

WASHINGTON

• Open Information Extraction: Approaches and Applications

- Mausam
- Professor, Computer Science.
 Head, School of Artificial Intelligence.
 Indian Institute of Technology, Delhi
- Keshav Kolluru
 - PhD Scholar Indian Institute of Technology, Delhi

"The Internet is the world's largest library. It's just that all the books are on the floor."

- John Allen Paulos

~20 Trillion URLs (Google)

Information Systems Pipeline

Data \longrightarrow Information \longrightarrow Knowledge \longrightarrow Wisdom

Text → Facts → Knowledge Base → Applications

Research Overview

Research Overview

Extracting information *wrt a given ontology* from natural language text

Open Information Extraction

Extracting information from natural language text for *all* relations in *all* domains in a *few* passes.

Open Information Extraction

Extracting information from natural language text

Demo

<u>http://openie.allenai.org</u>

Open Information Extraction

Open Information Extraction

- 2007: Textrunner (~Open IE 1.0)
 - CRF and self-training
- 2010: ReVerb (~Open IE 2.0)
 - POS-based relation pattern
- 2012: OLLIE (~Open IE 3.0)
 - Dep-parse based extraction; nouns; attribution
- 2014: Open IE 4.0
 - SRL-based extraction; temporal, spatial...
- 2017 [@IITD]: Open IE 5.0
 - compound noun phrases, numbers, lists
- 2020 [@IITD]: Open IE 6.0
 - deep neural models

increasing precision, recall, expressiveness

Fundamental Hypothesis

Example 2 subset of English

- Characterized relations & arguments via POS
- Characterization is compact, domain independent

• Covers 85% of binary relations in sample

ReVerb

Identify **Re**lations from **Verbs**.

1. Find longest phrase matching a simple syntactic constraint:

$$V | VP | VW^*P$$

$$V = \text{verb particle? adv?}$$

$$W = (\text{noun} | \text{adj} | \text{adv} | \text{pron} | \text{det})$$

$$P = (\text{prep} | \text{particle} | \text{inf. marker})$$

Sample of ReVerb Relations

invented	acquired by	has a PhD in
inhibits tumor growth in	voted in favor of	won an Oscar for
has a maximum speed of	died from complications of	mastered the art of
gained fame as	granted political asylum to	is the patron saint of
was the first person to	identified the cause of	wrote the book on

Lexical Constraint

Problem: "overspecified" relation phrases Obama is offering only modest greenhouse gas reduction targets at the conference.

Solution: must have many distinct args in a large corpus

$$\frac{\text{is offering only modest ...}}{\text{Obama the conference}} \Rightarrow 1$$

$$100s \approx - \begin{bmatrix} \text{is the patron saint of} \\ \text{Anne mothers} \\ \text{George England} \\ \text{Hubbins quality footwear} \\ \dots$$

Number of Relations (circa 2011)

DARPA MR Domains	<50
NYU, Yago	<100
NELL	~500
DBpedia 3.2	940
PropBank	3,600
VerbNet	5,000
WikiPedia InfoBoxes, f > 10	~5,000
TextRunner (phrases)	100,000+
ReVerb (phrases)	1,500,000+

ReVerb Extraction Algorithm

1. Identify longest relation phrases satisfying constraints

Hudson was born in Hampstead, which is a suburb of London.

2. Heuristically identify arguments for reach relation phrase

(Hudson, was born in, Hampstead) (Hampstead, is a suburb of, London)

ReVerb: Error Analysis

- Steve Squeri, the CEO of American Express, said that a majority of employees will work from home
- After winning the Superbowl, the Giants are now the top dogs of the NFL.
- Ahmadinejad was *elected* as the new President of Iran.

OLLIE: Open Language Learning for Information Extraction

Open Information Extraction

- 2007: Textrunner (~Open IE 1.0)
 CRF and self-training
- 2010: ReVerb (~Open IE 2.0)
 POS-based relation pattern
- 2012: OLLIE (~Open IE 3.0)
 - Dep-parse based extraction; nouns; attribution
- 2014: Open IE 4.0
 - SRL-based extraction; temporal, spatial...
- 2017 [@IITD]: Open IE 5.0
 - compound noun phrases, numbers, lists
- 2020 [@IITD]: Open IE 6.0
 - deep neural models

training data automatically generated

increasing precision, recall, expressiveness

Now coached by Paul Annacone, Federer has ...

Now coached by Paul Annacone, Federer has ...

Now coached by Paul Annacone, Federer has ... Federer *hired* Annacone as his new coach.

Bootstrapping

Evaluation

[Mausam, Schmitz, Bart, Soderland, Etzioni - EMNLP'12]

Open Information Extraction

- 2007: Textrunner (~Open IE 1.0)
 - CRF and self-training
- 2010: ReVerb (~Open IE 2.0)
 - POS-based relation pattern
- 2012: OLLIE (~Open IE 3.0)
 - Dep-parse based extraction; nouns; attribution
- 2014: Open IE 4.0
 - SRL-based extraction; temporal, spatial...
- 2017 [@IITD]: Open IE 5.0
 - compound noun phrases, numbers, lists
- 2020 [@IITD]: Open IE 6.0
 - deep neural models

increasing precision, recall, expressiveness

RelNoun: Nominal Open IE

Constructions	Phrase	Extraction
Verb1	Francis Collins is the director of NIH	(Francis Collins; is the director of; NIH)
Verb2	the director of NIH is Francis Collins	(Francis Collins; is the director of; NIH)
Appositive1	Francis Collins, the director of NIH	(Francis Collins; [is] the director of; NIH)
Appositive2	the director of NIH, Francis Collins,	(Francis Collins; [is] the director of; NIH)
Appositive3	Francis Collins, the NIH director	(Francis Collins; [is] the director [of]; NIH)
AppositiveTitle	Francis Collins, the director,	(Francis Collins; [is]; the director)
CompoundNoun	NIH director Francis Collins	(Francis Collins; [is] director [of]; NIH)
Possessive	NIH's director Francis Collins	(Francis Collins; [is] director [of]; NIH)
PossessiveAppositive	NIH's director, Francis Collins	(Francis Collins; [is] director [of]; NIH)
AppositivePossessive	Francis Collins, NIH's director	(Francis Collins; [is] director [of]; NIH)
PossessiveVerb	NIH's director is Francis Collins	(Francis Collins; is director [of]; NIH)
VerbPossessive	Francis Collins is NIH's director	(Francis Collins; is director [of]; NIH)

Compound Noun Extraction Baseline

• NIH Director Francis Collins

(Francis Collins, is the Director of, NIH)

- Challenges
 - New York Banker Association ORG NAMES - German Chancellor Angela Merkel DEMONYMS
 - Prime Minister Modi – GM Vice Chairman Bob Lutz

COMPOUND RELATIONAL NOUNS

Continuing with Fundamental Hypothesis

- Rule-based system to characterize relational noun phrases
 - Classifies and filters orgs
 - List of demonyms for location conversion
 - Bootstrap a list of relational noun *prefixes*
 - vice, ex, health, ...

Experiments

[Pal & Mausam AKBC'16]

	System	Precision	Yield
	Ollie-Noun	0.29	136
	RelNoun 1.1	0.53	60
	+ Compound Noun Baseline	0.37	100
	+ ORG filtering	0.39	100
	+ demonyms	0.52	158
RelNoun 2.0→	+ compound relational nouns	0.69	209

Numerical Open IE

[Saha, Pal, Mausam ACL'17]

"Hong Kong's labour force is 3.5 million." Open IE 4: (Hong Kong's labour force, is, 3.5 million) Open IE 5: (Hong Kong, has labour force of, 3.5 million)

"James Valley is nearly 600 metres long." Open IE 4: (James Valley, is, nearly 600 metres long) *Open IE 5:* (James Valley, has length of, nearly 600 metres)

"James Valley has 5 sq kms of fruit orchards." Open IE 4: (James Valley, has, 5 sq kms of fruit orchards) *Open IE 5:* (James Valley, has area of fruit orchards, 5 sq kms)

Peculiarities of Numerical IE

- Numbers are weak entities
- Units
 - Multiple units for same relation
 - Implicit relations may be expressed via units
- Sentence may express change in quantity
- Relation/argument scoping
 - literacy rate of India
 - rural literacy rate of India
 - literacy rate of South India

Bootstrapping for Numerical Open IE

[Saha, Pal, Mausam ACL'17]

Experiments

[Saha, Pal, Mausam ACL'17]

Open IE 5 achieves 1.5x yield and 15 point precision gain on *numerical* facts over Open IE 4.2.

Nested Lists in Open IE

[Saha, Mausam COLING'18]

"President Biden met the leaders of India and China." Open IE 4: (President Biden, met, the leaders of India and China) Open IE 5: (President Biden, met, the leaders of India) (President Biden, met, the leaders of China)

Language Model for Disambiguation

"President Biden met (the leaders of India) and (China)."

- President Biden met the leaders of India
- President Biden met China

"President Biden met the leaders of (India) and (China)."

- President Biden met the leaders of India
- President Biden met the leaders of China

Complex Example

"Gates, an American investor and co-founder of Microsoft, stepped down as CEO of
Microsoft in January 2000, but remained as chairman and created the position of chief
software architect for himself and transferred his duties to Ray Ozzie and Craig Mundie."

Extraction	Systems
 (Gates; stepped down as; CEO of Microsoft) 	[OC, O4, C]
2. (Gates; stepped down as CEO of Microsoft; in January 2000)	[OC, O4]
Gates; is; an American investor)	[OC]
Gates; is an investor from; United States)	[OC, O4]
5. (Gates; is co-founder of; Microsoft)	[OC]
6. (Gates; is; an American investor and co-founder of Microsoft)	[C]
(Gates; remained as; chairman)	[OC, O4, C]
8. (Gates; created; the position of chief software architect for himself)	[OC, O4, C]
(Gates; transferred; his duties)	[OC]
10. (Gates; transferred his duties to; Ray Ozzie)	[OC]
11. (Gates; transferred his duties to; Craig Mundie)	[OC]
12. (His; has; duties)	[C]
 13. (Gates; transferred his duties to Ray Ozzie; the position of chief software architect for himself) 	[C]
 (Gates; transferred his duties to Craig Mundie; the position of chief software architect for himself) 	[C]

Experiments

[Saha, Mausam COLING'18]

	Precision	Yield
Open IE 4.2	79.1	172
ClausIE	67.2	204
Open IE 5	81.2	315

Code for Open IE 5 available at <u>https://github.com/dair-iitd/OpenIE-standalone</u> (downloaded over 9000 times)

(Intermediate) Take Home

• Find a high precision subset

even regular expressions are good for low data

- significant subset of a language is semantically tractable

• Bootstrap training data

- increase recall while maintaining high precision
- going down the long tail of syntactic expressions

• Focus on specific constructions

- nested lists, compound nouns, numerical expressions

Open Information Extraction

- 2007: Textrunner (~Open IE 1.0)
 - CRF and self-training
- 2010: ReVerb (~Open IE 2.0)
 - POS-based relation pattern
- 2012: OLLIE (~Open IE 3.0)
 - Dep-parse based extraction; nouns; attribution
- 2014: Open IE 4.0
 - SRL-based extraction; temporal, spatial...
- 2017 [@IITD]: Open IE 5.0
 - compound noun phrases, numbers, lists
- 2020 [@IITD]: Open IE 6.0
 - deep neural models

taking a stronger ML leap increasing precision, recall, expressiveness

Primer on Deep Learning for NLP

- Word2Vec: Vector representation of words
- Transformers: Attention-based models
- **BERT**: Pretrained Representations
- Seq2Seq: Encoder-Decoder models

Word2Vec

[Mikolov, et. al., Neurips'13] Vector representation of words

Word2Vec

[Mikolov, et. al., Neurips'13]

- vec(King) vec(Man) + vec(Woman) = vec(Queen)
- A person is known by the _____ he keeps
- A person is known by the <u>company</u> he keeps
- A **word** is known by the <u>company</u> it keeps

Transformer

[Vaswani, et. al., Neurips'17]

- One static vector per word is very limiting!
- What about words that have multiple meanings?
- Bank financial institution or river bank
- Transformers: Generate context-based word embeddings

BERT

[Devlin, et. al., NAACL'18]

- Training model on each task independently
- Requires learn language from scratch
- Tedious approach!

- BERT pre-training learns language separately
- Frees the model to learn task-specific details

BERT

[Devlin, et. al., NAACL'18]

Seq2Seq

- NLP tasks often require generating sequences
- Machine Translation, Summarization, Chatbots
- Seq2Seq use an Encoder-Decoder architecture
- Encoder embeds the input
- Decoder generates the sequence

Neural OpenIE Extraction

From text:

- 1. Generative models (IMoJIE, ACL'20)
- 2. Labeling models (OpenIE6, EMNLP'20)
- 3. Multilingual models (AACTrans, Submitted)

From Knowledge Bases:

1. Open Knowledge Bases (CEAR, Submitted)

Neural Models

• How to output a set?

- one at a time: like a sequence

- How to handle large output lengths?
 - output one extraction at a time
- How to ensure model does not repeat same tuple?
 - give all previous extractions as input

IMoJIE: Iterative Memory Based Joint Open IE

[Kolluru, Aggarwal, Rathore, Mausam, Chakrabarti ACL'20]

Terminology <arg1>, <rel>, <arg2> <subj>, <rel>, <obj>

IMoJIE Encoder – Step 1

IMoJIE Decoder – Step 1

IMoJIE Decoder – Step 1

Extraction 1 : <arg1> Steve Jobs <rel> is the founder of <arg2> Apple

IMoJIE Encoder – Step 2

Extraction 1

IMoJIE Decoder – Step 2

IMoJIE Decoder – Step 2

Extraction 2 : <arg1> Steve Jobs <rel> died of <arg2> cancer

IMoJIE

Extraction 1 : <arg1> Steve Jobs <rel> is the founder of <arg2> Apple

Extraction 2 : <arg1> Steve Jobs <rel> died of <arg2> cancer

Terminology <arg1>, <rel>, <arg2> <subj>, <rel>, <obj>

IMoJIE

Slow!

Extraction 1 : <arg1> Steve Jobs <rel> is the founder of <arg2> Apple

Extraction 2 : <arg1> Steve Jobs <rel> died of <arg2> cancer

Terminology <arg1>, <rel>, <arg2> <subj>, <rel>, <obj>

Evaluation using CaRB

[Bharadwaj, Aggarwal, Mausam EMNLP'19]

- CaRB uses a matching strategy to compare system extractions with reference extractions and produces a precision, recall value
 - We compute 3 metrics:
 - Optimal F1: Maximum F1 value
 - AUC: Area under the curve
 - *Last F1*: F1 at last point in curve

Results

System	CaRB		Speed
-	F1	AUC	Sentences/sec.
Open IE 4	51.6	29.5	20.1
RnnOIE	49.0	26.0	149.2
IMoJIE	53.5	33.3	2.6

- Trade-off between speed and accuracy
- IMoJIE is 4.5 F1 better than RnnOIE ☺
- IMoJIE is 60x slower than RnnOIE! ↔
- Code, training data, pretrained models at <u>https://github.com/dair-iitd/imojie</u> downloaded 3500+ times

Labeling for OpenIE

Apple's founder Steve Jobsdiedofcancer[is][of][from]ARG2RELARG1ARG1NONERELRELNONENONENONENONENONEARG1ARG1RELRELARG2ARG1ARG1RELRELARG2ARG1ARG1RELARG2

Labeling for OpenIE

Apple's founder Steve Jobs died of
cancer [be] [of] [from]ARG2RELARG1ARG1NONENONENONERELRELNONENONEARG1RELRELARG2NONENONEARG1ARG1RELRELARG2NONENONENONENONEImage: constraintsImage: constraints

(Steve Jobs, [be] the founder [of], Apple) (Steve Jobs, died of, cancer)
[Kolluru, Adlakha, Aggarwal, Mausam, Chakrabarti EMNLP'20]

E4	NONE							
E3	ARG1	NONE	REL	REL	REL	ARG2	ARG2	NONE
E2	ARG1	NONE	REL	REL	NONE	ARG2	ARG2	NONE
E1	ARG1	ARG1	NONE	NONE	REL	NONE	ARG2	NONE

w1	w2	w3	w4	w5	w6	w7	w8
----	----	----	----	----	----	----	----

Results

System	CaRB		Speed		
	F1	AUC	Sentences/sec.		
RnnOIE IMoJIE IGL-OIE	49.0 53.5 52.4	26.0 33.3 33.7	149.2 2.6 142.0		

- IGL-IE 60x faster than IMoJIE
- IGL-IE 1.1 F1 lower than IMoJIE

IGL for OpenIE

Known-tradeoff between Speed & Accuracy

- Full generation is more powerful than labeling
- Full generation is much slower than labeling

Solution: Constraints

[Nandwani, Pathak, Mausam, Singla NeurIPS'19]

"Obama gained popularity after Oprah endorsed him for the presidency"

(Obama, gained, popularity)

"Obama gained popularity after Oprah endorsed him for the presidency"

(Obama, gained, popularity) (Oprah, endorsed, him)

"Obama gained popularity after Oprah endorsed him for the presidency"

(Obama, gained, popularity)

(Oprah, endorsed him for, the presidency)

"Obama gained popularity after Oprah endorsed him for the presidency"

"Oprah", "endorsed", "presidency" should have been in the set of extractions

Because they convey *information!*

POSC Constraints:

All words with POS tags as *nouns* (N), verbs (V), adjectives (JJ), and adverbs (RB) should be part of at least one extraction.

Constrained Iterative Grid Labeling (CIGL)

System	CaRB		Speed	
	F1	AUC	Sentences/sec.	
RnnOIE	49.0	26.0	149.2	
IMoJIE	53.5	33.3	2.6	
IGL-OIE	52.4	33.7	142.0	
CIGL-OIE	54.0	35.7	142.0	

- CIGL 0.5 F1 improvement over IMoJIE
- CIGL 60x faster than IMoJIE

Nested Lists in Open IE

[Saha, Mausam COLING'18, Kolluru etal EMNLP'20]

"President Biden met the leaders of India and China." Open IE 4: (President Biden, met, the leaders of India and China) Open IE 6: (President Biden, met, the leaders of India) (President Biden, met, the leaders of China)

Augmenting OpenIE with Coordination Analysis

(Jeff; invested; in ZocDoc)

Code, training data, pretrained models at https://github.com/dair-iitd/openie6 downloaded 1500+ times

Take Home

• Find a high precision subset

- even regular expressions are good for low data
- significant subset of a language is semantically tractable
- Bootstrap training data
 - increase recall while maintaining high precision
 - going down the long tail of syntactic expressions
- Focus on specific constructions
 - nested lists, compound nouns, numerical expressions
- Constraints in neural models
 - allow AI experts to correct neural models and enable train-test analyze cycles

Multilingual OpenIE

• OpenIE has primarily focused on English

- Extending OpenIE to other languages
- Challenge: Creating/Curating training data
 manual annotation is expensive
- Solution: Translate English data

Issues with normal Translation

• Need to translate sentence and extractions

- Independent translation leads to inconsistencies
- Lexical Inconsistencies: Usage of synonyms
- Semantic Inconsistencies: Changes meaning

Examples of Inconsistencies

Lexical Inconsistency	
English Sentence	The shield of Athena Parthenos, sculpted by Phideas, depicts a fallen Amazon
English Extraction	<s> The shield of Athena Parthenos </s> <r> depicts </r> <o> a fallen Amazon </o>
Spanish Sentence	El escudo de Atena Parthenos, sculptado por Phideas, representa un Amazonas fallecido
Spanish Extraction (Indp)	<s> El escudo de Atena Parthenos </s> <r> representa </r> <o> un Amazonas caído </o>
Spanish Extraction (Const)	<s> El escudo de Atena Parthenos </s> <r> representa </r> <o> un Amazonas fallecido </o>
Semantic Inconsistency	
English Sentence	The discovery was remarkable as the skeleton was almost identical to a modern Kuvasz
English Extraction	<s> skeleton </s> <r> was </r> <o> almost identical to a modern Kuvasz </o>
Spanish Sentence	Un descubrimiento notable porque fósil era casi idéntica a un Kuvasz moderno
Spanish Extraction (Indp)	<s> skeleto </s> <r> era </r> <o> casi idéntica a una Kuvasz moderna </o>
Spanish Extraction (Const)	<s> fósil </s> <r> era </r> <o> casi idéntica a un Kuvasz moderno </o>

Other Desiderata

Sentence	George Bluth Sr., patriarch of the Bluth family, is the founder and former CEO of the Bluth Company.					
Extractions	<s> George Bluth Sr. </s> <r> is patriarch of </r> <o> the Bluth family </o>					
	<s> George Bluth Sr. </s> <r> is </r> <o> the founder and former CEO of the Bluth Company </o>					
	<s> George Bluth Sr. </s> <r> is </r> <o> patriarch of the Bluth family </o>					
Telugu	షరోన్ యొక్క దీర్ఘకాల ప్రత్యర్థి బెంజమిన్ నేతన్యా హును లికుడ్ నాయకుడిగా ఎన్ను కున్నా రు					
English	Sharon's longtime rival Benjamin Netanyahu was elected as leader of Likud					
Extraction	<s> షరోన్ యొక్క దీర్ఘకాల ప్రత్యర్థిని </s> <o> లికుడ్ నాయకుడిగా </o> <r> ఎన్ను కున్నారు </r>					
Hindi	जॉन लैंबर्ट ने सरकार के साधन के रूप में जाना जाने वाला एक नया संविधान सामने रखा					
English	John Lambert put forward a new constitution known as the Instrument of Government					
Extraction	<s> एक नया संविधान </s> <o> सरकार के साधन के रूप में </o> <r> जाना जाता है </r>					

Consistent Translation

- Introduce a new type of translation: AACT
- Alignment-Augmented Consistent Translation
- Two translations are consistent to each other
 Uses word-alignments b/w English-F translations

Experimental Validation

[Kolluru, Mohammed, Mittal, Chakrabarti, Mausam Unpublished'21]

- Experiments over five languages:
- Spanish, Portuguese, Chinese, Hindi, Telugu
- Improvement of 19.5% F1 and 10.6% AUC over prior multilingual models

Talk Outline

KB Inference

OpenIE Inference

• Large-scale inference over Open IE

(iron, is a good conductor of, electricity) (iron nail, conducts, electricity)

(David Beckham, was born in, London)

(David Beckham, was born in, England)

Embeddings for entities/relations

iron	\approx	0.2	0.5	0.6	-0.7
iron nail		0.2	0.6	0.8	-0.6
conducts	~	0.1	0.4	-0.2	-0.7
electricity	\approx	0.9	-0.4	-2.5	-0.7

Represent entities (entity pairs) and relations in a continuous \mathbf{R}^d / \mathbf{C}^d space.

Tensor Factorization (DistMult/ComplEx)

(iron nail, conducts, electricity)

CEAR: Cross-Entity Aware Reranker for Knowledge Base Completion

CEAR: Cross-Entity Aware Reranker for Knowledge Base Completion

CEAR: Cross-Entity Aware Reranker for Knowledge Base Completion

CEAR: Cross-Entity Aware Reranker for Knowledge Base Completion

Results on OpenKB

[Kolluru, Chauhan, Nandwani, Singla, Mausam Unpublished'21]

Method	H@1	H@10	H@50
ComplEx-LSTM	2.1	7.0	14.6
ExtremeText	6.4	16.3	26.0
CEAR (ComplEx-LSTM)	3.8	9.1	14.6
CEAR (ExtremeText)	7.4	17.9	26.0

Table 3: Link Prediction performance on OLPBENCH.

Information Overload

Today a person is subjected to more new information in a day than a person in the middle ages in his entire life!
Extractions: a great way to summarize

Alzheimer's Disease Literature

[Tsutsui, Ding, Meng iConference'17]

Table 3: Two step paths from AD to HD or HIV

	is the most common cause of	cognitive impairment	is an early symptom of		
AD	are significantly associated with	depression	is common in	HD	
	is characterized by	vascular dysfunction	may occur in		
	is associated with increased	neuronal death	is also a pathological hallmark in]	
	is strongly correlated with	the apoe genotype	does not affect the course of]	
AD	frequently exhibit	delirium	sometimes accompany		
	is the common cause of	dementia	is a common complication of		
	affect	neurons	are not infected by		
	causes pro-inflammatory effects in	endothelial cells	were not infected with]	

Health Claims in News Headlines [Yuan, Yu COLING Workshop'18]

Information Extractor	Precision	Recall	F-measure
REVERB	.61	.31	.41
OLLIE	.62	.46	.53
OPENIE-5.0	.67	.57	.62
SemRep	.23	.08	.13

Entity Comparisons are Ubiquitous

Extractions: a great way to compare

[Contractor, Mausam, Singla - NAACL'16]

Cluster Labels	Granada (Spain)	New York City (U.S.)
	moorish architecture	contemporary art
art,	religious art	modern american art
arch.	fine art	medieval art
	beautiful architecture	egyptian art
	brick-walled courtyard	
palace,	lovely courtyard area	
courtyard	nasrid royal palace	
	alhambra palace	
	alhambra museum	fine art museums
museum,	archaeological museum	guggenheim museum
finest	world heritage site	islamic art collection
	splendid arabic shops	metropolitan museum
	partal gardens	flushing meadows park
gardens,	palace gardens	central park
park	pleasant gardens	renowned gardens
	moorish style gardens	natl. recreational area

Extractions: a great way to compare

[Contractor, Mausam, Singla - NAACL'16]

Cluster Labels	Granada (Spain)	New York City (U.S.)
art, arch.	moorish architecture religious art fine art beautiful architecture	contemporary art modern american art medieval art egyptian art
palace, courtyard	brick-walled courtyard lovely courtyard area nasrid royal palace alhambra palace	
museum, finest	alhambra museum archaeological museum world heritage site splendid arabic shops	fine art museums guggenheim museum islamic art collection metropolitan museum
gardens, park	partal gardens palace gardens pleasant gardens moorish style gardens	flushing meadows park central park renowned gardens natl. recreational area

Extractions: a great way to compare

[Contractor, Mausam, Singla - NAACL'16]

Cluster Labels	Granada (Spain)	New York City (U.S.)
art, arch.	moorish architecture religious art fine art beautiful architecture	contemporary art modern american art medieval art egyptian art
palace, courtyard	brick-walled courtyard lovely courtyard area nasrid royal palace alhambra palace	
museum, finest	alhambra museum archaeological museum world heritage site splendid arabic shops	fine art museums guggenheim museum islamic art collection metropolitan museum
gardens, park	partal gardens palace gardens pleasant gardens moorish style gardens	flushing meadows park central park renowned gardens natl. recreational area

Talk Outline

NLP Applications

- Improving Word Vectors
- Unsupervised KB Construction
 - Event schema induction
 - Multi-document Summarization
 - Complex Question Answering

Lexical Similarity/Analogies

[Stanovsky, Dagan, Mausam, ACL 15]

- We experiment by switching **representations**
 - We compute Open IE based embeddings instead of lexical or syntactic context-based embeddings

Target	Lexical	Dependency	SRL	Open IE
	John	nsubj_John	A0_John	0_John
	to	xcomp_visit	A1_to	1_to
refused	visit		A1_visit	1_visit
	Vegas		A1_Vegas	2_Vegas

Why does Open IE do better?

- Word Analogy
 - Captures domain and functional similarity (*gentlest*: gentler), (*loudest*:?)
 - Lexical: higher-pitched X [Domain Similar]
 Syntactic: thinner X [Functionally Similar]
 SRL: unbelievable X [Functionally Similar]
 Open-IE: louder ✓

Unsupervised KB Construction

[Kroll, Pirklbauer, Balke, JCDL'21]

- Manual domain-specific KB construction
- Expensive and Time consuming
- OpenIE can help in automation

A Probabilistic Model of Relations in Text

[Balasubramanian, Soderland, Mausam, Etzioni – AKBC-WEKEX'12]

• Rel-grams =

a model of relation co-occurrence. Probability of seeing sequence of Open IE tuples.

 A resource with 27 million entries, compiled from 1.8 million news articles

Available at relgrams.cs.washington.edu

rel-grams Match constraints on first relation.		High probability tuples following	
	Argument 1	(X treat disease).	
treat	Argument 2		
uisease	Argument 2	(Y, develop, drug)	
Select view for the second relation.		(Y, cause, disease)	
RELARGZ +		(Y, used to treat, condition)	
Sort by measure			
Bi-gram probability: P_k(s f) ▼			
Co-occurrence window size (k).			

Found 65 rel-grams.

First Tuple (f)	Second Tuple (s)	P(R _{i+10} =s R _i =f)	#(R _i =f,,R _{i+10} =s)	#(R _i =f,,R _{i+10} =*)
(X, treat, disease)	(Y, develop, drug)	0.017	4.0	221.0
(X, treat, disease)	(Y, cause, disease)	0.017	4.0	221.0
(X, treat, disease)	(Y, use to treat, condition)	0.013	3.0	221.0
(X, treat, disease)	(Y, trigger response from, muscle)	0.013	3.0	221.0
(X, treat, disease)	(Y, treat, patient)	0.013	3.0	221.0
(X, treat, disease)	(Y, show that, protease inhibitor)	0.013	3.0	221.0
(X, treat, disease)	(Y, reach by, e-mail)	0.013	3.0	221.0
(X, treat, disease)	(Y, know, it)	0.013	3.0	221.0

Personalized PageRank over RelGram Graph

Personalized PageRank over RelGram Graph

Extract Actors → Event Schemas

[Balasubramanian, Soderland, Mausam, Etzioni – EMNLP'13]

Actor	Rel	Actor		
A1: <person></person>	failed	A2:test		
A1: <person></person>	was suspended for	A3: <time period=""></time>		
A1: <person></person>	used	A4: <substance, drug=""></substance,>		
A1: <person></person>	was suspended for	A5: <game, activity=""></game,>		
A1: <person></person>	was in	A6: <location></location>		
A1: <person></person>	was suspended by	A7: <organization, person=""></organization,>		
Actor Instances:				

A1: {Murray, Morgan, Governor Bush, Martin, Nelson}

A2: {test}

- A3: {season, year, week, month, night}
- A4: {cocaine, drug, gasoline, vodka, sedative}
- A5: {violation, game, abuse, misfeasance, riding}
- A6: {desert, Simsbury, Albany, Damascus, Akron}
- A7: {Fitch, NBA, Bud Selig, NFL, Gov Jeb Bush}

Multi-document Summarization

[Fan, Gardent, Braud, Bordes, EMNLP'19]

- Use OpenIE to create dynamic Knowledge Graphs from multiple documents
- Use graph summarization

QUESTION WEB INFORMATION

DOCUMENT 1

Albert Einstein, a German theoretical physicist, published the theory of relativity.

The theory of relativity is one of the two pillars of modern physics.

He won the physics Nobel Prize.

GRAPH CONSTRUCTION

LINEARIZATION

<sub> Albert Einstein <obj> the theory of relativity <pred> published <s> developed <obj> the Physics Nobel Prize <s> won

<sub> the theory of relativity <obj> one of the two pillars of modern physics <pred> is

<sub> the Physics Nobel Prize <obj> for his explanation of the photoelectric effect <pred> was

What is Albert Einstein famous for?

DOCUMENT 2

Albert Einstein (March 14, 1879 to April 18, 1955) developed the theory of relativity.

He won the Nobel Prize.

The great prize was for his explanation of the photoelectric effect.

Complex Question Answering

[Khot, Sabharwal, Clark, ACL'17]

 Science Questions are often complicated and require background knowledge

 OpenIE converts background knowledge into tuples to help answer the question

Figure 1: An example support graph linking a question (top), two tuples from the KB (colored) and an answer option (nitrogen).

Conclusions

- Populating a KB: starting to achieve some maturity
 - still many phenomena waiting to be modeled
- KBs adds tremendous value to end-user apps
 - summarization, data exploration, q/a
 - Complex QA, dialog
- KBs valuable for downstream NLP tasks
 - event schema induction
 - sentence similarity
 - text comprehension
 - vector embeddings
- Exciting research challenges in inference, QA, dialog space

Thanks

THANK YOU