
An Intro to Deep Learning for NLP

Mausam

(several slides by Yoav Goldberg, Graham Neubig)

NLP before DL #1

Model
(NB, SVM, CRF)

Model
(NB, SVM, CRF)

Supervised

Training

Data

Features

Assumptions
- doc: bag/sequence/tree of words
- model: bag of features (linear)
- feature: symbolic (diff wt for each)

Assumptions
- doc: bag/sequence/tree of words
- model: bag of features (linear)
- feature: symbolic (diff wt for each)

Optimize function

(LL, sqd error, margin…)

Learn feature weights

NLP before DL #2

Model
(MF, LSA, IR)

Model
(MF, LSA, IR)

Unsupervised

Co-occurrence

Data

Assumptions
- doc/query/word is a vector of numbers
- dot product can compute similarity

- via distributional hypothesis

Assumptions
- doc/query/word is a vector of numbers
- dot product can compute similarity

- via distributional hypothesis

Optimize function

(LL, sqd error, margin…)

Learn vectors

z1z1 z2z2 …

NLP with DL

Model
(NB, SVM, CRF)

Model
(NB, SVM, CRF)

Supervised

Training

Data

Optimize function

(LL, sqd error, margin…)

Learn feature weights

Features

NLP with DL

Model
(NB, SVM, CRF)

Model
(NB, SVM, CRF)

Neural

Features

Optimize function

(LL, sqd error, margin…)

Learn feature weights

Supervised

Training

Data

NLP with DL

Model
(NB, SVM, CRF)

Model
(NB, SVM, CRF)

Neural

Features

Optimize function

(LL, sqd error, margin…)

Learn feature weights+vectors

z1z1 z2z2 …

Supervised

Training

Data

NLP with DL

Model
NN= (NB, SVM, CRF, +++

+ feature discovery)

Model
NN= (NB, SVM, CRF, +++

+ feature discovery)

Neural

Features

Optimize function

(LL, sqd error, margin…)

Learn feature weights+vectors

z1z1 z2z2 …

Supervised

Training

Data

NLP with DL

Model
NN= (NB, SVM, CRF, +++

+ feature discovery)

Model
NN= (NB, SVM, CRF, +++

+ feature discovery)

Neural

Features

Optimize function

(LL, sqd error, margin…)

Learn feature weights+vectors

z1z1 z2z2 …

Assumptions
- doc/query/word is a vector of numbers
- doc: bag/sequence/tree of words
- feature: neural (weights are shared)
- model: bag/seq of features (non-linear)

Assumptions
- doc/query/word is a vector of numbers
- doc: bag/sequence/tree of words
- feature: neural (weights are shared)
- model: bag/seq of features (non-linear)

Supervised

Training

Data

Meta-thoughts

Features

• Learned

• in a task specific end2end way

• not limited by human creativity

Everything is a “Point”

• Word embedding

• Phrase embedding

• Sentence embedding

• Word embedding in context of sentence

• Etc

Points are good  reduce sparsity by wt sharing

a single (complex) model can handle all pts

Universal Representations

• Non-linearities

– Allow complex functions

• Put anything computable in the loss function

– Any additional insight about data/external knowledge

Make symbolic operations continuous

• Symbolic  continuous

– Yes/No  (number between 0 and 1)

– Good/bad  (number between -1 and 1)

– Either remember or forget  partially remember

– Select from n things  weighted avg over n things

Encoder-Decoder

Symbolic

Input

(word)

z1z1 Neural

Features

Symbolic

Output

(class, sentence..)
ModelModelModelModel

Encoder Decoder

Different assumptions on data create different architectures

A Primer on D.L. Building Blocks

• A single vector for an ordered pair of vectors?

• A single vector for a variable-sized bag of vectors?

• Project a vector to a new space?

• Are two vectors (from same space) similar?

• Are two vectors (from different space) similar?

• A new vector that depends on some vector input?

A Primer on D.L. Building Blocks

• A single vector for an ordered pair of vectors?

• A single vector for a variable-sized bag of vectors?

• Project a vector to a new space?

• Are two vectors (from same space) similar?

• Are two vectors (from different space) similar?

• A new vector that depends on some vector input?

A Primer on D.L. Building Blocks

• Output a probability

• Output one of two classes

• Output one of many classes

• A feature w/ positive & negative influence

• A feature w/ positive influence for “deep” nets

A Primer on D.L. Building Blocks

• Output a probability

• Output one of two classes

• Output one of many classes

• A feature w/ positive & negative influence

• A feature w/ positive influence for “deep” nets

Building Blocks

+ ; .

Matrix-mult gate non-linearity

x;y

x+y

Concat vs. Sum

• Concatenating feature vectors: the
"roles" of each vector is retained.

current

word

prev

word

next

word

• Different features can have vectors of different dim.

• Fixed number of features in each example

(need to feed into a fixed dim layer).

Concat vs. Sum

• Summing feature vectors: "bag of features"

wordword word

• Different feature vectors should have same dim.

• Can encode a bag of arbitrary number of features.

x.y

• degree of closeness

• alignment

• Uses

– question aligns with answer //QA

– sentence aligns with sentence //paraphrase

– word aligns with (~important for) sentence //attention

g(Ax+b)

• 1-layer MLP

• Take x

– project it into a different space //relevant to task

– add some scalar bias (only increases/decreases it)

– convert into a required output

• 2-layer MLP

– Common way to convert input to output

Encoding Architectures

BoW
Bag(N-grams)

Complete History
Complete History & Future

Word2Vec: Bag of (Context) Words

sat

the cat sat on a

cc cc cc cc

++

ZZ WW

Loss:
zcont.wsat should be high
zcont.wother should be low

Loss:
zcont.wsat should be high
zcont.wother should be low

Decoder

Encoder

Very Simple Text Classification

+ score

-- score

this is a good book

ww ww ww ww

++

ZZ

Encoder

ww

Decoder
MLP

Importance of Ngrams

• We did ‘+’ bec sentences are variable length

– Ignored order

• While we can ignore global order in many cases...

• ... local ordering is still often very important.

• Local sub-sequences encode useful structures.

(so why not just assign a vector to each ngram?)

CNN: Convolutional Neural Nets

• bag of n-grams encoding

• feature extractor

– finds whether/how much feature is present

• Instead of sum uses max

– Indicates presence instead of strength

– Also called “Max Pooling”

the service was not goodveryactual

the service was not goodveryactual

dot

the service was not goodveryactual

dot

=

the service was not goodveryactual

dot

=

the service was not goodveryactual

dot

=

the service was not goodveryactual

dot
=

the service was not goodveryactual

dot

=

the service was not goodveryactual

dot

=

the service was not goodveryactual

dot

=

the service was not goodveryactual

dot

=

the service was not goodveryactual

dot

=

the service was not goodveryactual

dot

=

the service was not goodveryactual

dot

=

the service was not goodveryactual

dot

=

the service was not goodveryactual

dot

=

tanh () tanh () tanh () tanh () tanh () tanh ()

(usually also add non linearity)

the service was not goodveryactual

can do "pooling"

+ + + + + =

the service was not goodveryactual

+ + + + + =

average pooling average vector

the service was not goodveryactual

+ + + + + =

prediction

MLP

train end-to-end for some task

(train the MLP, the filter matrix, and the embeddings together)

the service was not goodveryactual

+ + + + + =

prediction

MLP

train end-to-end for some task

(train the MLP, the filter matrix, and the embeddings together)

the vectors learn to capture what's important

the service was not goodveryactual

max =

max pooling max vector

max max max max

(max in each coordinate)

CNNs  RNNs

CNNs consider local word order

How can we consider global word order?

Recurrent Neural Networks

• Very strong models of sequential data.

• Trainable function from n vectors to a
single vector.

v(what) v(is) v(your) v(name) enc(what is your name)

Recurrent Neural Networks

Simple RNN (Elman RNN)

RNN  LSTM
Good for backpropagating through long chain sequences

In principle: capture infinite history upto this point

In practice: have issues with long sequences

Bi-directional RNN

Infinite window around the word

Recursive Neural Nets

Recursive Neural Nets

Recursive Neural Nets

Recursive Neural Nets

Recursive Neural Nets

Like recurrent nets:

we have shared

parameters at nodes.

but structure is

no longer a sequence.

Decoding Architectures

Acceptor
Transducer

Language Model

RNN Acceptor

Sequence Labeling with Transducer
BiLSTM

A Tagger Considering Output Structure

How about an architecture for

0 to n mapping.

(Neural Language Model)

Aside

• Training: similar to an RNN Transducer.

• Generation: the output of step i is input to
step i+1.

RNN Language Models

RNN Language Model for generation

• Define the probability distribution over the
next item in a sequence (and hence the
probability of a sequence).

RNN Language Models

• Generation: the output of step i is input to
step i+1.

RNN Language Models

Back to Original question

Generating sentences is nice, but what if we want

to add some additional conditioning contexts?

How about an architecture for

m to n mapping.

Conditioned Language Model

• Not just generate text, generate text according
to some specification

RNN Language Model

for Conditioned generation

Let's add the condition variable to the equation.

P(ti | t1,…,ti-1)

P(ti | c, t1,…,ti-1)

T

(T | C)

(a vector)

How to Pass Context

RNN Language Model

for Conditioned generation

RNN Language Model

for Conditioned generation

what if we want to condition on an entire sentence?

just encode it as a vector...

Sequence to Sequence

conditioned generation

This is also called

"Encoder Decoder"

architecture.

Encoder

Decoder

Decoder is

just a conditioned

language model

The Generation Problem

We have a probability model, how do we use it
to generate a sentence?

Two methods:

• Sampling: Try to generate a random sentence
according to the probability distribution.

• Argmax: Try to generate the sentence with the
highest probability.

Ancestral Sampling

Greedy Search

Beam Search

How to Train this Model?
• Issues with vanilla training

– Slow convergence. Model instability. Poor skill.

• Simple idea: Teacher Forcing

– Just feed in the correct previous word during training

• Drawback: Exposure bias

– Not exposed to mistakes during training

Solutions to Exposure Bias

• Start with no mistakes, and then

– gradually introduce them using annealing

• Dropout inputs

– Helps ensure that the model doesn’t rely too
heavily on predictions, while still using them

• Corrupt training data

Sequence 2 Sequence

Part II: with attention

Sentence Representation
You can't cram the meaning of a whole %&!$#

sentence into a single $&!#* vector!

Encoder

Decoder

Sequence to Sequence

conditioned generation

main idea:

encoding

a single vector is

too restrictive.

Attention

• Instead of the encoder producing a single
vector for the sentence, it will produce a one
vector for each word.

Encoder

Decoder

Sequence to Sequence

conditioned generation

Decoder

Sequence to Sequence

conditioned generation

Encoder

Decoder

Sequence to Sequence

conditioned generation

Encoder

Decoder

Sequence to Sequence

conditioned generation

Encoder

but how do we feed

this sequence

to the decoder?

Sequence to Sequence

conditioned generation

Encoder

we can combine the different outputs

into a single vector (attended summary)

Sequence to Sequence

conditioned generation

Encoder

we can combine the different outputs

into a single vector (attended summary)

a different single vector

at each encoder input.

Sequence to Sequence

conditioned generation

Encoder

Sequence to Sequence

conditioned generation

Encoder

decoder state

encoder-decoder with attention

encoder-decoder with attention

encoder-decoder with attention

encoder-decoder with attention

encoder-decoder with attention

• Encoder encodes a sequence of vectors, c1,...,cn

• At each decoding stage, an MLP assigns a relevance
score to each Encoder vector.

• The relevance score is based on ci and the state sj

• Weighted-sum (based on relevance) is used to
produce the conditioning context for decoder step j.

encoder-decoder with attention

• Decoder "pays attention" to different parts of the encoded
sequence at each stage.

• The attention mechanism is "soft" -- it is a mixture of
encoder states.

• The encoder acts as a read-only memory for the decoder

• The decoder chooses what to read at each stage

Attention

• Attention is very effective for sequence-to-sequence tasks.

• Current state-of-the-art systems all use attention.
(this is basically how Machine Translation works)

• Attention makes models somewhat more ~interpretable.

• (we can see where the model is "looking" at each stage of
the prediction process)

Attention

Attention

Complexity

• Encoder decoder:

• Encoder-decoder with attention:

Complexity

• Encoder decoder: O(n+m)

• Encoder-decoder with attention: O(nm)

Beyond Seq2Seq

• Can think of a general design pattern in neural nets:

– Input: sequence, query

– Encode the input into a sequence of vectors

– Attend to the encoded vectors, based on query
(weighted sum, determined by query)

– Predict based on the attended vector

Attention Functions

• Additive Attention:

• Dot Product:

• Bilinear attention:

v: attended vec, q: query vec
MLPatt(q;v)=

Additive vs Multiplicative

dk is the dimensionality of q and v

Paper’s Justification:

To illustrate why the dot products get

large, assume that the components

of q and k are independent random

variables with mean 0 and variance

 Then their dot product, q · k has

mean 0 and variance dk

Key-Value Attention

• Split v into two vectors v=[vk;vv]

– vk: key vector

– vv: value vector

• Use key vector for computing attention

MLPatt(q;v)= ug(W1vk + W2q) //additive

• Use value vector for computing attended summary

vj (vv)i

Multi-head Key-Value Attention

• For each head

– Learn different projection matrices Wq, Wk, Wv

• MLPatt(q;v)= [(vkWk).(qWq)]/sqrt(dk)

• For summary use vvWv (instead of vv)

• Train many such heads and

– use aggr(all such attended summaries)

Self-attention/Intra-attention

● They are slow
○ Sequential nature of computation makes it tough to optimize

operations on GPUs
○ Contrast to CNNs: convolutions completely parallelizable

● They are not deep
○ Vanishing gradient: aggravated for deeper networks
○ Less depth  low compositionality power of the network
○ Deepest LSTM networks are 8 layered

○ in-contrast to 50-layered Resnets

● They don’t transfer well
○ Networks trained on one task, do not generalize well to even other

datasets in the same task, not to speak about other tasks
○ ImageNet-trained ResNet fine-tuned on many other datasets

Do we “need” an LSTM?

Transformer

Transformer + PreTraining

● In NLP, we are interested in solving a variety of end tasks - Question
Answering, Search, etc.

● One approach - train neural models from scratch

● Issue - this involves two things
○ Modelling of Syntax and Semantics of the language
○ Modelling of the end-task

● Pretraining - Learns the modelling of syntax and semantics - through
another task

● So the current model can focus exclusively on modelling of end-task

Pretraining - Masked Language Modelling

● How to pretrain?

● Which base task to choose:
○ Must have abundant data available
○ Must require learning of syntax and semantics

● Language Modelling (Self-supervision)
○ Does not require human annotated labels - abundance of

sentences
○ Requires understanding of both syntax and semantics to predict

the next word in sentence

Encoder Summary
• Shallow NNs

– Bag(words)

• Convolutional NNs

– Handle bag (fixed length n-grams)

• Recurrent NNs

– Handle small variable length histories

• LSTMs/GRUs

– Handle larger variable length histories

• Bi-LSTMs

– Handle larger variable length histories and futures

• Recursive NNs

– Handle variable length partially ordered histories

Summary (contd)
• Hierarchical Recurrent NNs

– RNN over RNNs (e.g., HRED)

• Neural language models

• Conditioned language models

– Encoder-Decoder Models

• Attention models

– attach non-uniform importance to histories based on
evidence (question)

Prior Knowledge about Task

• Add as penalty in loss term

• Add as a hard constraint

• Add via architectural choice

• Add as a symbolic feature

• Supply through data augmentation

Deep Learning Strengths

• universal representation

• compositional representation

• feature discovery in task-driven way

• weight sharing in features

• seamlessly combine unsupervised w supervised

• natural fit for multi-modal and multi-task settings

Deep Learning Weaknesses

• high variance

• difficult to debug

• uninterpretable

• data hungry

