An Intro to Deep Learning for NLP

Mausam

(several slides by Yoav Goldberg, Graham Neubig)



NLP before DL #1

Assumptions
- doc: bag/sequence/tree of words
- model: bag of features (linear)

- feature: symbolic (diff wt for each)
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NLP before DL #2

Assumptions
- doc/query/word is a vector of numbers
- dot product can compute similarity

- via distributional hypothesis
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NLP with DL
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Neural Model
Features (NB, SVM, CRF)
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NLP with DL
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NLP with DL

Assumptions

- doc/query/word is a vector of numbers
- doc: bag/sequence/tree of words

- feature: neural (weights are shared)

- model: bag/seq of features (non-linear)

iy _\/
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Neural Model
Features NN= (NB, SVM, CRF, +++

. .+ feature discovery)

] /¥
@) | Supervised Optimize function
o /| Training (LL, sqd error, margin...)

Learn feature weights+vectors




Meta-thoughts



Features

* Learned
* in a task specific end2end way
* not limited by human creativity



Everything is a “Point”

* Word embedding
* Phrase embedding
* Sentence embedding

* Word embedding in context of sentence
* Etc

Points are good = reduce sparsity by wt sharing
a single (complex) model can handle all pts



Universal Representations

e Non-linearities

— Allow complex functions

* Put anything computable in the loss function
— Any additional insight about data/external knowledge



Make symbolic operations continuous

* Symbolic = continuous
— Yes/No = (humber between 0 and 1)
— Good/bad = (humber between -1 and 1)

— Either remember or forget = partially remember
— Select from n things =2 weighted avg over n things



Encoder-Decoder

Symbolic i Symbolic i
Input 2| | Model i Neural Output :
(word) i | Features (class, sentence..) i
\ J J i

Encoder Decoder

Different assumptions on data create different architectures



A Primer on D.L. Building Blocks

A single vector for an ordered pair of vectors?

A single vector for a variable-sized bag of vectors?
Project a vector to a new space?

Are two vectors (from same space) similar?

Are two vectors (from different space) similar?

A new vector that depends on some vector input?



A Primer on D.L. Building Blocks

A single vector for an ordered pair of vectors? * Xy

A single vector for a variable-sized bag of vectors? Y. x;

Project a vector to a new space? o Wx
Are two vectors (from same space) similar? Y,
Are two vectors (from different space) similar? ¢ XWy

A new vector that depends on some vector input? ° g(Wx+b)



A Primer on D.L. Building Blocks

Output a probability

Output one of two classes

Output one of many classes

A feature w/ positive & negative influence

A feature w/ positive influence for “deep” nets



A Primer on D.L. Building Blocks

Output a probability

Output one of two classes

Output one of many classes

A feature w/ positive & negative influence

A feature w/ positive influence for “deep” nets

O

O

softmax

tanh

Relu



Building Blocks

+

Matrix-mult gate non-linearity



XY

MLP(O)

I

concatenate(O])

NN
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X+y

MLP(O)

I

sum(J)

NN

v(f1) v(fa) v(f3) v(fa)
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Concat vs. Sum

» Concatenating feature vectors: the
"roles" of each vector is retained.

concat (v("the”), v("thirsty”),v("dog”))

prev current next
word word word

Different features can have vectors of different dim.

Fixed number of features in each example
(need to feed into a fixed dim layer).



Concat vs. Sum

 Summing feature vectors: "bag of features"

sum (v("the”),v("thirsty” ), v("dog”))

word word word

Different feature vectors should have same dim.

Can encode a bag of arbitrary number of features.



X.y

* degree of closeness

e alignment

* Uses
— question aligns with answer //QA
— sentence aligns with sentence //paraphrase
— word aligns with (~“important for) sentence //attention



g(Ax+b)

e 1-layer MLP
* Take x

— project it into a different space //relevant to task
— add some scalar bias (only increases/decreases it)
— convert into a required output

e 2-layer MLP

— Common way to convert input to output



Encoding Architectures

BoW
Bag(N-grams)
Complete History
Complete History & Future



Word2Vec: Bag of (Context) Words

it “z_--= W, Should be high

Zcont-V‘{other should be low

Encoder



Very Simple Text Classification

this is a good book

Encoder



Importance of Ngrams

We did ‘+’ bec sentences are variable length

— Ignored order

While we can ignore global order in many cases...
... local ordering is still often very important.

Local sub-sequences encode useful structures.

(so why not just assign a vector to each ngram?)



CNN: Convolutional Neural Nets

* bag of n-grams encoding

e feature extractor

— finds whether/how much feature is present

* Instead of sum uses max
— Indicates presence instead of strength
— Also called “Max Pooling”
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average pooling

average vector
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prediction

t
softmax([])
MLP I
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(train the MLP, the filter matrix, and the embeddings together)

train end-to-end for some task




prediction
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the actual service was not very good

(train the MLP, the filter matrix, and the embeddings together)

train end-to-end for some task

the vectors learn to capture what's important




max pooling

max vector
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CNNs = RNNs

CNNs consider local word order

How can we consider global word order?




Recurrent Neural Networks

000 [00Q [0 OO0 ~» I8 ~» [OO000

v(what)  v(is) v(your) v(name) enc(what is your name)

* Very strong models of sequential data.

 Trainable function from n vectors to a
single vector.



Recurrent Neural Networks
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Simple RNN (Elman RNN)

Rsrnn(Si—1,xi) = tanh(W?* - si_1 + W* - x;)

In principle: capture infinite history upto this point
In practice: have issues with long sequences

RNN = LSTM

Good for backpropagating through long chain sequences



Bi-directional RNN

Xthe Xbrown X fox Xjumped Xs

One RNN runs left to right.
Another runs right to left.
Encode both future and history of a word.



Infinite window around the word

One RNN runs left to right.
Another runs right to left.
Encode both future and history of a word.



Recursive Neural Nets
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Recursive Neural Nets
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Recursive Neural Nets
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Decoding Architectures

Acceptor
Transducer
Language Model



RNN Acceptor

Defining the loss. Joms
S

.' predict &
. cale loss
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Acceptor: predict something from end state.
Backprop the error all the way back.
Train the network to capture meaningful information



Sequence Labeling with Transducer
BiLSTM

<S> I hate this movie <S>

L classifier _, Lclassifier _‘ Lclassifier | classifier ,
! ! ' }
PRP VBP DT NN




A Tagger Considering Output Structure

<S> I hate this movie <S>

o Y 1 - VY Vv ¢ "~ Vv W N
i 4 [ - [ -

~ classifier / ~ classifier _J classifier ~ classifier ‘
! ' ! !
PRP VBP DT NN




Aside

How about an architecture for
0 to n mapping.

(Neural Language Model)



RNN Language Models

* Training: similar to an RNN Transducer.

* (GGeneration: the output of step i is input to
step i+1.
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RNN Language Model for generation

* Define the probability distribution over the
next item in a sequence (and hence the
probability of a sequence).

P(U-'l:n ) — P(:u'l )P('w'ﬁ | uy )P( Wy | 'lt.-‘l:;-‘.’)P(.U-j-l | 'u"l:.'j) . .P(_l[.-‘” | wl:n—l)

n
Pl(wr,...,wy) = H P(t; = wilwi, .oy wi—1)

=1



RNN Language Models
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RNN Language Models

* (GGeneration: the output of step i is input to
step i+1.
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Back to Original question

How about an architecture for
m to n mapping.

Generating sentences is nice, but what if we want
to add some additional conditioning contexts?



Conditioned Language Model

* Not just generate text, generate text according
to some specification

Input X Qutput Y (Text) Task
Structured Data NL Description NL Generation
English Japanese Translation
Document Short Description  Summarization
Utterance Response Response Generation
Image Text lmage Captioning

Speech Transcript Speech Recognition



RNN Language Model
for Conditioned generation

Let's add the condition variable to the equation.

P(T)= H P(tlt,..t)
= \

Next Word Context

P(T|C) =



How to Pass Context

 |nitialize decoder w/ encoder (Sutskever et al. 2014)

—(encoderj—o! nm I—(decodea—»

* Transform (can be different dimensions)

—[encoder)—»l —(transformj—» l—[decoder

* Input at every time step (Kalchbrenner & Blunsom 2013)

decoder l—[decoder l—(decoder]—»
—[encoder]—» /




RNN Language Model
for Conditioned generation
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RNN Language Model
for Conditioned generation

what if we want to condition on an entire sentence?

just encode it as a vector...

¢ = RNN®"(xq.p)



Sequence to Sequence
conditioned generation
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The Generation Problem

We have a probability model, how do we use it
to generate a sentence?

Two methods:

 Sampling: Try to generate a random sentence
according to the probability distribution.

* Argmax: Try to generate the sentence with the
highest probability.



Ancestral Sampling

Randomly generate words one-by-one.

while yj1 1= "</s>":
yi ~ P [ Xyt - Yi)

An exact method for sampling from P(X), no further
work needed.



Greedy Search

One by one, pick the single highest-probability word

while yj.1 1= "</s>":
y; = argmax P(y; | X, y1, ..., Yj-1)

Not exact, real problems:
» Will often generate the “easy” words first

» Will prefer multiple common words to one rare word



Beam Search

Instead of picking one high-probability word,
maintain several paths




How to Train this Model?

* |ssues with vanilla training
— Slow convergence. Model instability. Poor skill.

 Simple idea: Teacher Forcing
— Just feed in the correct previous word during training

 Drawback: Exposure bias
— Not exposed to mistakes during training
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Solutions to Exposure Bias

e Start with no mistakes, and then

— gradually introduce them using annealing

* Dropout inputs

— Helps ensure that the model doesn’t rely too
heavily on predictions, while still using them

e Corrupt training data



Sequence 2 Sequence

Part Il: with attention



Sentence Representation

ou can't cram the meaning of a whole %&!$#
sentence into a single $&!#* vector!

But what if we could use multiple vectors, based on
the length of the sentence.

this Is an example > I

this Is an example > III




Sequence to Sequence
conditioned generation

main idea:
encoding

a single vector is
too restrictive.
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Attention

* |Instead of the encoder producing a single
vector for the sentence, it will produce a one
vector for each word.



Sequence to Sequence
conditioned generation




Sequence to Sequence
conditioned generation




Sequence to Sequence
conditioned generation




Sequence to Sequence
conditioned generation

but how do we feed
this sequence
to the decoder?




Sequence to Sequence
conditioned generation

we can combine the different outputs
into a single vector (attended summary)

Brcus| ) Biorapicrminy] Y Bicswed
= a coadbbering SOPATME < fa



Sequence to Sequence
conditioned generation

we can combine the different outputs
into a single vector (attended summary)

a different single vector

at each encoder input. 0000
EI:LI E[-l l’lw-in-ﬂ l’lm[-l-nl '[:L
< a0 a condioriog AOTATM o« fa
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Sequence to Sequence
conditioned generation
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Sequence to Sequence
conditioned generation
o) = softm
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encoder-decoder with attention

<pltj41 =k | t1y,X1m) = f(Odec(sj41)) >
Sj+1 = Raec(sy, [t55 ¢'])
Z [i]
i=1
C1.n = bIRNN] . (X1.1)

o = softmax(c_ri ,
afy = MLP*™([sj: ¢i])

tj ~ p(t; | El:j—laxl:n)

< flz)= softmax(MLP“"(z) ) o

I\-{LPatt([Sj; Ci]) =




encoder-decoder with attention

pltizr =k | t15,X1m) = f(Odec(Sjs1))

< Sj+1 = Raec(sy, E?C’JD

Ci1n = l)lRNNenc (Xl;n)

o) = softm&u.:{(c_rI ,

afy = MLP*™([sj: ¢i])

tj ~ p(t; | El:j—lsxl:n)
f(z) = softmax(MLP“"(z))

I\-’ILPatt([SJ; Ci]) =



encoder-decoder with attention

pltjzr =k | t15,X1m) = f(Odec(sj41))
Sj41 = Rdec(SJ [t5:¢'])

+=biRNN. _(X1m

o = softm&u.:{(c_rI e

Al = MLP*([s;: ¢i])

Ej ~ p(t; | El:j—laxl:n)
f(z) = softmax(MLP“"(z))

I\-{LPatt([Sj; Ci]) =



encoder-decoder with attention
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encoder-decoder with attention

Encoder encodes a sequence of vectors, c,,...,C,

At each decoding stage, an MLP assigns a relevance
score to each Encoder vector.

The relevance score is based on c; and the state s,

Weighted-sum (based on relevance) is used to
produce the conditioning context for decoder step j.



encoder-decoder with attention

Decoder "pays attention" to different parts of the encoded
sequence at each stage.

The attention mechanism is "soft" -- it is a mixture of
encoder states.

The encoder acts as a read-only memory for the decoder
The decoder chooses what to read at each stage



Attention

e Attention is very effective for sequence-to-sequence tasks.

e Current state-of-the-art systems all use attention.
(this is basically how Machine Translation works)

e Attention makes models somewhat more ~interpretable.

* (we can see where the model is "looking" at each stage of
the prediction process)



Attention
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Attention
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Attention is not Explanation

Sarthak Jain Byron C. Wallace
Northeastern University Northeastern University

jain.sar@husky.neu.edu b.wallace@northeastern.edu



Complexity
* Encoder decoder:

e Encoder-decoder with attention:



Complexity
* Encoder decoder: O(n+m)

* Encoder-decoder with attention: O(nm)



Beyond Seq2Seq

e Can think of a general design pattern in neural nets:
— Input: sequence, query
— Encode the input into a sequence of vectors

— Attend to the encoded vectors, based on query
(weighted sum, determined by query)

— Predict based on the attended vector



Attention Functions

V: attended vec, q: query vec
MLP%(q;v)=

e Additive Attention: ug(Wlv+ W?2q)

* Dot Product: vV-q

 Bilinear attention: v'Wq



Additive vs Multiplicative

While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dj. the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of d;. [3]. We suspect that for large values of
d}., the dot products grow large in magnitude, pushing the softmax function into regions where it has

extremely small gradients *. To counteract this effect, we scale the dot products by v’if_
k

v-q

VA Paper’s Justification:
dk is the dimensionality of q and v To illustrate why the dot products get
large, assume that the components
of g and k are independent random
variables with mean 0 and variance
—> Then their dot product, q - k has
mean 0 and variance d,




Key-Value Attention

* Split v into two vectors v=[v,;v, ]
— v, key vector

—v,: value vector

e Use key vector for computing attention
MLP2%(q;v)= ug(Wlv, + W2q) //additive

e Use value vector for computing attended summary

n

vi = Z “fi] - (V)

=1



Multi-head Key-Value Attention

For each head

— Learn different projection matrices W,, W,, W,
MLP3%(q;v)= [(Vka)-(qu)]/Sqrt(dk)
For summary use v W, (instead of v, )

Train many such heads and
— use aggr(all such attended summaries)



Self-attention/Intra-attention

Each element in the sentence attends to other
elements — context sensitive encodings!

this 1s an example

ths B | | -

IS B L -

an N o
example [ Dl N



Do we “need” an LSTM?

e They are slow
o Sequential nature of computation makes it tough to optimize
operations on GPUs
o Contrast to CNNs: convolutions completely parallelizable

e They are not deep
o Vanishing gradient: aggravated for deeper networks
> Less depth = low compositionality power of the network

o Deepest LSTM networks are 8 layered
o in-contrast to 50-layered Resnets

o They don’t transfer well
o Networks trained on one task, do not generalize well to even othe
datasets in the same task, not to speak about other tasks
o ImageNet-trained ResNet fine-tuned on many other datasets



Output
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Transformer + PreTraining

In NLP, we are interested in solving a variety of end tasks - Question
Answering, Search, etc.

One approach - train neural models from scratch

Issue - this involves two things
o Modelling of Syntax and Semantics of the language
o Modelling of the end-task

Pretraining - Learns the modelling of syntax and semantics - through
another task

So the current model can focus exclusively on modelling of end-task



Pretraining - Masked Language Modelling

e How to pretrain?

e Which base task to choose:
o Must have abundant data available
o Must require learning of syntax and semantics

o Language Modelling (Self-supervision)
- Does not require human annotated labels - abundance of
sentences
- Requires understanding of both syntax and semantics to predict
the next word in sentence



Encoder Summary

Shallow NNs
— Bag(words)

Convolutional NNs
— Handle bag (fixed length n-grams)
Recurrent NNs

— Handle small variable length histories

LSTMs/GRUs
— Handle larger variable length histories

Bi-LSTMs
— Handle larger variable length histories and futures

Recursive NNs
— Handle variable length partially ordered histories



Summary (contd)

Hierarchical Recurrent NNs
— RNN over RNNs (e.g., HRED)

Neural language models
Conditioned language models
— Encoder-Decoder Models

Attention models

— attach non-uniform importance to histories based on
evidence (question)



Prior Knowledge about Task

AdC

Add as a hard constraint
AdC

Add as a symbolic feature

as penalty in loss term

via architectural choice

Supply through data augmentation



Deep Learning Strengths

universal representation

compositional representation

feature discovery in task-driven way

weight sharing in features

seamlessly combine unsupervised w supervised
natural fit for multi-modal and multi-task settings



Deep Learning Weaknesses

high variance
difficult to debug
uninterpretable
data hungry



