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Abstract—Edge devices are seeing tremendous growth in sensing and
computational capabilities. Running state-of-the-art deep neural network
(NN) based data processing on multi-core CPU processors, embedded
Graphics Processing Units (GPU), Tensor Processing Units (TPU), Neural
Processing Units (NPU), Deep Learning Accelerators (DLA) etc., edge
devices are now able to handle heavy data computations with limited or
without cloud connectivity. In addition to hardware resources, software
frameworks that optimize a trained neural network (NN) model through
weight clustering and pruning, weight and input-output quantization to
fewer bits, fusing NN layers etc., for more efficient execution of NN
inferences on edge platforms, play an important role in making machine
learning at the edge (namely EdgeML) a reality.

This paper is a first effort in characterizing these software frameworks
for DNN inference optimizations on edge devices, especially edge GPUs
which are now ubiquitously used in all embedded deep learning systems.
The interactions between software optimizations and the underlying GPU
hardware is carefully examined. As most NN optimization engines are
proprietary softwares with undocumented internal details in the public
domain, our empirical analysis on real embedded GPU platforms using
a variety of widely used DNNs, provide various interesting findings.
We observe tremendous performance gain and non-negligible accuracy
gain from the software optimizations, but also find highly unexpected
non-deterministic behaviors such as different outputs on same inputs
or increased execution latency for same NN model on more powerful
hardware platforms. Application developers using these proprietary
software optimization engines, would benefit from our analysis and
the discussed implications of our findings, with examples from real
applications like intelligent traffic intersection control and Advanced
Driving Assistance Systems (ADAS). There are important implications
of our findings on performance modeling and prediction research too,
that focus on micro-architecture modeling based application performance
prediction, but should now additionally consider optimization engines that
this paper examines.

I. INTRODUCTION

Deep Neural Networks (DNNs) have made significant progress in
the recent years and are being widely used in various application
domains such as image recognition, speech recognition, natural
language processing and various other computer vision related tasks.
Many safety critical applications such as autonomous driving and
advanced driver assistance systems (ADAS) also heavily use neural
networks (NN) to perform tasks like pedestrian and obstacle de-
tection [1]–[3]. Using NN models in a wide variety of application
domains have resulted in a concomitant increase in the interest
and efforts from chip designers and various hardware manufacturers
towards building optimal hardware for NN execution [4]–[6]. Embed-
ded edge devices are especially becoming equipped with multi-core
processors and custom accelerators, which can now process incoming
sensor data with limited or without cloud support. In recent years,
there has been tremendous progress in the research and development
of both the hardware platforms as well as software stacks aimed
towards improving the efficiency of embedded NN inference. Figure 1

gives a glimpse of the popular hardware and software stacks available
in the NN market segment for edge platforms.
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Fig. 1: Popular DNN hardware and software stacks adapted from
[7]. Blue boxes indicate components used here to examine effect of
inference engines (level 6), on inference accuracy and performance.

As can be seen from Figure 1, applications at level 1 use labeled
datasets in level 2 to train the necessary NN models in level 3,
using different software frameworks in level 4. These frameworks
like TensorFlow, Caffe, Pytorch etc. make training NN models with
given datasets convenient, with a set of function APIs to optimize
the desired loss function in an iterative process. Training typically
happens in the cloud and not on an embedded edge device. Once an
NN model is trained, inferences using the trained model can be run
directly on embedded hardware platforms, with different processor
cores as shown in level 8 of Figure 1. The platforms run the operating
systems mentioned in level 7, that include the compilers in level 5 to
translate the NN model based inference code to hardware instructions.
The focus of this paper is in the recently introduced software layer in
level 6, namely Inference Engine, that takes the trained NN models
and first compresses them for more efficient inferences (referred
to as Model Compression in subsequent sections), and then maps
the compressed NN model to the most optimal hardware functions
(referred to as Hardware Mapping in subsequent sections). There are
various inference engines provided by different vendors (refer to level
6 of Figure 1), however, the focus of the present work is in particular
to characterize the TensorRT inference framework provided by Nvidia
in embedded GPUs. To the best of our knowledge, this is the first
work that characterizes such software frameworks on edge devices.

This paper examines the impacts of the inference engine software
(level 6) on inference accuracy and performance, using real edge
applications (level 1), datasets (level 2), and a wide variety of
NN models (level 3) trained on various frameworks (level 4). Blue
boxes in first four levels of Figure 1 mark what we use in our



analyses. To reiterate, inference engines comprise two functional
steps of Model Compression and Hardware Mapping, each step being
a result of frenzied research in this domain over the last few years.
Model Compression includes one or more methods from various
recently proposed techniques [8]–[17], such as (a) fusing NN layers,
(b) clustering of NN parameters or weights to have fewer unique
weights [18], [19], (c) pruning or removal of weights less than a
threshold [20], [21], (d) quantization of weights represented as 32
bit floating point numbers in the trained model as 16 bit half floats,
8 bit integers etc. [22], [23]. Hardware Mapping similarly needs
to be aware of the growing set of NN processors and customized
accelerators (CPU, GPU, TPU, NPU, DLA, FPGA etc.), and choose
the appropriate set of library functions that are specially tuned to
extract maximum performance from these heterogeneous processor
cores.

As shown in the level 6 boxes of Figure 1, these inference
engines are proprietary softwares from the hardware vendors namely
NVIDIA, ARM, INTEL, AMD and XILINX, as these vendors only
know the hardware architectures and instruction sets of their plat-
forms in detail. Thus, the logic these platform vendors use for Model
Compression or Hardware Mapping are not available in the public
domain. To understand these black-box inference engines better, this
paper uses state-of-the-art embedded GPU based platforms from
NVIDIA (namely Jetson Xavier NXTM and Jetson Xavier AGXTM),
that run Linux OS and the TensorRT inference engine comprising
NVCC compiler. Our choice of hardware and inference engines are
guided by the following factors - ¶ NVIDIA GPUs and TensorRT
inference engines are extensively adopted by embedded industries, in
automotive, medical, agricultural, mining, industrial automation, last
mile delivery, construction, retail and other application domains [1],
[2], [24]–[26] · Among all inference engines, TensorRT supports
the maximum number of input NN frameworks (level 4 in Figure 1)
and NN models (level 3 in Figure 1), so that our examination of
inference accuracy and performance can use a variety of NN models
and frameworks ¸ NVIDIA’s TensorRT engine includes all possible
NN optimizations unlike other inference engines, as discussed in
detail in [27] and shown in Figure 2.
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Fig. 2: TensorRT optimization steps: ¶ unused NN layers are
removed, · consecutive NN layers fused into one operation, ¸

multiple branches among NN layers merged, ¹ 32 bit floats quantized
to 16 bit half floats or 8 bit integers, º optimized NN layers are
mapped to an extensive library of pre-implemented CUDA kernels.

Through rigorous experiments on real platforms with a variety of
NN models, we find TensorRT (a) maintains or even slightly improves
accuracy on benign and adversarial images in image classification
tasks, (b) gives 23-26x gain in classification throughput and (c)
can pack upto 36 concurrent NN inferences for object detection
tasks. However, these positive impacts are coupled with certain

unpredictable or non-deterministic behaviors, namely (a) the output
for a given input image is not deterministic across different TensorRT
engines, both on the same platform and across the platforms (b)
inference latencies for the same NN model on the same platform
change, every time a new TensorRT engine is compiled and (c)
TensorRT engines compiled and run on more expensive embedded
platforms with more hardware resources, can have longer inference
latencies than engines compiled and run on platforms with less
hardware specifications. We discuss important implications of our
findings on real life applications, that embedded deployments should
carefully consider. We additionally discuss interesting implications of
our findings in computer architecture research that model and predict
application performance.

II. MEASUREMENT SETUP

In this section, we describe the edge devices comprising of
NVIDIA embedded GPU cores and the neural network (NN) models
used for examining TensorRT optimization engines. Additionally, we
discuss the profiling tools used in our measurements and describe the
image datasets and evaluation metrics used in our analyses.

A. Evaluation Platforms with Embedded NVIDIA GPU Cores

We evaluate our neural network (NN) models on two edge de-
vices widely used in a number of embedded applications such as
traffic intersection control and autonomous driving systems [25],
[26]. Both devices use the GPU Volta architecture - Jetson Xavier
NXTM [28] and Jetson Xavier AGXTM [29]. We keep the underlying
GPU architecture same, so that the low level hardware instruction
set remains constant and comparable across the devices, and all
measured evaluation metric differences (if any) result only from the
TensorRT optimizations. We use a 384 core Xavier NX and 512
core Xavier AGX, with correspondingly larger numbers of SMs and
tensor cores, and RAM size in AGX (refer to Table I) obtained using
deviceQuery [30] utility available on both the boards. Therefore, the
expectation is that the same NN model should give better performance
on the AGX platform, as it is more powerful in terms of hardware
resources and is also an order of magnitude more expensive than
NX. It should be noted here that both these embedded boards contain
DLAs (Deep Learning Accelerators) that can be used for offloading
some tasks from GPU. In this paper, we characterize the GPUs
(excluding the DLAs) for the execution of neural networks, as GPUs
are more predominantly available in edge devices as compared to
DLAs. On the systems software part, we use an Ubuntu 18.04
Operating System along with cuda 10.1 for our experimentation.

Xavier NX (GV10B) Xavier AGX (GV10B)

CPU
6-core NVIDIA Carmel
ARM®v8.2 64-bit CPU

6MB L2 + 4MB L3

8-core ARM® v8.2
64-bit CPU

8MB L2 + 4MB L3
# GPU cores 384 (64 per SM) 512 (64 per SM)
# SMs 6 8
# Tensor
cores

48 (8 per SM) 64 (8 per SM)

L1 cache 128KB per SM 128KB per SM
L2 cache 512KB 512KB
Memory 8GB 128-bit LPDDR4x

51.2GB/s
32GB 256-bit
LPDDR4x 137GB/s

GPU Clock 1.1 GHz 1.137 GHz
Technology 12nm 12nm

TABLE I: Evaluation platforms with Embedded NVIDIA GPU



NN Model Vision Task Framework # Layers Un-optimized TensorRT Engine TensorRT Engine
Model Size (MB) for NX (MB) for AGX (MB)

Alexnet [31] Classification Caffe 5 conv, 3 max pool 232.56 120.11 120.11
ResNet-18 [32] Classification Caffe 21 conv, 2 max pool 44.65 22.5 52.49

vgg-16 [33] Classification Caffe 13 conv, 5 max pool 527.8 264.7 264.7
inception-v4 [34] Classification Caffe 149 conv, 19 max pool 163.12 82.68 82.68
Googlenet [35] Classification Caffe 57 conv, 14 max pool 51.05 13.62 21.08

ssd-inception-v2 [36] Detection Tensorflow 90 conv, 12 max pool 95.58 48.9 48.9
Detectnet-Coco-Dog [37] Detection Caffe 59 conv, 12 max pool 22.82 12.45 12.45

pednet [38] Detection Caffe 59 conv, 12 max pool 22.82 12.72 12.73
Tiny-Yolov3 [39] Detection Darknet 13 conv, 6 max pool 33.1 17.83 17.83

facenet [40] Detection Caffe 59 conv, 12 max pool 22.82 12.03 12.05
Mobilenetv1 [41] Detection Tensorflow 28 conv, 1 max pool 26.07 13.50 13.53

MTCNN [42] Detection Caffe 12 conv, 6 max pool 1.9 3.8 4.78

fcn-resnet18-cityscapes [43] Segmentation PyTorch 22 conv, 1 max pool 44.95 24.7 48.78

TABLE II: Neural network (NN) models used for our evaluation, with model sizes (MB) with and without TensorRT optimizations.

B. Evaluated Neural Network (NN) Models

We use TensorRT optimized NN models from model zoo [44] as
our EdgeML workloads. We classify the models into three categories
based on the computer vision task they perform - image classification
models, object detection models and the image segmentation models.
We list these models, along with their architectures and frameworks
associated with training each network in Table II. As can be seen,
the models differ in number and type of layers. Consequently the
un-optimized model sizes, as well as the TensorRT optimized engine
sizes for the two embedded platforms, vary across the models. These
wide variety of NN models are needed to better characterize the
TensorRT optimization engines, as layer fusion, quantization and
other optimizations in TensorRT might affect the different model
architectures in different ways.

C. Application Profiling Softwares

We use two profiling tools for measurements: (a) Nvprof [45]
allows profiling CUDA-related activities on CPU and GPU, including
kernel execution, memory transfers, etc. It comes in various modes
such as summary mode (provides the overview of GPU kernels and
memory copies in the application), GPU trace mode (provides the list
of all kernel launches), etc. The detailed description of nvprof can be
read from [45]. (b) Tegrastats [46] is a command line based utility
that provides the detailed statistics of the processor and the memory
usage for Jetson based devices. It provides the statistics such as RAM
usage, GPU utilisation, CPU utilisation, thermal and power statistics
etc.

D. Image Datasets and NN Model Outputs

Since our evaluated NN models in Table II are predominantly
related to image classification and object detection computer vision
tasks, we use both well-known public image datasets, as well as a
custom image dataset, to evaluate the classification and object detec-
tion accuracies. We use a subset of the Imagenet dataset (henceforth
referred to as benign data) [47] consisting of 1000 classes with each
class containing 50 images for our analysis. We additionally use
an adversarially perturbed image dataset (henceforth referred to as
adversarial data) [48] consisting of images with 15 different types of
noises and five different severity levels that indicate the amplitude
of the noise added. Increase in the severity levels (1 to 5) implies
increase in the amplitude of the noise. The adversarial data comprises
the same 1000 classes with 50 images for each class, as the benign
data. Each image classification model takes an image from the benign
or adversarial dataset as input, and outputs a class label for that image.
In addition to this, we use a developing region labeled traffic image

dataset [49] to evaluate object detection accuracies. We use 3896
images from this dataset for training vehicle detection CNN models
and 1670 images for testing. Each object detection model takes an
image comprising a traffic scene, and outputs rectangular bounding
boxes for different vehicle classes (bus, car, truck etc.).

E. Evaluation Metrics

Accuracy Metrics: We use top-1 error as a metric to compare the
classification models for both the benign and the adversarial datasets.
Top-1 error is defined as the percentage of the test images on which
the classification model fails to output the correct class label. For
object detection task, we consider the standard Intersection Over
Union (IOU) of the predicted bounding box output, with respect to
the bounding box manually marked as ground truth in the test images.
IOU of 0.5 is traditionally considered a true positive, with precision
increasing as IOU tends towards 1. We report precision and recall
values corresponding to IOU 0.75, in our analysis.
Performance Metrics: To measure performance, we use the standard
metric for throughput used in computer vision domain, namely
Frames Per Second (FPS) which is defined as the number of frames
or images that are inferenced per second by the NN model. Note that
we measure this time only for the inferencing part, excluding the time
to load the image from the disk or camera to the main memory. We
measure GPU utilization using the tegrastats utility. We use latency
of each inference task as a second performance metric, in addition
to throughput. We measure whether TensorRT optimizations improve
or degrade the metric values on average, so that the application’s
requirements are met. We also check for performance predictability,
so that these engines can be reliably deployed in the field for safety-
critical applications.

F. Experimental Methodology

We build a TensorRT engine for each NN model using either
the Caffemodel, TensorFlow model, and PyTorch or Darknet (refer
to Table II) containing model weights obtained from the model
zoo [44]. TensorRT engine building consists of multiple steps (refer
to Figure 2), and needs to be executed on the edge device itself.
How these optimizations and final CUDA kernel mapping affect the
accuracy and performance metrics of the NN models across the edge
platforms, is the topic of interest in this paper. In our experiments
for performance metrics, each TensorRT engine obtained is executed
for 10 runs on an image and the average of the 10 runs along with
standard deviation across these 10 runs is reported in the analysis.
The GPU frequency is set at 599 MHz for NX and 624 MHz for
AGX. Note that the goal is to have the same GPU frequency for



both the platforms for a fair comparison, however, there is no GPU
frequency value that is common in both the platforms. Therefore, we
chose the values that are nearest to each other. AGX GPU frequency
is slightly more, so along with more hardware resources, this slightly
higher GPU frequency setting should also ideally give better NN
performance on AGX than NX.

III. ACCURACY METRIC ANALYSIS

In this section, we analyze the accuracy of the NN models listed
in Table II, on our two evaluation platforms listed in Table I. We first
discuss the effect on the accuracy of image classification networks for
benign and adversarial datasets. Subsequently, we discuss whether the
model outputs are same for a given image when TensorRT engines
are built multiple times on the same platform or across different
platforms.

A. Classification Accuracy on Benign and Adversarial Datasets

In this Section, we study the accuracy of un-optimized and opti-
mized (TensorRT) image classification networks on benign (clean im-
ages) and adversarial (corrupted images) datasets. For our evaluation,
we use 100 classes with each class containing 50 images, thus total of
5000 images for benign dataset. Similarly, for the adversarial dataset,
we used all the 15 noises with 2 severity levels (severity 1 and severity
5) along with 100 classes with 20 images in each class, thus a total
of 60,000 images (15 X 2 X 100 X 20). Table III shows the average
error in percentage for three image classification networks on benign
dataset using TensorRT and un-optimized engines. We can observe
from the table, un-optimized networks have significantly more error
by around 2-9% on average for benign image dataset compared to
the TensorRT networks (on both NX and AGX).

NN Model AGX
Error(%)
TensorRT

NX
Error(%)
TensorRT

Error(%)
Unopti-
mized

Alexnet 45.16 45.1 47.72
ResNet-18 35.9 35.76 55.18
vgg-16 33.76 33.78 38.46

TABLE III: Top-1 Error(%) for image classification networks on
benign dataset using TensorRT optimized and un-optimized engines.

NN Model Noise
Severity
Level

AGX
Error(%)
TensorRT

NX
Error(%)
TensorRT

Error(%)
Unopti-
mized

Alexnet 1 64.36 64.33 74.90
5 90.28 90.28 94.12

ResNet-18 1 46.7 46.7 75.31
5 87.1 87.14 97.9

vgg-16 1 40.65 40.67 51.36
5 86.01 86.02 90.82

TABLE IV: Top-1 Error(%) for image classification networks on ad-
versarial dataset using TensorRT optimized and un-optimized engines.

Similarly for the adversarial images, we show the error of un-
optimized networks and the corresponding TensorRT engines in Table
IV. We observe that for severity level 1, the average error is less
by around 33.86% compared to the severity level 5 (highlighted in
blue). This shows that if we increase the noise in the images, the
overall accuracy of the network goes down as expected. Like the
benign dataset, we observe that the TensorRT optimizations reduce
the top-1 error by around 4-12% on average compared to the un-
optimized networks for adversarial dataset too. The original ML
models are big, possibly over-fitting the training data, so a little
adversarial change affects them more. TensorRT optimizations, for

example weight quantizations, can reduce this over-fitting, thereby
improving classification accuracy.

Finding 1: TensorRT maintains accuracy compared to the un-
optimized NN models for image classification. Un-optimized net-
works possibly over-fit the training data, increasing error on test
data. TensorRT optimizations, like weight quantizations, can reduce
over-fitting maintaining or even slightly improving accuracy.

B. Consistency of Output Labels

Once both the NN model architecture and weights/parameters
have been frozen through the model training process, TensorRT
optimizations should give the same output for that NN model on
a given test image. Whether this output consistency holds when
TensorRT engines are built across the NX and AGX platforms, or
when multiple TensorRT engines are built on the same platform, is
verified next. We create 3 engines of each network for each platform,
thus a total of 6 engines for each network.

We tabulate the difference in the number of predictions across
these engines in Table V. NX1-AGX1 shows the difference in the
number of predictions for engine 1 of NX and engine 1 of AGX.
Similarly other possible combinations of the engines are tabulated.
The values indicate number of different predictions done by pair of
TensorRT engines for the same input image, out of the 60,000 total
output predictions. For the engines on the same platform, we report
all the output label mismatches in Table VI for both NX and AGX.
For example, 1-2 indicates the number of different predictions done
by engine 1 and engine 2. Though the pairwise mismatch values
comprise only 0.1-0.8% of the total number of predictions, these
results show that TensorRT engines do not guarantee the same output
compared to the original model, every time an engine is built on the
same platform or across different platforms.

Though TensorRT is meant to optimize performance with minimal
effects on NN model accuracy, if we create multiple instances of
the engines, it can lead to different predictions for the same input
images across these engines. Similar observations have been reported
by Chou.et.al in [50]. The paper discusses the GPU non-determinism
obtained when the network is trained repeatedly, leading to the
difference in the accuracy of the network. This non-determinism is
attributed to different ordering of threads in each execution along with
the non-associative nature of the floating point arithmetic. However,
our non-determinism is attributed to the unpredictable nature of Ten-
sorRT framework where each engine is a different binary executable
performing different computations on the same input pixel, leading
to output inconsistencies. This inconsistency in TensorRT engines’
outputs for the same input image can impact real life applications,
such as fining vehicles in automated rule violation detection for
intersection cameras. Different vehicles may be fined based on which
NX or AGX platform the TensorRT number classification model
engine is built on, leading to total ridicule for such penalties in a
legal setting. We discuss many such practical implications of our
findings in Section VI.

Finding 2: Output of TensorRT engines might vary for the same
input image across different engines built on an edge platform, and
across many engines built on different platforms, even when the
same un-optimized NN model (identical architecture and weights
as trained on training images) is used for the TensorRT builds.



NN Model NX1-AGX1 NX1-AGX2 NX1-AGX3 NX2-AGX1 NX2-AGX2 NX2-AGX3 NX3-AGX1 NX3-AGX2 NX3-AGX3
ResNet-18 380 362 365 379 363 359 380 362 365
vgg-16 438 451 451 438 451 451 438 451 451
inceptionv4 485 288 300 485 288 300 485 288 300
Alexnet 422 422 422 422 422 422 422 422 422

TABLE V: Number of different prediction output across engines for different platforms (cross platform engines).
Platform NN Model Engines 1 - 2 Engines 2 - 3 Engines 1 - 3
NX ResNet-18 105 105 0
AGX vgg-16 269 0 269
AGX inceptionv4 461 296 497
AGX ResNet-18 243 224 183

TABLE VI: Number of different prediction output across engines
(platform specific engines).

IV. PERFORMANCE METRIC ANALYSIS

This section examines the throughput in terms of Frames Per
Second (FPS) and inference latencies per frame or image, with and
without TensorRT optimizations.

A. Throughput for Image Classification Networks

Table VII shows FPS values of some image classification networks
for NX and AGX TensorRT optimized and un-optimized engines. We
observe that TensorRT optimizations increase FPS by around 27x
on NX, compared to the un-optimized NN models. Similarly, FPS
increases by around 23x on the AGX platform.

NN Model NX-
Unoptimsed

NX-
TensorRT

AGX-
Unoptimsed

AGX-
TensorRT

Alexnet 12.1 190.4 14.2 192.5
ResNet-18 4.6 227.01 5.63 232.4

vgg-16 0.66 49.1 0.8 43.6

TABLE VII: FPS for TensorRT optimized and un-optimized engines

B. Throughput for Object Detection Models and Concurrency

We next examine the throughput for object detection models
with TensorRT optimizations. We additionally check how much
concurrency can be achieved by the TensorRT engines in running
multiple instances of a CNN application, at higher GPU utilization.

To support concurrency on the embedded GPU platforms, we use
CUDA Contexts and Streams. A CUDA Context represents a virtual
address space on a GPU and holds management data (e.g. memory
allocation list, CPU-GPU mapping etc.). A CUDA Stream masks the
memory copy latency and enables concurrent execution of multiple
GPU kernels to increase GPU utilization. We use a single context
and bind multiple streams within that context. Each inference task
is connected to a specific stream and all the streams are executed in
parallel. In this mode, all threads in the same stream use the same
NN model in a shared memory address space. Therefore, if the edge
applications can be designed to reuse the same NN model across
different threads, then this method is a viable concurrency option.
We will discuss such an application in Section VI, namely traffic
intersection control, where many traffic cameras pointing in different
directions, can all use the same fine-tuned CNN model such as Tiny-
Yolov3 for vehicle and number plate detection tasks. This application,
and similarly many others where the same NN model needs to applied
to many input images, can use CUDA stream and multi-threading
based concurrency.

We show the GPU utilization and FPS characteristics with increas-
ing number of threads for a small CNN Tiny-Yolov3 (Figure 3) and
a larger CNN Googlenet (Figure 4), both of which are widely used
CNNs for object detection applications [35], [39]. For Tiny-Yolov3,
the GPU utilization for NX saturate at 82% (refer to Figure 3a).
The maximum number of threads that are supported for NX are
28. For Xavier AGX, the GPU utilization increases to 86.2% for
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Fig. 3: FPS and GPU utilizations on NX and AGX when Tiny-
Yolov3 CNN is run. NX saturates at 28 GPU threads and AGX at 36
GPU threads, with GPU utilization slightly above 80% in both cases.
RAM bandwidth bottleneck marks this thread saturation points. FPS
is around 196 and 346 per thread for the saturation thread count, at
1109.25 MHz GPU frequency on NX and 1377 MHz on AGX.
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(a) NX-Googlenet
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Fig. 4: FPS and GPU utilizations on NX and AGX when Googlenet
CNN is run. NX at 16 GPU threads and AGX at 24 GPU threads,
with GPU utilization slightly between 82-85% for the two boards.
RAM bandwidth bottleneck marks this thread saturation points. FPS
is around 85 and 210 per thread for the saturation thread count, at
1109.25 MHz GPU frequency on NX and 1377 MHz on AGX.

36 threads (refer to Figure 3b) as more resources are available in
Xavier AGX, compared to NX. However, for the heavier model
Googlenet, the number of threads supported are 16 and 24 (less
compared to Tiny-Yolov3) for NX and AGX respectively (refer to
Figure 4a and Figure 4b). The GPU utilization increases on increasing
the number of threads and saturates at 82.1% and 85.6% for NX
and AGX respectively. CNN threads supported are less for a heavier
model compared to a lighter model, as the GPU utilization reaches
saturation more quickly. Note that we obtain these statistics on the
maximum GPU frequency to check for the maximum performance
and the concurrency supported by these edge platforms. Additionally,
the RAM bandwidth can saturate earlier as more model weights are
read by the increasing number of threads. The number of threads, N,
are bounded by:

N = O
(Fmem×Bwid

Bth

)
(1)

where N is the number of threads, Bth is the bandwidth used by
one thread, Fmem is the memory frequency and Bwid is the memory
bus width. However, even in presence of this memory bandwidth
bottleneck, the edge devices with embedded GPUs support good
number of CNN threads with a significant throughput as seen for
both a light and a heavy CNN model above. This high level of
NN concurrency using TensorRT engines, with excellent throughput,



NN Model cNX rNX cNX rAGX cAGX rAGX cAGX rNX Detected Anomalies
Alexnet 44.79 (0.58) 44.34(0.73) 44.47(0.63) 46.93(1.01) none
ResNet-18 12.65 (0.05) 12.15(0.51) 13.95 (0.1) 27.66(1.24) case ¶
vgg-16 111.77 (1.11) 112.59(2.89) 113.45(3.67) 117.22(1.06) case ¶, case ·
inception-v4 59.89(2.86) 63.01(2.38) 62.84 (1.96) 60.89(1.04) case ¶, case ·, case ¸
Googlenet 798.12 (57.71) 740.75(45.13) 542.33(60.63) 669.45(83.69) none
ssd-inception-v2 34.32 (0.39) 34.24(1.34) 41.19(1.90) 36.49(0.55) case ¶, case ¸
Detectnet-Coco-Dog 28.48 (0.14) 29.35(3.09) 27.77(2.49) 29.30(0.08) case ·
pednet 33.43 (0.11) 38.15(1.19) 37.28(1.27) 35.71(1.28) case ¶, case ·, case ¸
facenet 18.28 (0.07) 22.92(1.32) 22.67 (2.54) 19.58(1.85) case ¶, case ·, case ¸
Tiny-Yolov3 634.89 (2.21) 470.23(4.13) 484.11(13.07) 634.93(1.69) none
Mobilenetv1 11.97 (0.07) 13.99(0.10) 10.98(0.17) 12.2(0.09) case ·
MTCNN 911.43 (1.22) 804.83(13.83) 861.2(41.2) 922.12(3.38) none
fcn-resnet18-cityscapes 18.76 (0.87) 19.73(0.54) 29.87(1.36) 29.13(0.49) case ¶, case ·

TABLE VIII: Average run time or inference latency (in ms) of different networks along with standard deviation, when run with TensorRT
optimizations. Platform AGX with more hardware resources and slightly higher GPU clock frequency during experiments, should have lower
inference latencies than platform NX. When this expectation does not hold, an anomaly occurs. There are 3 possible anomalous cases of
higher AGX runtime (rAGX) than NX runtime (rNX) - case ¶ (highlighted in bold font) when two different engines are compiled on NX
and AGX and each platform runs its own compiled engine, case · (highlighted in blue color) when both platforms run the same engine
compiled on NX and case ¸ (highlighted in red color) when both platforms run the same engine compiled on AGX.

therefore has tremendous promise in terms of application support.

Finding 3: TensorRT optimizations which include layer fusion,
quantizations etc. obtain a significant (around 23-27x) throughput
gain over un-optimized models. The optimizations also help in
packing more concurrent ML model processing threads in the em-
bedded GPU, further increasing edgeML application performance.

C. Inference Latency for Classification and Detection Networks

We next examine the runtime or inference latency of TensorRT
engines using nvprof for four cases - cNX rNX (compiled on NX
and run on NX), cNX rAGX (compiled on NX and run on AGX),
cAGX rAGX (compiled on AGX and run on AGX) and cAGX rNX
(compiled on AGX and run on NX). We tabulate the run time numbers
for various NN models listed in Table VIII. Each cell contains the
average run time across 10 runs with standard deviations in brackets.

As AGX has more hardware resources than NX (Table I) and
is run at slightly higher GPU frequency than NX, AGX should
have lower inference times. We verify this expectation of better
AGX performance and mark the anomalies to these expectations
grouped into three categories in Table VIII - case ¶ compares
cNX rNX with cAGX rAGX (anomalies marked in bold), case ·

compares cNX rNX with cNX rAGX (anomalies marked in blue)
and case ¸ compares cAGX rNX with cAGX rAGX (anomalies
marked in red). Case ¶ refers to the platform specific engines,
which means engine is used for inferencing on the platform on
which it was built. This is what NVIDIA recommends [51] for most
optimal performance, to run engines after compiling on a particular
platform and not use engines compiled on other platforms. Generally,
more are the hardware resources, better should be the performance
in terms of execution time. However, we observe from the bold
entries in Table VIII that there are seven networks (Resnet-18,
vgg-16, inception-v4, ssd-inception-v2, pednet, facenet, fcn-resnet18-
cityscapes) which surprisingly behave badly (execution time more) in
AGX compared to NX. Next we check if AGX performs better when
an engine is compiled on one platform, and that exact same engine
is run on both NX and AGX. Case · refers to the engines that are
built on NX and the same engine is then run on NX and AGX. We
find seven networks (vgg-16,inception-v4,Detectnet-coco-dog,pednet,

facenet, mobilenet,fcn-resnet18-cityscapes) highlighted in blue have
higher runtimes in AGX compared to NX. Case ¸ is the converse
of case ·. The engine is built on AGX and the same engine in then
run on both AGX, and NX. In this case also, we observe there are
four anomalous cases shown in red in Table VIII (inception-v4,ssd-
inceptionv2,pednet,facenet) that are performing better on NX.

NN Model cNX rNX cNX rAGX cAGX rAGX cAGX rNX
Inception-v4 31.64(0.33) 46.06(3.03) 42.60(2.59) 34.56(1.89)
Pednet 29.75(0.3) 34.55(0.9) 33.12(0.37) 31.49(0.56)

TABLE IX: Average inference time (in ms) along with standard
deviation, when TensorRT engines are run without nvprof tool.

All our analysis above are based on the run times obtained for
NN model inferences, while the nvprof profiling tool runs in the
background. However, the trends in the run time across the platforms
are observed without nvprof tool as well. In Table IX, we tabulate
the run time of NN inference only, without nvprof. We show only
two representative examples of NN models, inception-v4 and pednet,
due to space limitations. The three cases of anomalies of slower
AGX run times than NX hold without nvprof for both these NN
models, while the absolute run times are lower in Table IX without
nvprof than in Table VIII with nvprof. Thus these anomalies of
higher inference latencies on AGX with better hardware resources
and slightly higher GPU clock frequency, are not a manifestation of
the profiling overhead. Summarizing the insights of the three cases
of inference time anomalies, we infer the following:

Finding 4: Even if an edge platform has more hardware resources
such as number of cores, L1/L2 cache and RAM sizes, it does
not imply that TensorRT engine will run faster on that platform.
This can happen if engines are compiled on specific platforms for
running on that platform (case ¶), or are compiled on the same
platform and run across different platforms (case · and case ¸).

V. INFERENCE LATENCY ANOMALY ANALYSIS

In this section we examine possible sources of inference latency
anomalies observed in the previous section. We explore these anoma-
lies across platforms, when AGX is slower than NX. We further
examine whether different engines built on the same platform have
exact same NN inference times, when run on that platform.



cNX rNX cNX rAGX
NN Model CUDA memcpy Included CUDA memcpy Excluded CUDA memcpy Included CUDA memcpy Excluded
ResNet-18 12.651(0.050) 3.683(0.009) 12.147(0.514) 3.088489(0.008)

Inception-v4 59.893(2.86) 23.071(2.738) 63.015(2.38) 20.908(1.027)
Pednet 33.428(0.106) 27.39(0.074) 38.147(1.186) 31.83(1.12)
Facenet 18.285(0.071) 12.618(0.047) 22.92(1.32) 17.100(1.239)

Mobilenetv1 11.97(0.070) 5.956(0.011) 13.987(0.1026) 9.342(0.016)
TABLE X: Average run time (in ms) with CUDA mempcy time included and excluded along with standard deviation

NN Model Kernels cNX rNX cNX rAGX
Pednet trt volta h884cudnn 256x64 ldg8 relu exp small nhwc tn v1 8.96 11.76

trt volta h884cudnn 128x128 ldg8 relu exp medium nhwc tn v1 1.8 2.3

Facenet trt volta h884cudnn 256x64 ldg8 relu exp small nhwc tn v1 2.17 4.4
trt volta h884cudnn 256x128 ldg8 relu exp medium nhwc tn v1 2.1 4.8

lrn::lrnForward NChWH2 0.45 1.08

Mobilenetv1 cub::DeviceSegmentedRadixSortKernel1 0.97 1.38
cub::DeviceSegmentedRadixSortKernel2 0.88 1.32

trt volta h884cudnn 128x128 ldg8 relu exp medium nhwc tn v1 0.73 1.23
cuDepthwise::depthwiseConvHMMAPrefetchKernel 0.6 0.9

TABLE XI: Average run time (in ms) of similar set of kernels on NX and AGX along with standard deviation

A. Latency Anomalies of same TensorRT Engines across Platforms

Table X shows the run time of some anomalous cases of Table
VIII without the CUDA memcpy time. CUDA memcpy time is
CUDA memcpyHostToDevice transfer time i.e. the time taken to copy
the TensorRT engine from CPU to GPU. We observe that the two
networks (Resnet-18 and inception-v4) without the CUDA memcpy
time run faster on AGX compared to NX (highlighted in blue). Thus
for these two NN models, the engine copying to GPU memory is
slower on AGX, though in this case we use the exact same engine
built on NX on both boards. Slower CUDA memcpy leads to overall
higher inference time on AGX for these two models. However, for
the other three networks (pednet, facenet, and mobilenet), CUDA
memcpy time does not make much of a difference to the anomaly.
AGX is slower than NX even without CUDA memcpy. To examine
this, we record all the CUDA kernels that are invoked by these
NN models, and further obtain the running times of the individual
CUDA kernels. We find that some CUDA kernels run slower on
AGX compared to NX, leading to the overall increase of run time in
AGX. Table XI shows the kernels that incur more run time on AGX
compared to NX for pednet, facenet and mobilenet. To summarize,
we find that there are two major reasons that lead to increase in run
time on AGX compared to NX ¶ CUDA memcpy time is higher on
AGX than NX even if the exact same TensorRT engine is copied to
GPU memory on the two platforms, and · some CUDA kernels run
slower on the bigger platform.

Finding 5: Some NN models take longer CUDA memcpy time
on AGX than NX for copying the engine to GPU memory. Some
CUDA kernels take longer to execute on AGX than NX. These two
factors contribute to the overall increase in the run time on AGX.

B. Latency Differences Across TensorRT engines on Same Platform

We build multiple instances of TensorRT engines for each NN
model on the same platform. Table XII shows the average run time
along with the standard deviation for the instances of TensorRT
engines, built and run on the AGX platform. We observe that run
times vary across the engines for a particular network (highlighted
in blue), even when all engines are built and run on the same AGX
platform. Similar inference latency differences are seen for different
engines built on NX, which we exclude due to space constraints.

NN Model Engine1 Engine2 Engine3
Alexnet 44.47(0.62) 43.72(0.7) 44.86(0.34)
ResNet-18 13.94(1.73) 9.15(1.17) 9.02(0.39)
vgg-16 113.45(4.9) 129.5(5.09) 124.7(3.86)
inception-v4 62.83(4.65) 73.5(9.08) 68.15(2.53)
Googlenet 542.33(60.62) 541.14(57.9) 540.86(58.6)
ssd-inception-v2 41.18(1.90) 40.23(1.65) 42.2(2.2)
Detectnet-Coco-
Dog

27.77(2.49) 25.56(2.74) 26.3(2.86)

pednet 37.96(3.69) 37.66(2.27) 37.78(4.17)
facenet 22.67(2.54) 22.54(2.45) 21.96(2.1)
Tiny-Yolov3 484.11(13.07) 484.29(12.96) 486.54(13.43)
Mobilenetv1 10.98(0.16) 13.25(0.35) 12.13(0.67)
MTCNN 861.2(41.2) 862.5(43.5) 861.67(41.9)
fcn-resnet18-
cityscapes

29.87(1.36) 34.56(1.19) 35.23(0.85)

TABLE XII: Average run time (in ms) using different TensorRT
engines of the same NN models for AGX platform. Blue rows indicate
run time differences across the three engines.

Inception-v4 NN model shows run time differences across
the three engines in Table XII. Therefore we next check
its CUDA kernel invocations across the engines. Table XIII
shows how many times a representative CUDA kernel
trt volta h884cudnn 128x128 ldg8 relu exp interior nhwc tn v1
is invoked in the Inception-v4 NN model on AGX, for the three
TensorRT engine instances. We observe that for engine1, engine2
and engine3, the number of calls are 9, 8 and 6 respectively for this
particular kernel. To the best of our knowledge, nvprof [45] profiling
tool does not output the specific arguments in a particular CUDA
kernel invocation. Therefore, this is the maximum information about
this kernel that we can infer from the available profiling tools. For
this paucity of profiling information, though we see each kernel
invocation in Table XIII takes different times in µs, it is difficult to
conclude what difference in invocation arguments creates these run
time differences. However, it is clear that every time a TensorRT
engine is built for the same NN model on the same platform, the
mapping to CUDA kernels changes – (a) a given CUDA kernel is
invoked varying number of times across engines and (b) run times
for those kernel invocations cannot be matched across engines.
These mapping differences lead to different inference latencies
across engines for a given NN model on that platform.

The effect of such non-determinism in runtime needs to be ana-



Engine1 Engine2 Engine3
229.29(15.34) 226.19(13.42) 124.40(1.27)

824.41(766.25) 111.09(1.46) 502.18(440.2)
109.62(1.92) 212.03(321.8) 110.99(2.72)
111.27(2.83) 207.92(312.2) 110.21(3.41)

249.87(440.16) 111.70(6.62) 195.75(276.79)
448.51(733.85) 149.81(2.28) 196.77(271.18)
266.11(369.92) 149.78(1.51)
320.05(385.71) 201.95(170.58)
296.87(467.08)

9 calls 8 calls 6 calls

TABLE XIII: Number of invocations and run time (in µs) per
invocation of a CUDA kernel in inception-v4 on AGX platform.

lyzed in terms of application requirements, e.g. Worst Case Execution
Time (WCET) analysis in real time tasks. We will discuss one such
application with real time requirements, namely Advanced Driving
Assistance Systems (ADAS), in Section VI.

Finding 6: TensorRT optimizes NN models and maps the opti-
mized network to CUDA kernels based on hardware architecture.
As analyzed above, this process of TensorRT engine generation
comprising optimization and mapping, is not deterministic. For
the same platform and across platforms, with same NN model
input, the generated TensorRT engine comprises different CUDA
kernels and have different inference latencies, with sometimes
worse inference latencies on more powerful hardware platforms.

VI. IMPLICATIONS OF FINDINGS

TensorRT optimizes a trained NN model by layer fusion, quanti-
zation etc. and maps the optimized network to CUDA computational
kernels for optimal performance on a given hardware architecture.
Table XIV lists the positive and unpredictable impacts TensorRT
engines can have on NN inferences, which are based on our experi-
ment based findings in the previous sections. We next discuss some
implications of these findings on real life applications and computer
architecture research.

Finding Summary Impact
Maintain
task
accuracy

TensorRT optimizations lead to less
over-fitting, thus can have same or
slightly higher accuracy

Positive

Non-
deterministic
output

TensorRT engines of a given NN
model, on same platform and across
platforms might not give same output
on same given input image

Unpredictable

Throughput
gain, higher
concurrency

Optimizations such as quantization,
layer fusion etc. gives 23-27x FPS gain
and can pack upto 36 concurrent NN
threads at > 80% GPU utilization

Positive

Non-
deterministic
inference
times

cudamemcpy and some CUDA ker-
nel computations take longer on bigger
platforms than smaller; different Ten-
sorRT engines for same NN model vary
in runtimes on same platform

Unpredictable

TABLE XIV: Summary of empirical findings on TensorRT engines

A. Impact on Applications

The NVIDIA embedded GPU platforms such as Xavier NX or
AGX and TensorRT inference engines are not only research oriented
hardware-software platforms, sold solely as development kits to
experiment with new NN models and frameworks. Instead, they are
being extensively adopted by embedded industries, in automotive,

medical, agricultural, mining, industrial automation, last mile deliv-
ery, construction, retail and other application domains [24]. Whether
our empirical findings have any implications for such wide-scale
industry adoption of this technology, needs to be carefully analyzed
in the context of specific applications.

We discuss two automotive applications in this section, that exten-
sively use NVIDIA’s edge computing solutions, namely intelligent
traffic intersection control [25] and advanced driving assistance
systems (ADAS) [1], [2], [26]. Intersection control measures traffic
queue length or density in incoming lanes at the intersection and
adapts the green and red signals accordingly to optimize transporta-
tion metrics, namely intersection throughput or average/worse case
wait time for vehicles. They additionally detect rule violations such
as vehicles jumping red light or over-speeding, detect the number
plates of violating vehicles, classify the number plate into a vehicle
number and issue penalty fines. Object detection and tracking to
detect rule violations, image classification to read number plates -
all these steps use NN model inference. ADAS systems, similarly,
use object detection and classification tasks to detect pedestrians and
other obstacles, for instance to give appropriate commands to the
braking or acceleration subsystems. Both these applications can input
many camera feeds to a single edge device for NN inferences, as the
intersection controller needs many cameras to monitor the various
incoming roads and the ADAS instrumented car also needs multiple
cameras to monitor its surrounding environment in all directions.

Finding Positive impact on traffic intersection control and
Advanced Driving Assistance Systems (ADAS)

Maintain
classification
accuracy

Same or slightly better classification accuracy can
lead to better reading of number plates for fining
rule violating vehicles

Adversarial
accuracy gain

Better classification accuracy on adversarial im-
ages can give more robustness against malicious
attacks [52], [53] for both ADAS and traffic signal
control systems

Throughput
gain

Higher FPS can process frames in time, even when
vehicles travel at high speed, to avoid missing fast
approaching obstacles in ADAS or fining over-
speeding vehicles in traffic signal control systems

Higher
detection
concurrency

Self driving cars or intersection polls are fitted with
many cameras to look in different directions and at
various resolutions. Higher NN concurrency can han-
dle upto 36 camera feeds in one embedded platform

TABLE XV: TensorRT positive impact on automotive applications

Finding Negative impact on traffic intersection control and
Advanced Driving Assistance Systems (ADAS)

Non-
deterministic
detection
output

Obstacles in ADAS or rule violations at signals may
or may not be detected, causing unpredictable system
outcomes given same camera inputs, if TensorRT
engine is rebuilt for the same NN model

Non-
deterministic
classification
output

A number plate might be read as different vehicle
numbers, changing which car to fine with legal issues
in the rule enforcement system, if TensorRT engine
is rebuilt for the same NN model

Slower
inference
on bigger
platform

Companies deploying edge devices might plan an
infrastructure upgrade with more expensive hardware
platforms (more GPU cores, RAM and LI/L2 cache
sizes), only to see slower inference times compared
to the earlier cheaper and smaller edge platforms

Non-
deterministic
inference
times

Same NN model on same edge platform can have
different inference latencies if TensorRT engine is
rebuilt, making Worst Case Execution Time (WCET)
analysis tough in real time applications. The detec-
tion inference in ADAS might not reach the braking
system in time.

TABLE XVI: TensorRT negative impact on automotive applications



Table XV lists the possible advantages of using TensorRT for
the two automotive applications, while Table XVI lists the potential
disadvantages. Application engineers should analyze the disadvan-
tages and take corrective actions to minimize the negative effects.
For example, to reduce non-determinism across multiple TensorRT
engines, a single TensorRT engine can be built once. That exact same
binary can be deployed on all platforms, instead of rebuilding the
engine on each platform. This can keep the computer vision outputs
on a given image same across all deployed units, and also take exact
same inference latency in real time tasks. Similarly, to predict whether
an infrastructure upgrade using AGX vs. NX will benefit in run
times, instead of committing a huge budget for the more expensive
platforms, small experiments with a few units of AGX is advisable,
to see if runtimes improve or degrade compared to NX. Discussions
with NVIDIA’s internal teams to debug longer latencies on more
powerful hardware architectures for particular NN models might be
useful too, if possible.

B. Impact on Micro-architecture Performance Modeling

We finally study the implications of our findings on the micro-
architecture modeling in computer architecture domain. Most of the
existing works in the literature [54]–[58] make use of the GPU
performance counter values (obtained using profiling tools such
as nvprof) along with microarchitectural parameters such as cache
latencies, instruction latencies etc. to model the performance of
applications on GPU based platforms. The underlying goal of all
these performance models is to estimate the performance of the
application on a hardware without actually executing the application
on the hardware.

We showcase the impacts of non deterministic behaviour of opti-
mization engines on the hardware performance modeling aspect using
a very well known and a simplistic performance model called as
Bulk Synchronous Parallel (BSP) model [59]. BSP model captures
the essential characteristics of different kinds of hardware platforms
as a combination of three important attributes namely Computation,
Communication and Synchronization. These attributes are then used
to determine the performance of the target parallel application on
the underlying hardware. The authors in [56] have proposed a BSP
inspired performance prediction model to predict the execution times
of various CUDA kernels like Matrix multiplication, Maximum sub-
array on six different GPU platforms. We adopt the model from [56]
to elucidate the challenges introduced by the unpredictable nature of
the optimization library in modeling the performance of a TensorRT
based CNN application.

To begin with, we elaborate the performance model in [56]. This
information is quintessential to comprehend the modeling challenges
described in this section. The execution time of the kernel comprises
of computation time and communication time (data transfer cost to
and from global and shared memories). The execution time is defined
in Equation 2

T =
N× (Comp+CommGM +CommSM)

F×C×λ
(2)

where, T is the predicted execution time of a kernel with N
threads, Comp is the computational time, CommGM and CommSM are
communication cost of global memory and shared memory accesses
performed by each thread, F is the operating core frequency and
C is the number of cores. The computational time (Comp) is the
time to execute all the compute instructions and is obtained as

(# instructions× instruction latency). The CommGM and CommSM are
defined by the equations given below

CompSM = (lds + sts)×LSM

CompGM = (ldg + stg−L1−L2)×LGM +L1×LL1 +L2×LL2

where lds and sts represent the number of loads and stores
performed by all the threads in the shared memory. Similarly, ldg and
stg are the number of loads and stores performed by all the threads
in the global memory. L1, L2 represent the corresponding cache hits.
LSM , LGM , LL1 and LL2 are the access latencies of shared memory,
global memory, L1, L2 respectively. The parameter λ captures the
effects of thread divergence, shared bank conflicts and coalesced
global memory accesses and is defined as the ratio of the predicted
execution time of the application with the actual measured execution
time. In [56], the authors obtain the λ for a single kernel using ratio
of predicted and measured execution time on a single GPU platforms
and then use the same λ to predict the execution time of the same
kernel on different GPU platforms. Due to the assumption of minimal
impact of the hardware on the application performance, they claim
that for any kernel, the λ needs to obtained for a single input size
and a single board. The same λ should work for all input sizes and
other boards having the same microarchitecture.

We now attempt to predict the performance of a TensorRT based
CNN application consisting of multiple kernels on the AGX board
using the application specific parameters and λ s obtained from NX
board. Please note that in our case, we need to obtain multiple λ s as
the application consists of multiple kernels. We use microbenchmarks
to obtain the static hardware parameters such as LSM , LGM , LL1 and
LL2 for our experimental hardwares and use nvprof profiling tool to
obtain the application specific parameters such as lds, sts, ldg, stg.
The application execution time is obtained by ∑

i
n=1 Tn ∗ jn. Here, Tn

is the predicted execution time of the nth kernel using equation 2
and jn is the number of times the nth kernel was executed during the
application execution (obtained using profiling).

Our experimental observations reveal that the above model can
result in significantly higher prediction error rates due to several
sources of non-determinism. ¶ In the same platform, across different
compiled engines, the number of invocations of the kernel varies
(refer to Table XIII). · The runtime of each invocation of the same
kernel varies (refer to Table XIII). The average execution time across
all the invocations is used for computing Tn. ¸ The parameter λ

is not able to capture all the optimizations across the platforms.
¹ The optimization engine maps the same application to different
number and types of kernels when engines are built on different
platforms having same microarchitecture. This inconsistency can lead
to incomparable results across platforms. Hence to alleviate this, we
use the engine built on NX for all the NN models used in all our
experiments.

We build three different engines of Inception-v4 application com-
piled on NX and obtain the execution time on AGX using the above
prediction model. Table XVII shows the different λ s obtained for
different kernels across the 3 engines along with the associated
prediction error. We tabulate only a subset of the kernels due to
the lack of space. We observe that across the engines on the same
platform, λ changes and thus the predicted execution time across the
three engines for AGX changes leading to variability in the predicted
error as highlighted in blue color. There is a significant change
of around 2-13% in the prediction error across the three engines.
Similarly, Table XVIII shows the results for a representative execution
of Mobilenetv1 CNN application where we build the engine on NX



Representative CUDA Kernels from NN model inception-v4 λ1/Error(%) λ2/Error(%) λ3/Error(%)
trt volta h884cudnn 128x128 ldg8 relu exp interior nhwc tn v1 1.6/49.4 1.56/53.19 1.58/51.2
trt volta h884cudnn 128x128 ldg8 relu exp medium nhwc tn v1 1.47/50.83 1.49/47.4 1.56/40.64

nvinfer1::poolCoalescedC 1.69/23.72 1.685/23.26 1.692/23.58
nchwTonhwc 2.12/25.67 2.1/24.68 2.11/24.9

trt volta h884cudnn 256x64 sliced1x2 ldg8 relu exp small nhwc tn v1 1.75/32.23 1.72/34.53 1.728/34.1
trt volta h884cudnn 256x128 ldg8 relu exp medium nhwc tn v1 2.28/7.39 2.19/12.48 2.24/9.46

nchhw2ToNchw 3.36/29.54 3.34/30.6 3.32/31.76
trt volta h884cudnn 128x128 ldg8 relu exp small nhwc tn v1 2.19/22.64 2.45/30.84 2.56/35.4

TABLE XVII: Different λ values obtained across 3 engines of the inception-v4 for different kernels along with the associated prediction
error in percentage.

Representative CUDA Kernels from NN
model Mobilenetv1

Error(%) λ on
NX

λ on
AGX

cub::DeviceSegmentedRadixSortKernel 55.05 3.36 1.51
trt volta fp16x2 hcudnn fp16x2

128x32 relu small nn v1
48.96 3.95 2.02

trt volta h884cudnn 256x64 ldg8 relu
exp interior nhwc tn v1

50.88 3.41 1.67

fusedConvolutionReluKernel 56.43 0.15 0.068
genericReformat::copyPackedKernel 60.96 6.24 2.43
nchhw2Tonhwc8 44.17 6.52 3.64
trt volta h884cudnn 256x64 sliced1x2

ldg8 relu exp medium nhwc tn v1
60.5 1.5 0.59

prepareSortData 52.08 7.58 3.63

TABLE XVIII: Prediction Error(%) for some kernels of Mobilenetv1
along with two different λ s (one obtained using metrics of NX and
other using metrics of AGX)

and predict the performance on AGX. We observe error rates for some
kernels as high as 60%. This error rate is the resultant prediction error
that occurs when using the λ s for various kernels from NX to predict
the runtime on AGX. The fourth column in the table gives the actual λ

for each kernel obtained from AGX that will result in zero prediction
error. This gives an idea as to how far the λ obtained from NX is
from the actual λ of AGX. The high error rates of individual kernels
result in very low application runtime prediction accuracy. This result
corroborates with our Finding 4 that even with the increasing number
of hardware resources such as number of cores, clock frequency etc,
the execution time of an application can be higher leading to the
unpredictability of run time using the performance model. While
we take BSP model for quantifying λ values and prediction errors,
most micro-architecture based performance models [54], [55], [57]
make similar assumptions about software determinism. Thus, this
behaviour of TensorRT optimized NN applications will hold true for
any performance model due to the non-determinism introduced by
the TensorRT optimizations.

VII. RELATED WORK

Recently, there has been extensive research on compiler optimiza-
tions [60]–[66] for NN compute graphs. For instance, Nakandala
et.al [66] propose a tensor compiler that compiles NN models into a
set of tensor operations. On the similar lines, [65] propose a DNN
compiler design that optimizes the execution of DNN workloads
on parallel accelerators. These compilers and their optimizations are
now part of many NN frameworks, to create the most optimal NN
architecture to speed up both NN training and inference. However, in
this paper, we focus on the characterization of NN inference engines
specifically optimized for embedded or edge devices, which to the
best of our knowledge is the first work to do so.

While ours is the first paper to examine the inference engines
for edge devices in level 6 of Figure 1, there have been recent
prior works in characterizing level 4 frameworks and level 3 NN
models on some level 8 hardware platforms for NN inferences at

the edge. Pena et.al [67] investigate the inference time and energy
consumption of five CNN models on three hardware platforms: NCS,
Intel Joule 570X, and Raspberry Pi 3B, with frameworks TensorFlow,
Caffe, NCSDK, and OpenBlas. They claim that the Raspberry Pi with
Caffe uses the least amount of power. [27] characterizes several
edge devices on well-known frameworks using well-known CNN
workloads. They monitor the energy consumption per inference as
well as the temperature behaviour of edge devices. The authors in [68]
compare the latency, memory footprint, and energy consumption of
TensorFlow, Caffe2, MXNet, PyTorch, and TensorFlow Lite for CNN
inference on the MacBookPro, Intel’s Fog Reference Design, Jetson
TX2, RaspberryPi 3B+, and Huawei Nexus 6P. According to the
findings of this study, TensorFlow runs larger models faster than
Caffe2, and vice versa for smaller models. Our work builds in this
recent research direction of empirical characterization of NN based
edgeML applications on embedded platforms. However, we examine
a previously unexplored software layer of inference engines, that
are becoming increasingly prevalent in edge devices. We focus on
accuracy and performance (throughput, latency) metrics in this paper,
and present interesting findings with implications on applications.

VIII. CONCLUSION AND FUTURE WORK

Edge devices are being increasingly used for running state of
the art deep neural networks (DNNs) for various applications in
different domains (automotive, medical, agricultural, mining, indus-
trial automation, last mile delivery, construction, retail etc.). Various
software optimizations have been proposed for fast NN inferences
on edge platforms. In this paper, we characterize these software
frameworks on GPU-based edge devices and present a number of
interesting findings. We see significant performance and accuracy
gains from software optimizations, with some additional highly
unexpected non-deterministic behaviors, such as different outputs on
the same inputs or increased execution latency for the same NN
model on more powerful hardware platforms. We further discuss the
impact of these analyses on real-world examples such as intelligent
traffic intersection control and Advanced Driving Assistance Systems
(ADAS). Furthermore, we conclude by discussing the implications
of our findings for micro-architecture modeling-based application
performance prediction. For the future work, we intend to expand
these investigations for ARM and Intel’s inference engines and
check whether those engines have similar performance gains, coupled
with non-deterministic behaviors as NVIDIA TensorRT. We will
additionally examine the thermal and power characteristics of these
NN inference engines on the edge platforms, and their trade-offs with
accuracy and performance metrics, if any.
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