data from 18 distinct days in the year 2015 using the same methodology. These results are196

presented as Canada (Day) in the respective experiments. As the data for Canada exhibits temporal197

sparsity, we project the data for each year onto a single day and treat it as equivalent to 11 days198

(from 2006 to 2016). The outcomes of this processing approach are depicted as Canada (Year)199

in the experiments. For the USA data, we use the available PM data across 54 cities from Jan 1,200

2019 to Dec 11, 2020, and the results are presented as USA (Day). We benchmark the datasets on201

Nvidia DGX Workstation (with 4X Tesla V100 GPUs) and the benchmarking code is available at202

https: // github. com/ sachin-iitd/ DelhiPMDatasetBenchmark .203

Notation: We use T (consecutive) days data for the training and take the next day for test/evaluation.204

Fig. 4a denotes the various subsets of this T+1 days data as A, B, C and P. For a given fold, A is the205

visible set with 80% of all T train days data, B is the held-out set with the remaining 20% of the T206

train days data. A ∪ B forms the whole dataset for the T train days. C is the visible set with 80% of207

the test day data, P is the held-out set with the remaining 20% of the test day and C ∪ P forms the208

whole dataset for the test day. The exact number of locations in A, B, C and P change across the K209

folds. In Fig. 4b, we show set of A and B spatial locations in Delhi dataset for 3 PM to 4:30 PM on210

Dec 15, 2020.211

(a) A, B, C and P sets. (b) Visible (A) and Held-out (B) sets over map.
Figure 4: PM Data Splits.

4.2 Formulation of different ML Prediction Problems212

(a) Spatio-temporal Interpolation: Given set of visible locations A and C where we have input213

features (latitude, longitude and time) and PM2.5 available for T+1 days, we wish to estimate PM2.5214

for a set of held-out locations P for the T+1th day using the input features (latitude, longitude and215

time). This approach is compatible to the scenario where we have data for some locations and we use216

interpolation algorithms to know the PM values at new locations.217
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The Loss is computed as follows:218

RMSE(L′
p, Lp) =

√√√√ 1

N

N∑
i=1

(y′i − yi)2 (1)

where y′i is the predicted and yi is the true PM2.5 value, and N is the total number of samples.219

For each of the K folds, we separately compute RMSE of prediction over P for that fold, and then220

plot average with standard deviation bars over the K folds. The lower RMSE being the better.221

(b) Spatio-temporal Missing Data Imputation: Given set of visible locations A and C where we222

have input features (latitude, longitude and time) and PM2.5 available for T+1 days and a set of223

held-out locations B where we have input features (latitude, longitude and time) and PM2.5 available224

for T days, we wish to estimate PM2.5 for a set of held-out locations P for the T+1th day using the225

input features (latitude, longitude and time). This setting is compatible to the scenario where we226

have intermittent data missing throughout the day and we use interpolation algorithms to predict the227

missing points taking past and present data as input.228

(c) Spatio-temporal Forecasting: Given a set of locations A and B where we have input features229

(latitude, longitude and time) and PM2.5 available for T days, we wish to estimate PM2.5 for a set of230

locations C and P for the T+1th day using the input features (latitude, longitude and time). As all the231

data is involved in training and evaluation, different splits from the K-fold are not required.232

4.3 ML Algorithms Benchmarked in this Paper233

(a) Mean Predictor is the simple mean value of all visible samples is used as the value of the held-out234

locations. The mean value of all visible PM2.5 locations C is used as the value of the held-out PM2.5235

locations P.236

mean← 1
|C|

∑
PM c

2.5 ∀c ∈ C237

PMp
2.5 ← mean ∀p ∈ P238

(b) Inverse Distance Weighting (IDW) is the weighted average value of all visible C samples in239

terms of distance, is used as the value of the held-out P locations.240

PMp
2.5 ←

∑ PMc
2.5

F (dcp)
∀c ∈ C ∀p ∈ P241

where F is a linear function on distance d.242

(c) Random Forest (RF) is a non-linear model capable of modeling complex spaces. It is known243

to perform efficiently on non-linear regression tasks, using an ensemble of multiple decision trees,244

taking the final output as the mean of the output from all trees.245

(d) XGBoost (XGB) iteratively combines the results from weak estimators. It uses gradient descent246

while adding new trees during training.247

(e) ARIMA or Auto-Regressive Integrated Moving Average is a statistical time-series forecasting248

model that uses linear regression. It is configured using parameters (p, d, q) as: p is the number of249

lag observations included in the model, d is the number of times raw observations are differenced,250

and q is the size of the moving average window. We use ARIMA with parameters (3, 1, 1).251

(f) N-BEATS is Neural Basis Expansion Analysis for Time Series, a deep learning model for zero-shot252

time-series forecasting Oreshkin et al. [2020]. We use the code from Python library "Darts".253

(g) Non-Stationary Gaussian Process (NSGP) is a gaussian processes based baseline taken from254

AAAI 2022 Patel et al. [2022]. It learns a non-stationary covariance Plagemann et al. [2008]255

for latitude and longitude and locally periodic covariance for time. In general, Gaussian process256

a.k.a. Kriging is a Bayesian non-parametric model known as the best unbiased predictor in spatial257

interpolation domain Rasmussen and Williams [2005]. It conditions on the training data and provides258

a posterior predictive distribution at the new locations with closed form equations. With only three259

tunable parameters, it is considered a strong baseline in spatial interpolation domain.260
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(h) Graphsage is a graph neural network model to learn and predict values at unknown spatio-261

temporal locations Hamilton et al. [2017]. We transform the PM data to a graph, and use Graphsage262

for interpolation and missing data imputation. Our graph formulation is available in Appendix A.263

4.4 Observations and Inferences264

Fig. 5, shows the RMSE for interpolation, using 5-fold cross validation for the two training config-265

urations ACT in Fig. 5a and C in Fig. 5b, for 3 training days. ACT uses the visible set from both266

training and test days, while C uses only the test day’s PM visible set. The missing data imputation267

plots are almost identical to the interpolation plots, so we omit these for space constraints.268
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Figure 5: Interpolation RMSE. Training days’ data is used by ML model in (a) and not used in (b).

Observation 1: Delhi dataset is harder to model. All experiments over Delhi data show higher269

RMSE and all experiments over Canada and USA data show low RMSE, for both interpolation and270

forecasting, in Figures 5, and 6. This shows that Delhi data is more challenging for ML modeling,271

than the currently available PM datasets.272

Observation 2: Learning from data helps in modeling the Delhi dataset. All ML based algorithms273

show significant improvement over Mean Predictor for Delhi data in Figures 5a, whereas improvement274

for Canada and USA data over Mean Predictor is not significant. In Fig. 5a, all ML algorithms exhibit275

less than 40 RMSE while Mean Predictor RMSE is 65.80 for Delhi data (best case improvement is276

66.2% for RF and worst case 39.3% for IDW). For Canada data, best case improvement is ∼ 27%277

and worst case sees no improvement, whereas for USA AQI data, improvement is within 16% - 26%.278

Observation 3: Traditional ML algorithms do as well as the recent models for the Delhi dataset.279

Learning from data matters, as the ML based models do better than the mean predictor. But the recent280

complex Bayesian models like NSGP, and the neural network based models like Graphsage (for281

interpolation) and N-BEATS (for forecasting), do not outperform powerful traditional ML models282

like Random Forest. For instance, RF performs best for interpolation (RMSE 22.24 in Fig. 5), and283

XGBoost performs best for forecasting (RMSE 84.15 in Fig. 6).284

Observation 4: Historical training data adds no value for interpolation. For the spatio-temporal285

interpolation problem, just using data from the visible set C from test day is enough to predict the286

held-out P data with low RMSE. For example, the RMSE for RF is similar (22.24) for test day only287

data C in Fig. 5b and with including train day data ACT in Fig. 5a. And XGBoost is better for C with288

RMSE 29.73 than for ACT with RMSE 33.24. NSGP is the only algorithm, which sees a huge jump289

in RMSE when not using training data from past days. Thus PM for a given day is mostly unrelated to290

PM on past days, and using historical training data has no significant impact on interpolation RMSE.291

Fig. 6 shows RMSE of forecasting. Graphsage does not work in this setting as it requires a subset of292

test day’s data for edge formation to the data being predicted. So we drop Graphsage, and add two293

forecasting specific baselines: ARIMA and N-BEATS, that are not suitable for interpolation.294

Observation 5: Forecasting is a harder problem than interpolation. Forecasting RMSEs are295

significantly higher than interpolation RMSEs. The best model in forecasting is XGBoost in Fig. 6296

with RMSE 84.15, whereas the best model for interpolation in Fig. 5 is RF with RMSE 22.24. Higher297

forecasting RMSE compared to interpolation also supports that previous day’s data has less impact on298

test day’s PM data. Hence forecasting using only past days’ data for an unseen future test day is hard.299
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USA (Day)

0

50

100

150

R
M

S
E

IDW

RF

XGBoost

NSGP

ARIMA

nBeats

(a)

Config Delhi (Day)

Algo Train Input Train Test

IDW ABT ABT - 86.52
AB AB - 270.73

RF ABT ABT 8.09 110.49
AB AB 45.85 89.54

XGBoost ABT ABT 33.19 102.68
AB AB 57.12 84.15

NSGP ABT ABT 24.34 95.83
AB AB 51.90 86.34

ARIMA ABT ABT 204.87 148.86
N-BEATS ABT ABT - 106.41

(b)
Figure 6: Forecasting RMSE. (a) Normalization is done across all days. (b) Comparison of normalization across
all days (T) vs normalization over each day.

Observation 6: How time is normalized affects forecasting accuracy. In Fig. 6a, time normal-300

ization is done across days, i.e. time starts at 0 on first train day and increases to 1 till last train301

day. ARIMA / N-BEATS don’t normalize the time directly, they take all PM values in a sequence302

corresponding to time from start to end. RF/XGBoost takes input in random sequence and hence303

takes the time as a state parameter, which can be normalized from start to end, or for each day.304

Table 6b compares this time normalization across days (T), to normalizing separately for each day.305

RF, XGBoost and NSGP show lower RMSE for separate normalization for each day, while IDW306

does better with normalization across days. This pre-processing step of time normalization therefore307

should be carefully decided based on the ML algorithm.308

5 Conclusion and Future Work309

Delhi-NCR, with its notorious air pollution problem, poses a significant health risk to its population310

of approximately 46 million individuals. In this paper, we present a novel PM dataset collected311

from this region using low-cost IoT devices deployed on public buses. This dataset serves as a312

valuable resource for environmental researchers and medical practitioners, offering insights into313

ground-level PM exposure for daily commuters and temporal variations in PM levels over days and314

weeks. Moreover, it provides a comprehensive view of spatial variations across different locations315

within the region.316

Through thorough statistical analysis and benchmarking studies, we have established that the released317

dataset is distinct from any other existing pollution dataset. By comparing the performance of machine318

learning algorithms on the released dataset against the Canada dataset, we have demonstrated the319

significant differences in characteristics and challenges associated with the Delhi-NCR dataset.320

This highlights the need for specialized approaches and tailored solutions to address the unique321

complexities of air pollution in this region.322

The availability of this low-cost mobile monitoring system has the potential to complement the323

expensive static sensor network in the city, empowering citizens to make informed decisions re-324

garding local PM levels. This includes determining the safety of engaging in outdoor activities,325

choosing appropriate protective measures such as face-masks or air purifiers, and selecting optimal326

commuting routes and transportation modes to minimize PM exposure. Such considerations are vital327

for safeguarding public health and promoting environmental sustainability.328

In our future work, we aim to address the problem of recommending suitable locations for installing329

new expensive sensors effectively within budget constraints, a challenging task in a developing330

country like India. By leveraging the insights gained from this research, we strive to optimize the331

allocation of resources and enhance the efficiency of the monitoring network, further strengthening332

pollution mitigation efforts. To foster further advancements in the field of environmental sustainability,333

we release both the code and data associated with this study. This allows researchers to build upon our334

work, explore new avenues of inquiry, and contribute to the collective understanding and management335

of air pollution-related challenges.336
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Appendix497

A Graphsage (with Graph formulation)498

We aim at learning universal weights, similar to GraphSAGE Hamilton et al. [2017], which will499

signify the importance of a neighbour based on some known node values and edge weights. Here500

we define node values as the value of the pollutant PM2.5 while the edges are created using latitude,501

longitude and datetime features. Firstly, a graph is created from the train dataset, aggregating all502

inputs within 500m and 30 minutes of each other into a single node. An edge is created between two503

nodes if they lie within 2 hours of each other. The graph then goes through two graph-based layers to504

learn the required weights where embeddings are learnt using the max and mean aggregation layers,505

followed by 3 fully connected neural network layers to predict the final pollutant value.506

Let G = (V,E, σ,A) be a Directed Graph with V vertices/nodes, E edges, A attributes and σ as the507

label mapping, where508

σ : V → L509

L being the set of PM2.5 values.510

V corresponds to the spatiotemporal locations where PM2.5 values are known (S: Red) or desired (U:511

Blue), i.e. V=S+U. E (e ∈ E) connects the V (v ∈ V ) such that512

eij = (vi, vj) | vi ∈ S ∧ vj ∈ (S ∨ U) and tij ≤ TimeLimit, where tij=abs(vti - vtj)513

The Graph G comprises of separate connected components for different days.514

eij = (vi, vj) | vi ∈ Dayp and vj ∈ Dayq ⇒ p = q515

516

Weight of each edge is inversely proportional to the spatial distance between the two nodes across the517

edge.518

wij =
1

1+dij
, if eij exists, where dij=haversine(vi, vj)519

Edges exist from all S nodes to each U node. No S to S edges exist.520

eij = (vi, vj) | vi ∈ S and vj ∈ U ⇒ |eij ∀i| = |S| ∀j521

The graph G is of two types:522

Train Graph GTrain: It is used for training Graphsage Neural Network.523

v ∈ DayTrain ⇒ v ∈ S ∨ U ⇒ |v ∈ S| > 0 and |v ∈ U | > 0524

The RMSE loss on the nodes v ∈ U is used for model training.525

Test Graph GTest: It is used for evaluating the trained Graphsage model on unseen test day data526

(DayTest) along with full data from known days.527

v ∈ DayTest ⇒ v ∈ S ∨ U ⇒ |v ∈ S| > 0 and |v ∈ U | > 0528

The v is formed by taking the corresponding PM2.5 label L and an indicator variable I .529

vi = Li|Ii530

Li ← PM2.5, Ii ←= 1 ∀ v ∈ S531

Li ← 0, Ii ←= 0 ∀ v ∈ U532

The 2 layer mean-pool and max-pool model graphsage architecture is shown in Fig. 7.533

The RMSE loss of the nodes v ∈ U (or v ∈ P in particular) is used as the reporting metric.534

For Graphsage based evaluation, out the 80% training data in 5-fold cross validation, we use 40% as535

visible set, 40% as held-out set, to manage edges between these two sets.536
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Figure 7: Graphsage model architecture.

B Complete ML Benchmarks537

Table 3 shows the complete benchmark for Spatio-temporal Interpolation for different train and input538

configurations. An important subset of these benchmarks is presented in Fig. 5 and discussed in § 4.4539

in the main paper. The benchmarks for NSGP algorithm for some configurations for USA dataset540

(marked by * in Table 3) is in progress and cannot be completed yet due to resource constraints, for541

which we present the partial results and mark accordingly.542

Table 3: Spatiotemporal Interpolation RMSE for different configurations (* denotes partial experiments).

Algo Config Delhi (Day) Canada (Day) Canada (Year) USA (Day)

Train Input Mean S.D. Mean S.D. Mean S.D. Mean S.D.

MeanPred - C 65.80 2.44 3.13 1.14 5.66 1.13 13.85 3.02

IDW
ACT ACT 39.94 2.51 2.56 0.95 4.56 1.05 10.24 2.57
AC AC 351.73 2.85 2.66 0.95 7.33 1.61 23.21 5.29
C C 25.83 2.77 2.31 0.98 4.35 0.91 10.32 2.60

RF
ACT ACT 22.24 2.81 2.37 0.95 4.18 0.68 10.73 2.89
AC AC 77.30 2.67 2.69 0.98 6.05 0.93 13.93 3.20
C C 22.25 2.77 2.34 0.89 4.12 0.68 10.82 2.85

XGBoost
ACT ACT 33.24 2.87 2.55 0.95 4.62 1.01 11.51 3.05
AC AC 65.04 2.55 2.90 0.98 6.03 0.84 14.19 3.32
C C 29.73 2.76 2.71 1.05 4.09 0.67 11.66 3.16

NSGP

ACT ACT 29.11 3.84 2.57 1.09 4.41 0.89 10.39 2.69
ACT C 194.96 1.63 13.02 0.72 14.68 0.63 *26.43 *3.08
AC AC 69.75 3.65 2.89 0.90 5.99 0.95 *12.65 *2.33
AC C 37.46 4.63 3.17 1.12 5.25 1.22 *21.02 *2.69
C C 170.99 9.31 12.74 0.55 13.51 0.72 27.81 3.67

Graphsage AC C 38.63 3.89 2.96 1.25 5.37 1.13 11.66 3.29
C C 38.68 4.12 3.13 1.24 5.68 1.46 12.75 4.06

Table 4 shows the complete benchmark for Spatio-temporal Missing data Imputation for different543

train and input configurations. Missing data imputation is briefly discussed in § 4.4 in the main544

paper. The benchmarks for NSGP algorithm for some configurations for USA dataset cannot be545

computed yet due to resource constraints. We will do this soon and update as applicable. As per our546
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understanding, this information will not impact the analysis presented so far. The traditional and547

powerful RF (Random Forest) algorithm outperforms all other algorithms and methods.548

Table 4: Missing Data Imputation RMSE for different configurations.

Algo Config Delhi (Day) Canada (Day) Canada (Year) USA (Day)

Train Input Mean S.D. Mean S.D. Mean S.D. Mean S.D.

MeanPred - C 65.80 2.44 3.13 1.14 5.66 1.13 13.85 3.02

IDW ABCT ABCT 40.06 2.51 2.56 0.95 4.56 1.05 10.19 2.57
ABC ABC 399.44 1.14 2.69 0.93 7.92 1.47 68.63 8.00

RF ABCT ABCT 22.26 2.85 2.34 0.93 4.22 0.67 9.42 2.60
ABC ABC 78.90 2.71 2.70 0.96 6.21 0.96 14.09 3.13

XGBoost ABCT ABCT 33.46 2.87 2.53 0.91 4.63 1.02 10.23 2.74
ABC ABC 67.66 2.55 2.94 0.96 6.19 0.87 13.84 3.12

NSGP

ABCT ABCT 29.06 3.64 2.52 0.95 4.40 0.85 9.62 2.46
ABC ABC 71.27 3.16 2.81 0.91 6.09 0.88
ABC C 171.94 8.08 12.71 0.53 13.29 0.94

ABCT C 194.98 1.55 12.90 0.60 14.58 0.68
ABT C 195.86 3.00 13.03 0.61 14.68 0.95
AB C 37.63 3.87 4.15 0.92 5.43 1.09

Graphsage ABC C 38.53 2.94 3.15 1.30 5.46 1.11 11.78 3.56
AB C 38.48 2.86 3.13 1.25 5.41 1.08 11.59 3.15

Table 5 shows the complete benchmark for Spatio-temporal Forecasting for different configurations.549

A subset of these benchmarks is presented in Fig. 6 and discussed in § 4.4 in the main paper.550

Table 5: Forecasting RMSE for different configurations.

Algo Config Delhi (Day) Canada (Day) Canada (Year) USA (Day)

IDW ABT 86.52 5.65 8.31 14.61
AB 270.73 5.73 11.23 69.20

RF ABT 110.49 5.90 8.45 14.23
AB 89.54 6.11 10.80 14.58

XGBoost ABT 102.68 6.69 8.23 14.25
AB 84.15 6.51 9.84 14.52

NSGP ABT 95.83 5.76 8.01 13.65
AB 86.34 6.08 10.22 14.34

ARIMA ABT 148.86 13.87 12.85 20.12
nBeats ABT 106.41 10.88 11.84 17.05

NSGP Variance551

Non-stationary GP models provides us with uncertainty (variance) values around the expected mean552

PM2.5 value for each expected spatio-temporal location. We find that the average variance value553

for Delhi dataset is huge as compared to Canada (Day) experiments. It is more challenging for a554

model or algorithm to correctly understand and predict the PM values for Delhi dataset. Even the555

USA dataset with data over a big region does not exhibit such complexity for the algorithms.556

Table 6: NSGP Variance.

Delhi (Day) Canada (Day) Canada (Year) USA (Day)

Spatio-temporal Interpolation 118.73 17.29 72.94 76.34
Missing Data Imputation 142.51 20.34 113.37 72.58
Forecasting 77.38 19.96 60.89 59.76
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C Anova Tests Analysis for Low Cost Sensor557

In continuation to the data quality analysis presented in § 3.2, we performed Anova Tests over the558

data collected by DustTrak and our Low Cost Mobile sensor devices at the same location. ANOVA559

Navidi [2009], Analysis of Variance, is a strong statistical factorial technique which involves one560

dependent variable known as response variable and one or more independent variables known as561

factors. The factors have different levels called treatments. The ANOVA tests compare two types of562

variation, the variation between the sample means and the variation within the samples.563

Two-way ANOVA test between DustTrak reference sensor and our low-cost mobile sensor564

In relation to our low cost sensor scenario, the observed PM2.5 values are dependent on the sensor565

Type (DustTrak vs Low Cost) and the time(Day) of observation. As we have two factors, we need to566

perform two-way ANOVA test. For the Day factor, we take the hourly PM2.5 mean samples grouped567

over each day (24 hours) of observations.568

Two-way ANOVA tests three null hypotheses569

(a) the means of observations grouped by factor Type are same570

(b) the means of observations grouped by factor Day are same571

(c) there is no interaction between the two factors Type and Day572

Two-way ANOVA Assumptions573

We make the standard assumptions of completeness, balanced design, normal distribution, similar574

variance, and sufficient replicates per treatment for validating ANOVA hypotheses. We take one575

device per sensor Type and same number (11) of Day as treatments under the two factors, with each576

Type and Day containing PM2.5 samples. Fig. 8 shows the box-plot diagram with similar standard577

deviation for the DustTrak and our Low cost mobile sensors.578

Figure 8: Mean and Standard Deviation for DustTrak and our Low Cost Mobile sensors.
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Table 7: Two-way ANOVA test for DustTrak Reference Sensor vs Our Low Cost Sensor Mobile Sensor 1

Effect Source df SumSq MeanSq F p-value Significance

Main Type 1 197.84 197.84 2.36 0.1248 Holds hypo (a)
Day 10 30204.98 3020.50 36.10 < 0.0001 Reject hypo (b)

Interaction Type*Day 10 261.76 26.18 0.31 0.9778 Holds hypo (c)
Error Residual 444 37147.11 83.66

Interpreting two-way ANOVA results579

Table 7 shows the two-way ANOVA test results for DustTrak and our Low Cost Mobile sensor. As580

per Seltman [2018], the SumSq column represents the sum of squared deviations for each Source of581

variation. Each Source has a df (degrees of freedom) which is a measure of the number of independent582

pieces of information present in the deviations that are used to compute the corresponding SumSq.583

Each MeanSq is a variance estimate and the SumSq divided by the df for that Source.584

Each F-statistic is the ratio of two MeanSq values. For the main effects, Type and Day, the denomina-585

tors are all MSE which are pure estimates of group variance, unaffected by the validity of the null586

hypothesis. Each F-statistic is compared against it’s null sampling distribution to compute a p-value.587

Interpretation of each of the p-values depends on the corresponding null hypothesis.588

In the presence of an interaction (Type*Day), the p-value for the interaction is most important and589

the main effects Type and Day p-values would be ignored if the interaction is significant. This is590

mainly because if the interaction is significant, then some changes in both explanatory variables591

(Type and Day) must have an effect on the outcome PM2.5, regardless of the main effect p-values.592

The null hypothesis for the interaction F-statistic supports an additive relationship between the two593

explanatory variables, Type and Day, in their effects on the outcome PM2.5. If the p-value for the594

interaction is less than α (usually 0.05), then we have a statistically significant interaction.595

As we have a non-significant interaction F1,10 = 0.31 with p-value = 0.9778 which is greater596

than α = 0.05, the null hypothesis (c) holds and the p-values for the main effects are valid for597

consideration. So, we can see that the Day has a significant p-value and thus it rejects the null598

hypothesis (b) meaning that there is impact of different Day’s observation on the observed PM2.5599

sample. This outcome aligns with a common understanding regarding the varying pollution across600

different days.601

The analysis for the main effect sensor Type is more encouraging. It has a non-significant p-value602

= 0.1248 which holds the null hypothesis (a) that the means of the observations of the two device603

Types, DustTrak and our Low Cost Mobile sensor, are same. Hence, our Low Cost Mobile device can604

be effectively used to collect PM2.5 observations in place of the expensive DustTrak sensors.605

One-way ANOVA test between DustTrak reference sensor and our low-cost mobile sensor606

Though the two-way ANOVA results hold for the main effects, we still perform one-way ANOVA607

test for the main effect Type (DustTrak vs Low Cost) for the observed PM2.5 values. We ignore the608

Day factor in this analysis, so the PM2.5 samples are only attributed with the Type factor. One-way609

ANOVA tests for the hypothesis (a) as of two-way ANOVA and with the standard assumptions of610

normal distribution and similar variance.611

Table 8 presents the results for one-way ANOVA, which too shows Type factor to have a non-612

significant p-value = 0.2445 which holds the null hypothesis (a). Hence with similar means of the613

observations, our Low Cost Mobile device can replace the expensive DustTrak sensors.614

Table 8: One-way ANOVA test for DustTrak Reference Sensor vs Our Low Cost Sensor Mobile Sensor 1

Effect Source df SumSq MeanSq F p-value Significance

Main Type 1 197.84 197.84 1.36 0.2445 Holds hypothesis (a)
Error Residual 464 67613.85 145.72
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Two-way ANOVA test for our Low Cost device replaceability615

We also show that our Low Cost Mobile devices are replaceable by each other. We perform two-way616

ANOVA tests between our Low Cost Mobile devices and the results are presented in Table 9.617

Table 9: Two-way ANOVA test for Our Low Cost Sensor Mobile Sensor 1 vs 2

Effect Source df SumSq MeanSq F p-value Significance

Main Type 1 145.65 145.65 1.65 0.1991 Holds hypothesis (a)
Day 10 31204.66 3120.47 35.43 < 0.0001 Reject hypothesis (b)

Interaction Type*Day 10 148.46 14.85 0.17 0.9982 Holds hypothesis (c)
Error Residual 450 39632.11 88.07

As the p-value for the interaction is non-significant, main effects are valid. Likewise Day factor rejects618

hypothesis (b) and importantly Type factor holds hypothesis (a), allowing our Low Cost devices to619

replace each other as applicable.620
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D Letters of Approval / Certifications from authorities

D.1 ICAT EMC certification

ICAT EMC certification of our instrument verifying that it doesn’t interfere with the bus’s electro-mechanical
properties.
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D.2 Delhi Integrated Multi-Modal Transit System (DIMTS) letter of support
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D.3 Delhi Pollution Control Committee (DPCC) letter of Support

Scanned by CamScanner
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D.4 Delhi Ministry of Transport (MOT) Permission

29



D.5 Letter of funding: SCIENCE & ENGINEERING RESEARCH BOARD (SERB), INDIA

FILE NO IMP/2018!001481
SCIENCE & ENGINEERING RESEARCH BOARD (SERB)

(ft. statutory body of the Department of Science & Technology, Government of India}
5 & SA,Lower Ground Floor

Vasant Square Mall
Plot No.A, Community Centre

Sector-B, Pocket-B. Vasant Kunj
New Delhi-l10070

Dated: 29-Mar-2019

Domain: Information & Comm. Technology
Subject: Financial Sanction of the research project titled "Scalable Spatio- Temporal Measurement and Analysis of Air
Pollution Data for Delhi-NCRusing Vehicle-Mounted Sensors" under the guidance of Dr.Rijurekha Sen, Department of
Computer Science, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, DELHI-ll0016 and by Dr.Pravesh Biyani,
Assistant Professor, Ece Dept, Indraprastha Institute OfInformation Technology and by Dr.Amah Bhattacharya,
Associate Professor, Department OfComputer Science And Engineering, Indian Institute OfTechnology Kanpur and by
Dr.Sayan Ranu, Assistant Professor, Computer Science And Engineering, Indian Institute of Technology Delhi - Release
of lst grant.

Sanction of Science and Engineering Research Board (SERB)is hereby accorded to the above mentioned project at a total
cost of Rs.12746800/- (Rs. One Crore Twenty Seven Lakh Forty Six Thousand Eight Hundred Only) with break-up
of Rs. 5500000/- under Capital (Non-recurring) head and Rs.7246800/- under General (Recurring) head for a duration of 36
months. The items of expenditure for which the total allocation of Rs. 12746800/- has been approved are given below:

S.No

12746800

Head Total (in Rs.)

A Non-recurring
5500000Equipment

-> Laptop
-> Server
-> Sensors

A' Tote! (Non-Recurring) 5500000

B Recurring Items
Recurring - I (Manpower)
Recurring - II (r.onsumabies. Travel, Contingencies)
Recurring - III : Scientific Social Responsibility

3888000
2200000

o
11588002 Recurrinq - IV . (Overhead Charqes)
7246800B' Total (Recurririq)

C Total cost of the project (A·+ B')

2. Sanction of the SE.RBis also accorded to the payment of Rs. 5500000/- (Rupees Fifty Five Lakh only) under 'Grants for
creation of capital assets' and Rs. 2415000/- (Rupees Twenty Four Lakh Fifteen Thousand only) under 'Grants-in-aid
General' to IRD,Indian Institute OfTechnology Delhi, Hauz Khas, New Delhi being the first installment of the grant for
the year 2018-2019for implementation of the said research project

3. The expenditure involved is debitable to Fund for Science & Engineering Research (FSER)
This release is being made under Impacting Research Innovation and Technology (IMPRINT-2).(PACInformation &
Communication Technology)

4. The Sanction has been issued to Indian Institute OfTechnology Delhi, Hauz Khas, New Delhi with the approval of the
competent authority under delegated powers on 28March, 2019 and vide Diary No. SERB/FIl3078!2OlB-20l9 dated 28
March,2019

5. Sanction of the grant is subject to the conditions as detailed in Terms & Conditions available at website
( www.serh.gov.inl.

6. Overhead expenses are meant for the host Institute towards the cost for providing infrastructural facilities and general
administrative support etc. including benefits to the staff employed in the project.

7.While providing operational flexibility among various subheads under head Recurring-H, It should be ensured that not
more than Rs. 450000 under Travel and Rs. 450000 under Contingency should be spent.

8. As per rule 211of GFR,the accounts of project shall be open to inspection by sanctioning authority/audit whenever the
institute is called upon to do so.

9. The sanctioned equipment would be procured as per Grn and its disposal of the same would be done with prior
approval of SERB.

10.The release amount of Rs. 79150001- (Rupees Seventy Nine Lakh Fifteen Thousand only) will be drawn by the Under
Secretary of the SERBand will be disbursed by means of RTGStransaction as per their Bank details given below:

Account Name lRD ACCOUNTS IITD

Account Number 10773572600

Bank Name & Branch STATE BANK OF INDIA liT BRANCH, lIT HAUL KHAS, NEW DELHI -110016

IFSC/RTGS Code SBINOOOlO77

Email id of Ale Holder arird@adlllin.iitd.ac-in

Email it! of PI riju@csejitrl.ac.in

11.Theinstitute will turn ish 10the SERBseparate Utilization cE'Itificate(UCs)financial year wise to the SERBfor
Recurring (Grants-in-aid General) & Non-Recurring (Grants for creation of capital assets) and an audited statement of
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accounts pertaining to the grant immediately after the end of each financial year.

12. The institute will maintain separate audited accounts for the project. A part or whole of the grant must be kept in an
interest earning bank account which is to be reported to SERB. The interest thus earned will be treated as credit to the
institute to be adjusted towards further installment of the grant.

13. The project File no. IMP/201S/0014S1 should be mentioned in all research communications arising from the above
project with due acknowledgement of SERB.

14. The manpower sanctioned in the project, if any is cn-termmus with the duration of the project and SERBwill have no
liability to meet the fellowship and salary of supporting staff if any. beyond the duration of the project

15.As this is the first grant being released for the project, no previous UiC is required.

16.The institute may refund any unspent balance to SERBby means of a Demand Draft favoring "FUNDFORSCIENCE
ANDENGINEERINGRESEARCH"payable at New Delhi.

17.The organization/institute/university should ensure that the technical support/financial assistance provided to them
by the Science & Engineering Research Board should invariably be highlighted/ acknowledged in their media releases as
well as in bold letters in the opening paragraphs of their Annual Report.

IS. In addition, the investigator/host institute must also acknowledge the support provided to them in all publications, J-
patents and any other output emanating out of the project/program funded by the Science & Engineering Research .•• '\
Board. ~~

. tJ oW ~ :--cr-
(Dr.Monika Agarwal)

Scientist E
ms.imprint@gmail.com

To,
Under Secretary
SERB,New Delhi

f ded Ior i fCopy orwar e or In ormation and necessary action to: -
1. The Principal Director of Audit, A.G.C.R.Building,Illrd Floor I.P. Estate, Delhi-llOOO2
2. Sanction Folder, SERB. New Delhi.
3. File Copy
4. Dr.Rijurekha Sen

Department of Computer Science
Indian Institute of Technology Delhi, Hauz Khas, New Delhi, DELHI-llOO16
Email: riju@cse.iitd.ac.in
Mobile: 919810591052

Dr.Pravesh Biyani
Ece Dept
Indraprastha Institute OfInformation Technology

Dr.Arnab Bhattacharya
Department OfComputer Science And Engineering
Indian Institute OfTechnology Kanpur

Dr.Sayan Ranu
Computer Science And Engineering
Indian Institute OfTechnology Delhi
(Start date of the project may be intimated by name to the undersigned. For guidance, terms & Conditions
etc. Please visit Y'!\Yl''L~e.IILqQv.in.)

5. IRD,
Indian Institute OfTechnology Delhi, Hauz Khas, New Delhi
(Receipt of Grant may be intimated by name to the undersigned)

6. Secretary,
Department of Science & Technology
Ministry of Science and Technology

<.

Technoloqy Bhavan, New Mehrauli Road,
New Delhi-l100l6
Email: dstsecoimic.in

7. Secretary (Higher Education)
Ministry of Human Resource Development
Shastri Bhavan, New Delhi- 110001
Email: secy.dbe@nic.in

, ~~tJOuJ~ - )
(Dr.Monika Agarwa

Scientist E
ms.irnprint@lgmail.com
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