A Tool for Transliteration of Bilingual Texts Involving Sanskrit

Nikhil Chaturvedi Prof. Rahul Garg
ITT Delhi IIT Delhi
csb51302910@cse.iitd.ac.in rahulgarg@cse.iitd.ac.in
Abstract

Sanskrit texts are increasingly being written in bilingual and trilingual formats, with Sanskrit
paragraphs/shlokas followed by their corresponding English commentary. Sanskrit can also be
written in many ways, including multiple encodings like SLP-1 and Velthuis for its romanised
form. The need to tackle such code-switching is exacerbated through the requirement to render
web pages with multilingual Sanskrit content. These need to automatically detect whether a
given text fragment is in Sanskrit, followed by the identification of the form/encoding, further
selectively performing transliteration to a user specified script. The Brahmi-derived writing
systems of Indian languages are mostly rather similar in structure, but have different letter
shapes. These scripts are based on similar phonetic values which allows for easy transliteration.
This correspondence forms the basis of the motivation behind deriving a uniform encoding
schema that is based on the underlying phonetic value rather than the symbolic representation.
The open-source tool developed by us performs this end-to-end detection and transliteration,
and achieves an accuracy of 99.1% between SLP-1 and English on a Wikipedia corpus using
simple machine learning techniques.

1 Introduction

Sanskrit is one of the most ancient languages in India and forms the basis of numerous Indian lan-
guages. It is the only known language which has a built-in scheme for pronunciation, word formation
and grammar (Maheshwari, 2011). It one of the most used languages of it's time (Huet et al., 2009) and
hence encompasses a rich tradition of poetry and drama as well as scientific, technical, philosophical
and religious texts. Unfortunately, Sanskrit is now spoken by only a small number of people. The
aforementioned literature, though available, remains inaccessible to most of the world. However,
in recent years, Sanskrit has shown a resurgence through various media, with people reviving the
language over the internet (Dasgupta, 2014) and through bilingual and trilingual texts.

There exist numerous web-based tools applications that provide age-old Sanskrit content to users and
assist them with getting an insight into the language. Cologne Sanskrit Dictionary Project (Kapp and
Malten, 1997) aims to digitize the major bilingual Sanskrit dictionaries. Sanskrit Reader Companion
(Goyal and Huet, 2013) by Inria has tools for declension, conjugation, Sandhi splitting and merging
along with word stemming. Samsadhani (Goyal et al., 2012) - A Sanskrit Computational Toolkit by
University of Hyderabad. Sanskrit language processing tools developed at the Jawaharlal Nehru
University (Jha et al., 2009). In this paper, we attempt to construct a tool to render the web pages of the
above tools in multiple scripts and encodings at the backend, based on the requirements. Through this,
not only do we aim to expand the reach of Sanskrit to a wider community, but also to standardize an
open-source tool for transliteration.

The number of bilingual and trilingual textual material involving Sanskrit has also been on a steady
rise. For example, Gita Supersite maintained by IIT Kanpur serves as a huge bilingual database of the

Bhagvad Gita, the Ramacharitmanas and Upanishads. There are also traditional texts which exist in a
similar format like Srisa Chandra Vasu's translation of the Ashtadhyayi in English (Vasu, 1897). These
works broadly follow a commentary structure with Sanskrit hyms, verses and words being followed by
their translation in popular modern day languages like English or Hindi. Code-switching (Auer, 2013)
is the practice of moving back and forth between two languages, or between two dialects/registers of
the same language. Due to their commentarial nature, multilingual Sanskrit works constitute massive
amounts of code-switching. For example, an excerpt of the Valmiki Ramayana from Gita Supersite:
"qUEE ascetic, AeHIH: Valmiki, d9: F@reEmEi-Rad highly delighted in the practice of religious austerities
and study of vedas, aRagf a8 eloquent among the knowledgeable, HFIgaH preeminent among sages,
ANeH Narada, IR enquired.” This motivates the need for a word-level transliteration tool that
tackles areas of code-switching and performs transliteration through an automatic detection of the
relevant sections.

Another interesting aspect that has led to the resurgence of Sanskrit has been the concept of Romani-
sation which, in linguistics, is the conversion of writing from a different writing system to the Roman
(Latin) script. Multiple methods of this transliteration have emerged, although none has emerged as the
clear standard. These standards include SLP1, Velthuis, Harvard-Kyoto, ISO15919, IAST and National
Library at Kolkata romanization. Such romanisation makes it easy for large parts of the population to
pronounce and appreciate Sanskrit verses. Hence, any standardized transliteration tool for Sanskrit
needs to support all the above romanisation encodings.

An interesting property of Sanskrit and other major Indian languages like Hindi, Marathi, Tamil,
Gujarati etc. forms the basis of our transliteration and auto-detection. These languages are written
using different letter shapes (scripts) but are rather similar structurally as the same sounds are
duplicated across these allowing for easy transliteration. The phonetic sound [ki] will be rendered as
% in Devanagari, as fd in Gurmukhi, and as % in Tamil. Each having different code- points in Unicode
and ISCII. This enabled us to formulate a mediating encoding schema that encodes the sound of a sylla-
ble rather than any syntactical aspect, thus allowing seamless transliteration between any 2 given scripts.

Including Romanised Sanskrit however exacerbates the problem of code-switching. The requirement is
now to differentiate between two words of the same script, which turns out to be a non-trivial problem.
We again use the intuition of phonetics to overcome this problem. Certain sounds (or chain of sounds)
occur more frequently in some languages than in others. This allows us to formulate the classifier using
a simple Naive Bayes model that functions on all possible substrings of a given word. We manage to
achieve a classification accuracy of 99.1% between English and SLP1.

2 Sanskrit Alphabets and Encodings

The Sanskrit alphabet consists of 5 short vowels, 8 long vowels and 9 pluta vowels. Each of these
vowels can be pronounced in three different ways: Udaatta (Acute accent, high pitch), Anudaatta
(Grave accent, low pitch) and Svarita (Circumflex, high falling pitch). Vowels in udaatta mode are
written as before, in anudaatta mode, a horizontal line is drawn under them and svarita vowels are
written with a vertical line drawn above them. There are 33 consonants which includes 4 semi-vowels
and 3 sibilants and 1 aspirate (ha).

There are several methods of transliteration from Devanagari to the Roman script (a process known as
romanization) which share similarities, although no single system of transliteration has emerged as the
standard. Eg. SLP1, Velthius, Harvard-Kyoto etc. These can represent not only the basic Devanagari
letters, but also phonetic segments, phonetic features and punctuation. SLP1 also describes how to
encode classical and Vedic Sanskrit. A comparison of these schemata is given in Table 2.

User Specified
Script/Encoding

Resulting
Script/Encoding e
S
e Rendered

HTML

Database Server

Sanskrit 3 Transliterated
‘Web Page Web Page
E Transliteration
4 Tool

Figure 1: Model for Web-Based Applications

Unicode has designated code blocks for almost all major Indian scripts. The supported scripts are:
Assamese, Bengali (Bangla), Devanagari, Gujarati, Gurmukhi, Kannada, Malayalam, Oriya, Tamil,
and Telugu among others. Across scripts, Unicode respects alphabet correspondence and letters with
similar phonetic values are assigned the same code-points. As a result, transliteration can be done eas-
ily with a mere offsetting. For example, 1is U+0905 while ™ is U+0A05; % is U+0915 while & is U+0A15.

However, the encoding doesn’t represent the language in its true essence. Hindi, Sanskrit and most
other Indian languages are centred around phonetic values. Hence the encoded token should ideally
represent the entire sound rather than it being split into different symbols for vyanjana and maatra.
We cannot figure out anything about the letter from its corresponding encoding. Which section of
vyanjana it belongs to, whether it has a sweet or a pungent sound etc. The vyanjana symbols have a
pre-added '3 (% + 31 = %). It is this conjoined sound which gets representation in Unicode rather than
the plain &. Our tool fixes this issue by creating a new representation that encapsulates the vyanjana
and the swar in a single encoding.

3 Existing Work

A number of tools exist as of today for Sanskrit transliteration to other scripts and encodings. We
present a brief survey of the same. Aksharamukha by Vinod Rajan, Sanscript by learnsanskrit.com and
Online ITRANS are some of the tools currently used for transliteration in Sanskrit. Google Input is
another tool that is used to transliterating Devanagari to English. Though Aksharamukha and Online
ITRANS support the romanised forms of Sanskrit, none of the aforementioned tools manage to handle
bilingual scenarios. Most of these (except Sanscript) also not open source and hence cannot be utilized
by Sanskrit Developers.

International Phonetic Alphabet (IPA) is a renowned phonetic scheme. However, it has a number
of representational and backward transliteration issues cause of being completely sound based. The
nuktas don’t share any correspondence to their roots gamma represents ga. The swar % and R have
the same representation in IPA, making it impossible to differentiate them while translating back.
Anuswar has multiple representations based on context, but none is unique to it (m, n, chandra).
Visarga has the same representation as ha.

Due to these inefficacies of existing tools and phonetic scheme, we decided to create our own unified
encoding schema. It also has a number of other desirable properties as described subsequently in the

paper.

Bilingual Document Bilingual Document

Sanskrit-English X-English
Sanskrit Word Converted to X
4,
English Word Mo Change
User
Specified
Script X

ve ..

Figure 2: Model for Web-Based Applications

4 Design of the Transliterator

4.1 Use Cases
4.1.1 Web-based Applications

One of the foremost uses of our transliteration tool is it's utility for web-based applications. A num-
ber of websites nowadays serve the historical epics that were written in Sanskrit like the Gita and the
Ramayana. Along with this, a lot of websites also provide an avenue for people to learn Sanskrit gram-
mar, understand conjugation and splitting of words, along with explaining the various forms of Sanskrit
verb roots. Such websites are as of now available only in the Devanagari script. Our tool can be used to
transliterate these pages to a user defined script/encoding at the backend itself. Our model for this use
case is defined in Figure 1. We insert our tool as a middle-ware between the backend and the frontend.
The user specifies his required script/encoding on the frontend and all outgoing pages from the server
pass through our tool while getting converted to that required script. The frontend then renders the
converted HTML to the user for a seamless experience.

4.1.2 Bilingual Texts

Numerous Sanskrit texts have been modified to bilingual and trilingual texts through their translation
to popular modern languages like English and Hindi. These works exist in a commentary form and
incorporate massive amounts of code-switching. To represent any such text in a script different to that of
its origin turns out to be an ordeal because the tool needs to conditionally perform the transliteration at a
micro-level. This problem gets exacerbated when the Sanskrit verses are written using their Romanised
form while the translation language is English. Figure 2 explains our model for this use case.

4.1.3 User Driven

The third use for our tool is on the lines of Google Input tools. Our tool can allow a user to enter a line
of Sanskrit (in any script) intertwined with English and will output the resulting sentence to the user
after transliteration. This not only provides an unmatched amount of flexibility to the user, but also
has abundant relevance in the growing age of multi-lingual social media.

4.2 Pipeline

Fragmentation: Splitting the given text into smaller fragments (words, sentences, paragraphs etc). The
assumption shall be that the script and encoding remain same through these fragments if not through
the entire text.

Script Detection: Figuring out the scripts and encodings for the various fragments through a Naive
Bayes model.

Tokenisation: Splitting the fragment further into tokens, each of which represent a single sound.
Similar to the concept of English syllables. ki will be seen as one single token under this model.

i T afd v | o AN varas . it

. o TR 11,11 o i RS . <o TG 111,10

a9 v

@ who?, AT with good conduct, T is endowed, who?, WY
for all Uiving beings, R benefactor, ® who?, g learned nan

Figure 3: Transliteration of Bilingual Texts

Universalisation: Conversion of the token to the universal 16-bit encoding designed by us. Done
through pre-populated hash maps.

Specification: Conversion of the universal encoding to the specified script using pre-populated hash
maps.

4.3 Internal Representation

The encoding that we create is 16-bit unlike Unicode which requires 24-bits to represent most Indian
characters. Initial 5 bits are for specifying the script (hence we can support 32). Next 6 bits are for the
vyanjana (consonant). Last 5 bits are for the swar/maatra (vowel). In most cases, the vyanjana as well
as the mantra both require 24-bits each in Unicode. We fit both in 16 bits. Each 16-bit code represents a
specific sound, which can then be reverse mapped to a specified destination script.

With 33 consonants and 14 vowels, we can encode their permutations using just 9-bits versus the 11-bits
that we currently are using. But, we preferred to use some extra bits so as to keep our representation
clean and allow for the bits within themselves to represent certain nuances of the Sanskrit language.Our
encoding respects the structure of the language as described by Panini and we can figure out important
characteristics about the letter merely by looking at the encoding.

For the 5 bits of the Swaras, the second-last bit represents whether the vowel is a simple vowel (¥, g, 3,
%, %) or a dipthong /compound vowel (T, g, 3, 3M). The last bit of the Swaras represent the length of the
vowel, long/dirgha vowels (=, é, F, ®, F, T QI Bﬁ) will have their last bit as 1, while short/hrasva
vowels (3, §, 3, &, %) will have their last bit as 0.

In the case of Vyanjana, the first 3 bits represent the source of origin of the letter. 000 refers to the throat
as the source and the letters are called Gutturals (&, §, 7, 9, &, §). 001 refers to the palate and letters
are called Palatals (3, 3, ¥, , 3, 9, 20). 010 refers to the murdha and are called Retroflex letters (€, &, §,
g, U, ¥, ¥). 011 contains letters with source of origin as the teeth and are called Dentals (d, &, g, 9, <, &,
H). Lastly, 100 refers to the lips and the letters are called Labial (4, %, 9, ¥, #, 9). 101, 110 and 111 are
reserved for special symbols and accents.

As for the last 3 bits of Vyanjana, the first of these is 0 for stop-consonants (sparsa consonants) which
means non-nasal, non-semivowel and non-sibilant consonants. The second of these bits represents
voicing (whether or not the vocal chords vibrate in pronunciation). It is 1 for voiced/ghosa consonants
like (1, 9) while 0 for unvoiced/aghosa consonants like (%, ®). The last of these bits represents
aspiration (a puff of air at the end of the pronunciation). It is 1 for aspirated /mahaprana consonants
(9, 9) while 0 for unaspirated /alpaprana consonants (%,).

5 Design of the Encoding Identifier

Differentiating English from Indian scripts, and those amongst themselves is easy as each uses a differ-
ent alphabet with a different Unicode range. Hence, one can easily achieve a Word-level classifier with
100% accuracy.However, differentiating English from Romanized Sanskrit/Hindi requires learning.
Specially to be able to do such classification at word-level.

Training Data: 1000 random Wiki pages for both English and Sanskrit. The Sanskrit ones were
converted to SLP-1 using our universal encoder. We then parse out the irrelevant HTML meta-data
and tags, stripping it down to just plain content.

Test Data: 100 more such random pages for both languages.

While learning, two dictionaries are maintained. The first dictionary compiles all seen complete
words, while the other forms an occurence database of all possible substrings of length <= 10. The intu-
ition is that certain sounds (or chain of sounds) occur more frequently in some languages then the others.

For a word, we define the Absolute Frequency of a word as the actual number of occurrences for that
word for a given language in the training dataset. On the other hand, the Relative Frequency of a
given word is defined as its fraction of occurrences in the given language versus all other languages
under consideration. While classifying, if the word is a seen word and the Absolute as well as
Relative frequency is above a pre-set threshold for a particular language, classify it as that. We use the
Relative Frequency metric to account for mixed language nature of Wikipedia pages used as our dataset.

If we encounter an unseen word, we break the word into all possible substrings of length >= 2
and length <= 10. Subsequently, we find product(p(substr | lang)) over all substrings of word
using the trained substring dictionary. This is our simplified version of the Naive Bayes model for the
problem at hand. We classify a word to the language for which this metric turns out to be the maximum.

6 Results and Future Work

We tested our detection model on 100 random Sanskrit Wikipedia pages (after converting them to the 6
most popular romanisation schemes of SLP1, Velthuis, ITRANS, Harvard-Kyoto, ISO15919 and IAST).
The resulting confusion matrices are shown in Table 1. As one can notice in the tables, we in general
attain a high precision for English and a high recall for the romanised words.

Each scheme in Table 1 also has a corresponding baseline to compare our results with. For SLP1, this
baseline was the existence of a capital letter in the middle of a word. For Velthuis, it was the existence
of a full stop in the middle of a word or the existence of doubly repeated vowels. For ITRANS, the
baseline was similar to Velthuis, with repeated L' and 'R' instead of full stop. For Harvard-Kyoto,
we selected the baseline as capital in the middle of the word alongside repeated 'L' and 'R'. Lastly,
for ISO15919 and IAST, it was kept as the existence of a letter beyond the simple English letters and
punctuation within a word.

During our testing, we discovered that multiple English pronouns like 'Ram' or "Yudhisthira' were
getting classified as SLP-1 leading to a lower recall for English. In our opinion, such a misclassification
aligns with the intention of the tool as it classifies the origin based on the prevalent sounds in the word.
For Indian pronouns appropriated to English these sounds still remain similar to those of their Hindi
roots, and hence rather should be classified as that. In our final evaluation, we manually removed such

Basline Pred Pred Recall Basline Pred Pred Recall
67.2% | English | SLP-1 | ¢ 58.6% | English | Velthuis | = o
Actual Actual
English 73178 721 99.0% English 72649 1250 98.3%
Actual Actual
SLP.1 205 25012 | 99.2% Velthuis 860 24357 | 96.6%
Precision | 99.7% | 97.2% | 99.1% Precision | 98.8% 95.1% | 97.9%
(a) English vs SLP-1 (b) English vs Velthuis
Basline Pred Pred Recall Basline Pred Pred Recall
51.1% | English | ITRANS | 0% 68.5% | English | HK | °%
Actual Actual
English 72778 1121 98.5% English 73269 630 99.1%
Actual Actual
ITRANS 645 24572 97.4% HK 199 25018 | 99.2%
Precision | 99.1% 95.6% 98.2% Precision | 99.7% | 97.5% | 99.2%
(c¢) English vs ITRANS (d) English vs Harvard-Kyoto
Basline Pred Pred Recall Basline Pred Pred Recall
73.4% | English | 180 | o 71.5% | English | TAST | ¢
Actual Actual
English 73576 323 99.6% English 73368 531 99.3%
Actual Actual
180 94 25123 | 99.6% IAST 111 25106 | 99.6%
Precision | 99.9% | 98.7% | 99.6% Precision | 99.8% | 97.9% | 99.4%

(e) English vs ISO15919

(f) English vs IAST

Table 1: Confusion Matrix of English vs Various Romanisation Schemata

ambiguous words both from the testing and well and training datasets.

We also tested our tool on a bilingual text test case by converting a extract from an English commentary
on Ramayana from Gita-supersite to an mixture of SLP-1 and English. Subsequently, we converted the
previous result back to Hindi and English to see its differences with the original text. As you can see in
Figure 3, the transliteration from Devanagari-English to SLP1-English has a 100% accuracy due to our
tool exploiting the difference in Unicode for the two scripts.

Our tool is available at https://github.com/709nikhil/sanskrit-transliteration. There is
still some more future work that can be carried out on our tool. The primary one being heuristically
breaking down word into syllables rather than substrings, to provide a stronger basis for the phoneme
intuition. One could also go ahead and use a machine learning approach other than Naive Bayes,
for example deep learning methods or CRFs. We could also incorporate contextual history into the
transliteration to deal with the problem of incorrect classification of proper nouns.

References

Niraj Aswani and Robert] Gaizauskas. 2010. English-hindi transliteration using multiple similarity metrics. In
LREC.

Peter Auer. 2013. Code-switching in conversation: Language, interaction and identity. Routledge.

Utsab Barman, Joachim Wagner, Grzegorz Chrupaoa, and Jennifer Foster. 2014. Dcu-uvt: Word-level language

classification with code-mixed data. In Proceedings of the First Workshop on Computational Approaches to Code
Switching, pages 127--132.

Shane Bergsma, Paul McNamee, Mossaab Bagdouri, Clayton Fink, and Theresa Wilson. 2012. Language identi-
fication for creating language-specific twitter collections. In Proceedings of the second workshop on language in
social media, pages 65--74. Association for Computational Linguistics.

Akshar Bharati and Amba Kulkarni. 2007. Sanskrit and computational linguistics. In First International Sanskrit
Computational Symposium, Hyderabad, pages 1--12.

Simon Carter, Wouter Weerkamp, and Manos Tsagkias. 2013. Microblog language identification: Overcoming
the limitations of short, unedited and idiomatic text. Language Resources and Evaluation, 47(1):195--215.

William B Cavnar, John M Trenkle, et al. 1994. N-gram-based text categorization. Ann Arbor MI, 48113(2):161--
175.

Gokul Chittaranjan, Yogarshi Vyas, Kalika Bali, and Monojit Choudhury. 2014. Word-level language identifica-
tion using crf: Code-switching shared task report of msr india system. In Proceedings of The First Workshop on
Computational Approaches to Code Switching, pages 73--79.

Sucheta Dasgupta. 2014. Home and away, sanskrit in resurgence mode. The Times of India.

Pawan Goyal and Gérard Huet. 2013. Completeness analysis of a sanskrit reader. In Proceedings, 5th Interna-
tional Symposium on Sanskrit Computational Linguistics. DK Printworld (P) Ltd, pages 130--171.

Pawan Goyal, Gérard P Huet, Amba P Kulkarni, Peter M Scharf, and Ralph Bunker. 2012. A distributed platform
for sanskrit processing. In COLING, pages 1011--1028.

Harald Hammarstrom. 2007. A fine-grained model for language identification. In Proceedings of iNEWS-07
Workshop at SIGIR 2007, pages 14--20.

Gérard Huet, Amba Kulkarni, and Peter Scharf. 2009. Sanskrit computational linguistics. Lecture Notes in
Computer Science, 5402.

Girish Nath Jha, Muktanand Agrawal, Sudhir K Mishra, Diwakar Mani, Diwakar Mishra, Manji Bhadra, Surjit K
Singh, et al. 2009. Inflectional morphology analyzer for sanskrit. In Sanskrit computational linguistics, pages
219--238. Springer.

Dieter B Kapp and Thomas Malten. 1997. Report on the cologne sanskrit dictionary project. In 10th International
Sanskrit Conference, Bangalore.

Ben King and Steven Abney. 2013. Labeling the languages of words in mixed-language documents using weakly
supervised methods. In Proceedings of the 2013 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 1110--1119.

Krishna Maheshwari. 2011. Features of sanskrit. Hindupedia.

Dong Nguyen and A Seza Doorudz. 2013. Word level language identification in online multilingual communica-
tion. In Proceedings of the 2013 conference on empirical methods in natural language processing, pages 857--862.

Peeta Basa Pati and AG Ramakrishnan. 2008. Word level multi-script identification. Pattern Recognition Letters,
29(9):1218--1229.

Sheldon Pollock. 2006. The language of the gods in the world of men: Sanskrit, culture, and power in premodern
India. Univ of California Press.

Sanscript. http://www.learnsanskrit.org/tools/sanscript.

Srisa Chandra Vasu. 1897. The Ashtadhyayi of Panini.

Devanagari | Unicode | Velthius | SLP-1 | ITRANS | Harvard-Kyoto | IAST | ISO-15919
St U+0905 a a a a a a
<l U+0906 aa A A/aa A a a
] U+0907 i i i i i i
2 U+0908 i I 1/ii I 1 1
3 U+0909 u u u u u u
& U+090A uu U U/uu U a a
g U-+090F e e e e e e
9 U+0910 ai E ai ai ai ai
| U+0913 o} o} 0 0 o o
S| U+0914 au O au au au au
g U+090B . f RRi/Ri R r r
e U+0960 JIT F RRI/RI RR T T
C U+090C 1 X LLi/Li IR | 1
&1 U+0961 1 X LLI/LI IRR 1 1
S| U+-0902 .m M M/.n/.m M m m
3 U+0903 .h H H H h h
o U+0904 ~ N m
S U+093D .a ’ .a ’ ’ ’
E) U+0915 ka ka ka ka ka ka
Lc| U+0916 kha Ka kha, kha kha, kha,
Ul U+0917 ga ga ga ga ga, ga,
q U4-0918 gha Ga gha gha gha gha
< U+0919 “na Na Na Ga na na
| U+091A ca ca cha ca ca ca
3 U+091B cha Ca Cha cha cha cha
S U+091C ja ja ja ja ja ja
El U+4091D jha Ja jha jha jha jha
El U+4091E na Ya na Ja na na
Z U+091F ta wa Ta Ta ta ta
) U+0920 .tha Wa Tha Tha tha tha
g U+0921 .da qa Da Da da da
S U+0922 .dha Qa Dha Dha dha dha
| U+0923 .na Ra Na Na na na
d U+0924 ta ta ta ta ta, Ta
g U+0925 tha Ta tha tha tha Tha
[U+0926 da da da da da Da
g U+0927 dha Da dha dha dha Dha
G| U+0928 na na na na na na
q U+092A pa pa pa pa pa pa
% U+092B pha Pa pha pha pha pha
El U+092C ba ba ba ba ba ba
| U+092D bha Ba bha bha bha bha
H U+092E ma ma ma ma, ma ma
g U+092F ya ya ya ya va va
L4 U+0930 ra ra ra ra ra ra
> U+0932 la la la la la la
q U+0935 va va va/wa va va va
Rl U+0936 "sa Sa sha, za Sa Sa,
g U+0937 .84, 72 Sha Sa sa sa
g U+0938 sa, sa, sa, sa, sa sa,
g U+0939 ha ha ha ha ha Ha

Table 2: Comparison of various Devanagari Romanisations

