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Meta-thoughts



Features

• Learned 

• in a task specific end2end way

• not limited by human creativity



Everything is a “Point”

• Word embedding

• Phrase embedding

• Sentence embedding

• Word embedding in context of sentence

• Etc

Points are good  reduce sparsity by wt sharing

a single (complex) model can handle all pts



Universal Representations

• Non-linearities

– Allow complex functions

• Put anything computable in the loss function

– Any additional insight about data/external knowledge 



Make symbolic operations continuous

• Symbolic  continuous

– Yes/No  (number between 0 and 1)

– Good/bad  (number between -1 and 1)

– Either remember or forget  partially remember 

– Select from n things  weighted avg over n things 



Encoder-Decoder

Symbolic

Input

(word)

z1z1 Neural

Features

Symbolic

Output

(class, sentence..)
ModelModelModelModel

Encoder Decoder

Different assumptions on data create different architectures
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Building Blocks

+           ;            .

Matrix-mult   gate   non-linearity
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Concat vs. Sum

• Concatenating feature vectors: the 
"roles" of each vector is retained.

current

word

prev

word

next

word

• Different features can have vectors of different dim.

• Fixed number of features in each example

(need to feed into a fixed dim layer).



Concat vs. Sum

• Summing feature vectors: "bag of features"

wordword word

• Different feature vectors should have same dim.

• Can encode a bag of arbitrary number of features.



x.y

• degree of closeness

• alignment 

• Uses

– question aligns with answer //QA

– sentence aligns with sentence //paraphrase

– word aligns with (~important for) sentence //attention



g(Ax+b)

• 1-layer MLP

• Take x

– project it into a different space //relevant to task

– add some scalar bias (only increases/decreases it)

– convert into a required output

• 2-layer MLP

– Common way to convert input to output



Encoding Architectures

BoW
Bag(N-grams)

Complete History
Complete History & Future



Word2Vec: Bag of (Context) Words
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Very Simple Text Classification

+ score

-- score 

this       is           a        good  book

ww ww ww ww

++

ZZ

Encoder

ww

Decoder
MLP



Importance of Ngrams

• We did ‘+’ bec sentences are variable length

– Ignored order

• While we can ignore global order in many cases...

• ... local ordering is still often very important.

• Local sub-sequences encode useful structures.

(so why not just assign a vector to each ngram?)



CNN: Convolutional Neural Nets

• bag of n-grams encoding

• feature extractor

– finds whether/how much feature is present

• Instead of sum uses max

– Indicates presence instead of strength

– Also called “Max Pooling”
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the service was not goodveryactual

dot

=

tanh ( ) tanh ( ) tanh ( ) tanh ( ) tanh ( ) tanh ( )

(usually also add non linearity)



the service was not goodveryactual
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the service was not goodveryactual
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average pooling average vector
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the service was not goodveryactual

+ + + + + =

prediction

MLP

train end-to-end for some task

(train the MLP, the filter matrix, and the embeddings together)

the vectors learn to capture what's important



the service was not goodveryactual

max =

max pooling max vector

max max max max

(max in each coordinate)



CNNs  RNNs

CNNs consider local word order

How can we consider global word order?



Recurrent Neural Networks

• Very strong models of sequential data.

• Trainable function from n vectors to a 
single vector.

v(what) v(is) v(your) v(name) enc(what is your name)



Recurrent Neural Networks



Simple RNN (Elman RNN)

RNN  LSTM
Good for backpropagating through long chain sequences

In principle: capture infinite history upto this point

In practice: have issues with long sequences



Bi-directional RNN



Infinite window around the word



Recursive Neural Nets
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Recursive Neural Nets

Like recurrent nets:

we have shared 

parameters at nodes.

but structure is 

no longer a sequence.



Decoding Architectures

Acceptor
Transducer

Language Model



RNN Acceptor



Sequence Labeling with Transducer 
BiLSTM



A Tagger Considering Output Structure



How about an architecture for

0 to n mapping.

(Neural Language Model)

Aside



• Training: similar to an RNN Transducer.

• Generation: the output of step i is input to 
step i+1.

RNN Language Models



RNN Language Model for generation 

• Define the probability distribution over the 
next item in a sequence (and hence the 
probability of a sequence).



RNN Language Models



• Generation: the output of step i is input to 
step i+1.

RNN Language Models



Back to Original question

Generating sentences is nice, but what if we want

to add some additional conditioning contexts?

How about an architecture for

m to n mapping.



Conditioned Language Model

• Not just generate text, generate text according 
to some specification



RNN Language Model

for Conditioned generation

Let's add the condition variable to the equation.

P( ti | t1,…,ti-1 )    

P( ti | c, t1,…,ti-1 )    

T

( T | C )

(a vector)



How to Pass Context



RNN Language Model

for Conditioned generation



RNN Language Model

for Conditioned generation

what if we want to condition on an entire sentence?

just encode it as a vector...



Sequence to Sequence

conditioned generation

This is also called

"Encoder Decoder"

architecture.

Encoder

Decoder

Decoder is

just a conditioned

language model



The Generation Problem

We have a probability model, how do we use it 
to generate a sentence?

Two methods:

• Sampling: Try to generate a random sentence 
according to the probability distribution.

• Argmax: Try to generate the sentence with the 
highest probability.



Ancestral Sampling



Greedy Search



Beam Search



How to Train this Model?
• Issues with vanilla training

– Slow convergence. Model instability. Poor skill.

• Simple idea: Teacher Forcing

– Just feed in the correct previous word during training

• Drawback: Exposure bias

– Not exposed to mistakes during training



Solutions to Exposure Bias

• Start with no mistakes, and then 

– gradually introduce them using annealing

• Dropout inputs

– Helps ensure that the model doesn’t rely too 
heavily on predictions, while still using them

• Corrupt training data 



Sequence 2 Sequence

Part II: with attention



Sentence Representation
You can't cram the meaning of a whole %&!$# 

sentence into a single $&!#* vector!



Encoder

Decoder

Sequence to Sequence

conditioned generation

main idea:

encoding

a single vector is 

too restrictive.



Attention

• Instead of the encoder producing a single 
vector for the sentence, it will produce a one 
vector for each word. 



Encoder

Decoder

Sequence to Sequence

conditioned generation
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Decoder

Sequence to Sequence

conditioned generation

Encoder



Decoder

Sequence to Sequence

conditioned generation

Encoder

but how do we feed 

this sequence

to the decoder?



Sequence to Sequence

conditioned generation

Encoder

we can combine the different outputs

into a single vector (attended summary)



Sequence to Sequence

conditioned generation

Encoder

we can combine the different outputs

into a single vector  (attended summary)

a different single vector

at each encoder input.







Sequence to Sequence

conditioned generation

Encoder



Sequence to Sequence

conditioned generation

Encoder

decoder state



encoder-decoder with attention
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encoder-decoder with attention

• Encoder encodes a sequence of vectors, c1,...,cn

• At each decoding stage, an MLP assigns a relevance 
score to each Encoder vector.

• The relevance score is based on ci and the state sj

• Weighted-sum (based on relevance) is used to 
produce the conditioning context for decoder step j.



encoder-decoder with attention

• Decoder "pays attention" to different parts of the encoded 
sequence at each stage.

• The attention mechanism is "soft" -- it is a mixture of 
encoder states.

• The encoder acts as a read-only memory for the decoder

• The decoder chooses what to read at each stage



Attention

• Attention is very effective for sequence-to-sequence tasks.

• Current state-of-the-art systems all use attention.
(this is basically how Machine Translation works)

• Attention makes models somewhat more ~interpretable.

• (we can see where the model is "looking" at each stage of 
the prediction process)



Attention



Attention



Complexity

• Encoder decoder:

• Encoder-decoder with attention:



Complexity

• Encoder decoder: O(n+m)

• Encoder-decoder with attention: O(nm)



Beyond Seq2Seq

• Can think of a general design pattern in neural nets:

– Input: sequence, query

– Encode the input into a sequence of vectors

– Attend to the encoded vectors, based on query  
(weighted sum, determined by  query)

– Predict based on the attended vector



Attention Functions

• Additive Attention: 

• Dot Product:

• Bilinear attention:

v: attended vec, q: query vec
MLPatt(q;v)=



Additive vs Multiplicative

dk is the dimensionality of q and v

Paper’s Justification:

To illustrate why the dot products get 

large, assume that the components 

of q and k are independent random 

variables with mean 0 and variance 

 Then their dot product, q · k has 

mean 0 and variance dk



Key-Value Attention

• Split v into two vectors v=[vk;vv]

– vk: key vector

– vv: value vector

• Use key vector for computing attention

MLPatt(q;v)= ug(W1vk + W2q)   //additive

• Use value vector for computing attended summary

vj (vv)i



Multi-head Key-Value Attention

• For each head

– Learn different projection matrices Wq, Wk, Wv

• MLPatt(q;v)= [(vkWk).(qWq)]/sqrt(dk)

• For summary use vvWv (instead of vv)

• Train many such heads and 

– use aggr(all such attended summaries)



Self-attention/Intra-attention



● They are slow
○ Sequential nature of computation makes it tough to optimize 

operations on GPUs
○ Contrast to CNNs: convolutions completely parallelizable

● They are not deep
○ Vanishing gradient: aggravated for deeper networks
○ Less depth  low compositionality power of the network
○ Deepest LSTM networks are 8 layered

○ in-contrast to 50-layered Resnets

● They don’t transfer well
○ Networks trained on one task, do not generalize well to even other 

datasets in the same task, not to speak about other tasks
○ ImageNet-trained ResNet fine-tuned on many other datasets 

Do we “need” an LSTM?



Transformer



Transformer + PreTraining

● In NLP, we are interested in solving a variety of end tasks - Question 
Answering, Search, etc.

● One approach - train neural models from scratch

● Issue - this involves two things 
○ Modelling of Syntax and Semantics of the language
○ Modelling of the end-task

● Pretraining - Learns the modelling of syntax and semantics - through 
another task

● So the current model can focus exclusively on modelling of end-task



Pretraining - Masked Language Modelling

● How to pretrain?

● Which base task to choose:
○ Must have abundant data available
○ Must require learning of syntax and semantics

● Language Modelling (Self-supervision)
○ Does not require human annotated labels - abundance of 

sentences
○ Requires understanding of both syntax and semantics to predict 

the next word in sentence



Encoder Summary
• Shallow NNs

– Bag(words) 

• Convolutional NNs

– Handle bag (fixed length n-grams)

• Recurrent NNs

– Handle small variable length histories

• LSTMs/GRUs

– Handle larger variable length histories

• Bi-LSTMs

– Handle larger variable length histories and futures

• Recursive NNs

– Handle variable length partially ordered histories



Summary (contd)
• Hierarchical Recurrent NNs

– RNN over RNNs (e.g., HRED)

• Neural language models

• Conditioned language models

– Encoder-Decoder Models

• Attention models

– attach non-uniform importance to histories based on 
evidence (question)



Prior Knowledge about Task

• Add as penalty in loss term

• Add as a hard constraint

• Add via architectural choice

• Add as a symbolic feature

• Supply through data augmentation



Deep Learning Strengths

• universal representation

• compositional representation

• feature discovery in task-driven way

• weight sharing in features

• seamlessly combine unsupervised w supervised

• natural fit for multi-modal and multi-task settings



Deep Learning Weaknesses

• high variance

• difficult to debug

• uninterpretable

• data hungry


