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Abstract

Many contemporary artificial intelligence algorithms fail to scale to large problems, because
the problem sizes typically increase exponentially with the number of features. Even though
a problems size may be too large, there often exist repeated sub-structures, resulting in sym-
metries or other kinds of invariances within the problem. These symmetries and invariances,
when identified accurately, can substantially save on downstream computation time. This thesis
proposes the idea of symmetry aware Al, in which Al and ML algorithms compute these sym-
metries, and then use them for improving their efficiency and performance. Specifically, this
thesis studies symmetry aware Al in the context of three different Al problems: (i) probabilistic
inference in probabilistic graphical models, (ii) sequential decision making under uncertainty
and (iii) structured output prediction in computer vision.

First, in probabilistic inference, we study different types of state symmetries to help speedup
marginal inference. Specifically, we define novel notions of contextual symmetries [Anand et.
al., IJCAI 16], variable-value and non-equicardinal symmetries [Anand et. al., AISTATS 18]
and block-value symmetries [Madan et. al. UAI 2018], and propose algorithms to compute
these. Further, we incorporate these symmetries for improving the mixing time of Markov
Chain Monte Carlo (MCMC) methods.

Second, we define the ASAP (Abstraction of State-Action Pairs) framework, which extends
and unifies past work on domain abstractions in sequential decision making under uncertainty.
It holistically aggregates both states and state-action pairs, thereby, identifying significantly
more symmetries than previous work. We also propose two novel algorithms: ASAP-UCT
[Anand et. al., IJCAI 15] and OGA-UCT [Anand et. al., ICAPS 16], which use ASAP sym-
metries within a UCT framework, thus, combining strengths of online planning with domain
abstractions.

Last but not the least, we explore the use of symmetries in state-of-the-art algorithms for
real-world computer vision problems. We propose a novel coarse-to-fine symmetry aware tem-
plate [Habeeb et. al., IICAI 17] to exploit symmetries in structured output prediction tasks of
stereo-vision and image segmentation. Our approximate notion of top-k label heuristic is robust
across problems and provide significant time gains in near state-of-the-art algorithms for these

tasks.
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Chapter 1
Introduction

Symmetry, as wide or narrow as you may define its meaning, is one idea by which man through

the ages has tried to comprehend and create order, beauty, and perfection.

Hermann Weyl, German Mathematician

The entire universe is composed of a wide range of objects, organisms, and environments
each having varying degrees of complexity. One of the interesting rules followed by nature
while creating complex objects (environments) is that most of these objects are carved by join-
ing simpler objects repeatedly in addition to the specific mutation or variation unique for that
object. Undoubtedly, the resulting objects are unique in themselves but essentially have a lot
of similarity in structure underlying them. This could be seen in the design of plants like
Romanesco Broccoli which has the same pattern repeated again and again or the design of
honeycombs by bees where a hexagonal shape is repeated in a plane (Figure: 1.1). In fact,
due to these similarities, many properties of these objects remain unchanged when they un-
dergo certain transformations. Such properties are called invariances of that object under
those transformations. Invariances have been well studied in the domains of mathematics
and physics since the last century. Symmetry groups [Miller, 1973] and fractals [Barnsley,
2014] have been the key mathematical tools to formally represent these invariances. The far-
reaching impact and importance of these invariances can be gauged further from the beau-
tiful and seminal work of early 1900s by Emmy Noether, Noether’s theorem [Byers, 1998,
Noether, 1971]. The key idea of Noether’s theorem is that for every invariance in nature, there
is a corresponding law of conservation. For example, two objects collide in space in a unique
manner (if they have identical respective attributes), irrespective of their coordinates, due to the
law of conservation of momentum. Similar ideas hold for other invariances like the invariance
in time is attributed to the law of conservation of energy while rotational invariance is attributed

to the law of conservation of angular momentum.
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(a)

Figure 1.1: Invariances in Nature (a) Structure repetition in Romanesco Broccoli (b) Hexagonal Sym-
metry in Honeycomb

Most of the contemporary Machine Learning (ML) and Artificial Intelligence (AI) research
owes its origin to ideas in physics and mathematics. In a similar way, this thesis is an attempt
to leverage the invariances present in nature to improve the efficiency of Al algorithms. The
process begins with identifying and discovering these invariances automatically from the data
or problem definition. This is followed by using the identified invariances in appropriate ways

to improve the efficiency, scalability or quality in Al systems.

Why are invariances needed in AI? With the recent advancements in automation and Al,
many of the simple tasks performed by humans are being overtaken by autonomous agents.
Though some of our day-to-day tasks have been automated, the grand goal of Al where Al
systems are able to perform these tasks with the same degree of efficiency, clarity, and accu-
racy as humans do, is still quite far. One of the key roadblocks in addressing this goal is the
curse of dimensionality. Scaling the existing approaches to real world instances has always
been a huge challenge and most of the methods fail to perform efficiently as the problem size
increases. This thesis argues that although problems and environments are big and complex,
often they have some structure or invariances, and these underlying invariances have a great
potential to improve the efficiency and scalability of multiple Al and ML algorithms. Specifi-
cally, we call these invariances as symmetries present in the problem. There are multiple ways
of exploiting symmetries in Al problems: sometimes they are used to reduce the problem size
as a preprocessing step, while at other times, they become an integral part of the algorithm.
Importantly, exploiting these symmetries can provide orders of magnitude gain in time in many
time-critical tasks e.g., decision making in autonomous agents, in environments where real-time

performance is required.

Before delving into the specific technical details of symmetries in Al and ML algorithms,
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Figure 1.2: Street map of Manhattan in New York depicts perfect grid of streets and avenues. City map
reveals many symmetric states and paths which can be potentially used for efficient planning. Source:
http://www.joemygod.com/2011/03/21/200-years-of-manhattan-street-grid/

we initially discuss the symmetries exhibited in various Al and ML problems.

* Invariances in Game Playing: One popular way to evaluate progress in Al has been
to measure its success in the field of game playing [Campbell er al., 2002; Silver et
al., 2016]. Some of the best examples of exploitation of invariances come from this
field. Most of the board games have many board configurations which are symmetric and
equivalent to each other with respect to the final outcome of the game. As an example,

one can trivially observe that many board configurations are equivalent in the game of

chess (for e.g., a mirror image).

* Symmetries in Path Planning: One important capability of any Al agent is to navigate
efficiently and accurately in the world. A key module for navigation is path planning
which is still inefficient for large problems. However, many of these navigation maps
have a number of structural invariances which are potentially useful for efficient planning.
For example, the famous street grid of Manhattan in New York and the city map of the
Union Territory of Chandigarh in India are depicted in Figures 1.2 and 1.3 respectively.
Both the maps are examples of a perfect grid and traversing from point A to point B

has many equivalent paths and correspondingly equivalent states in terms of distance
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Figure 1.3:  Street map of city of Chandigarh, India. The city is perfect grid like Man-
hattan, New York which can be utilized for efficient path planning and navigation. Source:
http://chandigarh.gov.in/knowchd _map.htm

traversed. These equivalences could be of great value in efficient planning. Though
navigation maps of many cities or terrains are not perfect grids, many other approximate

symmetries still exist and have the potential to provide huge gains during path planning.

* Pixel Labelling in Computer Vision: Consider the task of pixel labelling for an image,
e.g., semantic image segmentation [Kohli er al., 2013] or stereovision [Mozerov and
van de Weijer, 2015]. One may envisage this task as a classification task over each
pixel (or structured prediction problem). This can be computationally very expensive.
However, many of the pixels in the real world scenarios behave identical or approximately
identical to each other and are likely to obtain the same label. One can merge these
identical pixels in a single pixel to obtain a smaller model, thereby saving computation.
Our work [Habeeb et al., 20171, merges such pixels to obtain impressive speedups in the

tasks of stereovision and semantic image segmentation.

Classification of past work on symmetry: Past work has shown that symmetries and in-
variances can be used to improve the efficiency and scalability in Al problems by exploiting
repeated sub-structures. Symmetries have been studied in many Al problems like game play-
ing [Schiffel, 2010; Koriche er al., 2017], structured prediction [Nath and Domingos, 2010],
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probabilistic inference [Getoor and Taskar, 2007] and decision making [Givan er al., 2003;
Ravindran, 2004]. Particularly, in the probabilistic inference community, this idea of exploit-
ing symmetries for efficient inference is called Lifted Inference [Kimmig et al., 2015]. There
are multiple ways to classify past works on how symmetries have been used in different Al

algorithms.

* Algorithm Oblivious or Algorithm Dependent Symmetries: Past work which uses
symmetries for improving efficiency can broadly be classified in two categories: 1)
those works which study symmetries as a generic notion, independent of the down-
stream inference algorithm to be used and 2) those works which study special kind of
symmetries tied to a specific algorithm. Most of the initial works [Givan et al., 2003;
Ravindran, 2004] in sequential decision making proposed notions of symmetry of states
and actions which are oblivious to the planning or reinforcement learning algorithm to be
used. On the other hand, works in lifted probabilistic inference focused on symmetry ex-
ploiting (lifted) variants of popular inference algorithms like variable elimination [Poole,
2003], belief propagation [Singla and Domingos, 2008; Kersting et al., 2009] and knowl-
edge compilation [Van den Broeck et al., 2011]. There have also been many recent
works [Niepert, 2012] which studied algorithm-oblivious notions of symmetries in Prob-
abilistic Graphical Models (PGMs).

* Exact or Approximate Symmetries: Another distinguishing factor in past works is
whether to exploit exact symmetries or approximate symmetries. Though exact sym-
metry notions are based on sound mathematical principles like bisimulation [Givan et
al., 2003] and/or graph automorphisms [Ravindran, 2004], it is not useful for many real
world scenarios. There are many initial works which focused on exploiting exact sym-
metries. The solutions provided by algorithms exploiting exact symmetries suffer zero
loss in quality with respect to the solutions obtained by base algorithms. However, be-
cause exact symmetries are difficult to find in real world, many subsequent works took
inspiration from exact symmetries and showed application of approximate symmetries in
a variety of tasks. Our work spans both exact and approximate symmetries. We defined
exact notion of state-action pair symmetries in Markov Decision Processes (MDPs), and
defined novel notions of exact state symmetries [Anand et al., 2016a; Anand ef al., 2017,
Madan et al., 2018] in PGMs, based on graph automorphism. On the other hand, we also
devised relaxation for state-action pair symmetries for its application in Monte Carlo Tree
Search (MCTS) algorithms [Anand et al., 2015a; Anand et al., 2016b]. We also devel-
oped novel heuristics to merge approximately symmetric pixels in PGM based computer
vision models [Habeeb et al., 2017].
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* Unit of Symmetry Computation: One important decision while using symmetries for
any problem is to determine the basic unit of equivalence which could be useful for that
particular problem. While the equivalence unit is dependent on the domain, it can vary
for each algorithm within the domain as well. For e.g., in planning, states [Givan et al.,
2003; Ravindran, 2004] and state-action pairs [Anand et al., 2015b; Anand et al., 2015al
are the possible units of equivalence while one can study variable equivalence or state
equivalences in PGMs. There are many works which exploit variable symmetries [Singla
and Domingos, 2008; Kersting et al., 2009] while there are also some recent works [Bui

et al., 2012; Niepert, 2012] which exploit state equivalences using graph automorphisms.

» Application Domain: A natural way to classify past work is based on the application
domain. There have been works on exploitation of symmetries in decision making [Givan
et al., 2003; Ravindran, 2004], probabilistic inference [Kimmig et al., 2015], constraint
satisfaction [Cohen et al., 2006], etc. Many of these works have foundations in similar
ideas (like bisimulations [Givan et al., 2003] and graph homomorphisms [Ravindran,
2004]) yet they have been studied independently. In this thesis, we focus on two important
tasks in Al: decision making and inference in probabilistic models. Further, we also study

exploitation of symmetries for PGM-based models in computer vision.

This thesis focuses particularly on probabilistic models for decision making and inference
though many of the ideas are general and may be applicable in other Al problems as well.
Our choice of probabilistic models is motivated by the fact that these models capture most of
the semantics of the real world by modeling uncertainties present in the world as probabilities.
Also, these models are inherently complex and have been models of great interest in the Al
community to speed up computation. They have been used in various applications in computer
vision [Szeliski et al., 2008b] and natural language processing [Blei er al., 2003].

Although, we have classified most of the past work on factors stated above, we next propose
the key characteristics one should consider while incorporating symmetries in any artificial
intelligence or machine learning problem. We encapsulate all the above work under the general

class of what we call symmetry aware algorithms, which we describe in the next section.
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Figure 1.4: (a) Classic ML — Al inference model (b) Pipelined Symmetry Aware Inference Model:
Symmetry Module is pipelined between ML model and Modified Inference procedure (c) Joint Symme-
try Aware Inference Model: Symmetry Module receives feedback from the inference module to compute
better and better symmetries which are fed back to inference module again and again

1.1 Symmetry Aware Algorithms

In general, we call all those algorithms which utilize symmetries to improve their efficiency
as symmetry aware algorithms. However, we classify symmetry aware algorithms in two cate-
gories: pipelined and joint symmetry aware algorithms depending on how their symmetry mod-
ule interacts with the inference procedure. Figure 1.4 (a) shows the classic ML/AI paradigm
where a learned machine learning model is given as an input to an inference procedure which
makes predictions. Figure 1.4 (b) and (c) show the two types of symmetry aware algorithms:
pipelined and joint. In pipelined symmetry aware algorithms, the symmetry module computes
symmetries as a pre-processing step. Computed symmetries are then given as input to a possi-
bly modified inference procedure which uses these symmetries. In joint symmetry aware algo-
rithms, symmetry computation module closely interacts with the inference procedure. There is
an additional feedback from the modified inference procedure to symmetry computation mod-
ule. The feedback guides the symmetry module regarding further improvements in generated
symmetries, which in turn are used by modified inference procedure. This is particularly useful
in systems based on approximate symmetries. We discuss both pipelined and joint symmetry
aware systems in this thesis. Next, we identify certain key characteristics which are useful and
effective in designing modern symmetry aware Al systems. Our works incorporate one or more

of these characteristics while designing symmetry aware algorithms for various problems.
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Characteristics of Symmetry Aware Algorithms: We identify three important character-
istics which are important in the design of symmetry aware algorithms for contemporary ML

and Al problems.

* On-the-fly Symmetry Computation: Firstly, the symmetry aware algorithms should be
able to find the symmetries (present in the domain) on-the-fly, within the base algorithm.
Many contemporary Al algorithms have anytime behavior where a solution is available
at all times and the solution quality is improved over time. If there is an initial symmetry
computation phase as a preprocessing step, it destroys the anytime characteristic of the
algorithm where no solution is available during initial symmetry computation phase. This

1s important since symmetry computation routine can be computationally expensive.

* Incremental Symmetry Improvement: Since the algorithm is computing the symme-
tries on-the-fly, it computes symmetries without looking at the whole problem structure,
and hence, the initial symmetries may be wrong (as they are based on partial informa-
tion). The desirable characteristic to alleviate this problem is that the algorithm should be
able to incrementally improve symmetries. It should reuse the wrongly computed sym-
metries as well as inference algorithm’s behavior to compute more accurate symmetries

present in the problem over time.

* Adaptive Symmetry Computation: Most of the time it is observed that symmetry find-
ing routines are computationally expensive and are uniformly applied over the whole
problem space. Such routines become a bottleneck in the overall efficiency of symmetry
aware algorithms. This problem can be alleviated by adaptive symmetry computation
where symmetry computation routine spends more time only in promising parts of prob-

lem space instead of uniform symmetry computation over the whole problem space.

Having described the basic framework of symmetry aware Al systems, we describe how
we apply this symmetry aware template to 3 different problems in Al : 1) Marginal inference
in Probabilistic Graphical Models (PGMs) ii) Sequential decision making (Al planning and

reinforcement learning) and iii) Structured output prediction in computer vision.

1.2 State Symmetries in Probabilistic Graphical Models

Most of the real world Al problems involve uncertainty, and probability distributions have been
used to model this uncertainty. A crucial capability of any Al system is to efficiently per-
form reasoning on these probability distributions. Particularly, given a set of random variables
and a probability distribution defined over them, the task of probabilistic inference is to rea-

son different queries on this joint probability distribution. The queries may vary from finding
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the probability of a small subset of variables called Marginal Inference [Koller and Friedman,
20091, to finding the state having maximum probability called Maximum-A-Posteriori (MAP)
Inference [Koller and Friedman, 2009]. The problem in itself is computationally hard since
it involves reasoning over an exponential number of states. Probabilistic Graphical Models
(Bayesian and Markov Networks) [Koller and Friedman, 2009] were proposed for efficient in-
ference by utilizing the independences present in the distribution. They specify independences
present within the variables in the form of a graphical structure and became a model of choice
for many applications in computer vision [Szeliski ez al., 2008b] and natural language process-
ing [Blei et al., 2003] during the late 1990s to early 2000s.

A popular approach for efficient probabilistic inference in PGMs is to exploit the symme-
tries present in the problem. The idea has been fairly popular in the last decade and is called
lifted inference [Kimmig et al., 2015]. There have been different ways to exploit symmetries for
faster inference depending on whether the task is marginal or MAP inference. One of the ap-
proach is to identify the variables (states) which behave similar to each other for inference and
then reason on a group of these variables together instead of individual ground variables (states).
Since the inference algorithm is run on a smaller model, it is significantly faster. Then, the solu-
tion is mapped back to the original model. Symmetry exploiting variants have been proposed for
both exact inference algorithms like variable elimination [Poole, 2003], weighted model count-
ing [Gogate and Domingos, 2011], knowledge compilation [Van den Broeck et al., 2011] as
well as approximate inference algorithms like belief propagation [Singla and Domingos, 2008;
Kersting et al., 2009] and Markov Chain Monte Carlo methods (MCMC) [Van den Broeck
and Niepert, 2015; Venugopal and Gogate, 2014b]. Past works have exploited symmetries for
Marginal Inference [Singla and Domingos, 2008; Kersting et al., 2009; Gogate and Domin-
gos, 2011], MAP inference [Noessner et al., 2013; Mladenov et al., 2014; Mittal er al., 2014,
Sarkhel et al., 2015] and more recently for the task of Marginal-MAP inference [Sharma et al.,
2018].

Approximate inference methods play a central role in scaling PGM-based models to real-
world datasets. The primary argument being that the exact inference methods either do not
scale well to the real-world problems or fail to give reasonable solutions within a desired time.
We focus on applying symmetries in a popular approximate inference technique: MCMC meth-
ods [Koller and Friedman, 2009]. Past work [Niepert, 2012] has utilized states which have the
same probability called, equi-probable states, for improving the mixing time in MCMC meth-
ods. They partition the whole state space in clusters of states where all states within a cluster
have the same probability. This partition is compactly defined in terms of permutation groups
where the states within a cluster are obtained from each other by permuting variables of states.
Since these permutations are defined on variables, we call these permutations as variable per-

mutations and the resulting symmetries as variable symmetries. Subsequently, they also utilize
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these symmetries based on variable permutations in MCMC algorithms. We call the resulting
MCMC algorithm which uses symmetries based on variable permutations as Variable-MCMC.

Variable symmetry, defined as permutation of variables, misses out on a large number of
equi-probable states, which cannot be obtained from each other by permuting variables. These
uncaptured state equivalences, if utilized by MCMC, have the potential to deliver significant
improvements in mixing time. We ask the question: What is the largest set of state equivalences
which can be useful for efficient inference? We answer this, by formally characterizing this set
based on a novel idea of weight-signature of a state. The existing idea of symmetries based on
variable permutations capture only a subset of these equivalences. We expand this set of state-
equivalence by introducing multiple novel notions of symmetries. Also, we develop methods
to efficiently compute and represent these state equivalences. Finally, we develop end-to-end
MCMC inference methods to use each of these symmetries, showing significant empirical gains
on benchmark domains. Next, we give a brief overview of each of these novel notions of

symmetries:

* Contextual Symmetries: Firstly, past work studying symmetries in PGMs have defined
symmetries unconditionally i.e., symmetries exist on the complete space without any
condition. This misses out on large number of symmetries which arises only under a par-
ticular context (condition). A context is defined as a subset of variables and one of their
assignments. Our work on Contextual Symmetries [Anand et al., 2016b] addresses this
lacunae by defining a novel notion of symmetry which arises under a particular context.
The work draws inspiration from the work on contextual independence [Boutilier et al.,
1996] where certain variables are independent under a particular context. We formally
define contextual symmetries in this work. Finally, we extend Variable-MCMC to use
contextual symmetries by developing a novel CON-MCMC algorithm, showing signifi-
cant end-to-end empirical gains over Variable-MCMC and Vanilla-MCMC (base MCMC

procedure).

* Variable-Value (VV) Symmetries: Variable Symmetries and Contextual Symmetries
capture equivalence between states by defining a permutation in variables. This misses a
significant number of state equivalences where one state cannot be obtained by permuting
variables of another state. For example, in a 2-bit state representation, it will never be able
capture equivalence among states {1, 1} and {0,0}. We augment the set of state equiv-
alences, by defining permutations over variable-value pairs instead of variables. The set
of symmetries captured by variable-value permutation group are called Variable-Value
(VV) symmetries [Anand et al., 2017]. VV-Symmetry group not only subsumes symme-
tries captured by variable symmetry permutation group but also captures many more state

equivalences. In addition, Variable-MCMC can be extended in a straight forward manner
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to Variable-Value MCMC (VV-MCMC) which uses VV symmetries.

* Non-EquiCardinal (NEC) Symmetries for Multi-Valued Domains: Most of the previ-
ous work defined notions of state symmetries only on Boolean-valued domains. Some of
these ideas can be extended to multi-valued domains with some modifications. However,
none of the existing work is able to define the states equivalences among states, where
the permutation needs to exchange values among variables of different domain cardi-
nalities. Our work [Anand er al., 2017] addresses this issue by defining a novel notion
of Non-Equicardinal (NEC) Symmetries, which uses VV permutations to exchange val-
ues among variables having different domain cardinalities. We further illustrate the use
of NEC-Symmetries in MCMC by developing a novel Metropolis Hastings [Koller and
Friedman, 2009] extension.

* Block-Value (BV) Symmetries: VV Symmetries capture a significant number of state
equivalences by defining permutations on VV pairs. But there are certain state equiva-
lences which are missed by VV symmetries as well. Lastly, we ask the question: Is there
a representation of state equivalences which is more powerful than VV? We answer this
by defining a novel notion of Block-Value (BV) symmetries [Madan er al., 2018] which
captures many more state equivalences than caught by VV symmetries. BV symmetries
define permutations in terms of Block-Value (BV) pairs where a block is a subset of
variables. We design a novel Aggregate-Orbital-MCMC which is a first of kind MCMC
method to utilize symmetries from multiple automorphism groups in Block-Value sym-

metries.

Space of State Symmetries: Having introduced multiple notions of state symmetries and
shown their corresponding advantages, we characterize and understand how these state symme-
tries relate to each other by defining the complete space of state symmetries in PGMs. We show
that Block-Value symmetries can capture any state equivalence (based on weight-signature) for
arbitrary block size, however, the representation size for BV symmetries grows exponentially
with increase in block size.

Our notions of proposed symmetries are exact symmetries and are algorithm oblivious
though the effectiveness is shown on MCMC algorithms. It is an example of pipelined symme-
try aware systems. State symmetries in these models are pre-computed, and, then, utilized in
modified MCMC methods. The effectiveness of the system is attributed to the fact that symme-
tries are computed and represented very efficiently in terms of permutations groups using graph
isomorphism solvers. These solvers incur negligible computational overhead although symme-
tries are computed at the preprocessing stage and are found uniformly on the whole state space.

Next, we describe symmetry aware systems in the problem of sequential decision making.
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1.3 Symmetries in Sequential Decision Making

Analogous to probabilistic inference, automated decision making is another important problem
studied in Al Though the problem has many fundamental differences with probabilistic infer-
ence, it shares some of the key characteristics as well. Both the problems have an associated
graphical structure and many classical algorithms for both the problems perform computation
that depend only on local neighbours.

Automated decision making is not limited to a single decision (modeled as Bandits [Sut-
ton and Barto, 1998]) but consists of making a series of decisions to optimize a long-term
objective. This task of sequential decision making under uncertainty is commonly modeled
as a Markov Decision Process (MDP) [Puterman, 1994]. The problem is well studied as an
Al planning [Mausam and Kolobov, 2012] or a reinforcement learning problem [Sutton and
Barto, 1998] depending on whether the model dynamics and rewards are known (Al planning)
or unknown (reinforcement learning). We restrict our work to planning which assumes that the
transition and reward model is given as an input to the problem.

Given the transition and reward model, the classical methods like value iteration, policy
iteration, and linear programming [Bellman, 1957; Howard, 1960] have polynomial complexity
in the size of state and action spaces. These methods scale exponentially with an increase in
number of state and action features, and hence, suffer from the curse of dimensionality. One
of the popular approaches for saving computation in such scenarios is to reduce the model
size by merging symmetric states and actions together. Previous works ([Givan et al., 2003;
Ravindran, 2004; Li et al., 2006]) compute these symmetries as a preprocessing step and then
run the classical algorithms on the reduced model. Exact symmetries have been defined in
terms of bisimulation relations [Givan et al., 2003] or homomorphisms [Ravindran and Barto,
2004]. Both these definitions are restricted to merging of states or merging of actions within a
state. Our work [Anand et al., 2015a; Anand et al., 2015b] argues that many of the state-action
pairs may also have similar behaviour even though the corresponding parent states of these
actions are not symmetric. This leads to much more reduction in model size as compared to
the previous approaches. We call this new notion of symmetry as “Abstraction of State-Action
Fairs” (ASAP). We prove that ASAP symmetry subsumes previous notions of symmetries based
on bisimulations and homomorphisms. The proposed notion of ASAP symmetries is general
and oblivious to the algorithm. Further, the proposed definitions compute exact symmetries on
states and state-action pairs which can be easily to multiple approximate notions.

Although ASAP symmetries can be used to reduce the model size, there has been a lim-
ited interest in model reduction approaches during the last decade. Instead, new approaches
that sample only useful parts of state space have emerged. These are called Monte-Carlo Tree
Search (MCTS) algorithms [Browne et al., 2012; Kocsis and Szepesvari, 2006]. Their popu-
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larity can be attributed to the fact that the state-of-the-art planner for International Probabilistic
Planning Competition (IPPC)-2011 [Sanner and Yoon, 2011] and IPPC-2014 [Grzes et al.,
2014] was based on an MCTS algorithm. Also, MCTS was a key component in the Alpha-Go
system [Silver et al., 2016] which defeated the world champion Lee Sudol in the game of Go.
MCTS algorithms sample a tree in the neighborhood of starting state, based on careful balanc-
ing of exploration-exploitation trade-off. It then takes a decision on the root node based only
on the sampled tree. These algorithms need not look at the complete state space for taking a
decision and have anytime behavior.

Our work, along with other works [Anand et al., 2015a; Anand et al., 2016b; Jiang et
al., 2014; Hostetler et al., 2014; Hostetler et al., 2015], observes that the idea of model re-
duction is orthogonal to these sampling-based approaches, and applying symmetries in MCTS
could further augment the gains of MCTS-based algorithms. Our work ASAP-UCT [Anand
et al., 2015a] is one of the earliest works which illustrates the use of symmetries in an MCTS
framework. Particularly, we incorporate ASAP symmetries in UCT algorithm [Kocsis and
Szepesvari, 20061, a popular variant of MCTS. We call the new algorithm: ASAP-UCT. ASAP-
UCT is a batch algorithm which iterates between two phases: a symmetry computation phase
and a tree building phase. Symmetry computation phase computes symmetry only over the cur-
rently sampled tree while the tree building phase utilizes the computed symmetries to further
guide the tree building process. The key idea is that a single sample at the leaf of the tree will
be able to update values of all symmetric states along the path to the root. Our experiments
illustrate up to 25% improvements as compared to the previous notions of symmetries as well
as vanilla UCT on a number of planning benchmark domains.

We further observe that ASAP-UCT does not fully realize the benefit of symmetries in
MCTS. The resisting issue for ASAP-UCT is batch computation of symmetries. Although
symmetries are computed as the tree is built, this symmetry computation and updating is only
periodical. Also, symmetries are computed only on a sampled tree, hence, they may be erro-
neous and approximate. Erroneous symmetries are used till the next symmetry computation
phase and there is limited incremental symmetry improvement. Additionally, computationally
expensive symmetry finding routine is run uniformly over the whole tree in each phase while
UCT focuses only on promising parts of the tree by exploration-exploitation trade-off. Based
on these insights and considering our design characteristics of symmetry aware systems, we
develop OGA-UCT: On-the-Go Abstractions in UCT [Anand et al., 2016b] which replaces this
batch symmetry computation by finding symmetries on-the-fly as the tree is built. This novel
algorithm computes symmetries on-the-fly, has adaptive symmetry computation and incremen-
tally improves symmetries. Hence, it fulfills all the desirable characteristics of symmetry aware
algorithms. We experimentally observe that OGA-UCT is robust across a variety of planning

domains and obtains up to 28% quality improvements.
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1.4 Structured Output Prediction in Computer Vision

Lastly, we directly explore the use of symmetries in state-of-the-art algorithms for a given ap-
plication. Computer Vision, Natural Language Processing and Speech Processing etc. have
been the primary hunting grounds for machine learning researchers. We focus on the task of
computer vision in this thesis since it has some natural symmetries and invariances in the grid
structure of image. Also, most of the computer vision tasks are computationally expensive,
making a natural candidate for leveraging the benefit of symmetries in saving computation. We
apply symmetries in PGM-based models in computer vision. PGMs have been widely used for
modelling pixel labelling tasks in computer vision like semantic image segmentation [Kohli er
al., 2013], stereovision [Mozerov and van de Weijer, 2015] etc. The key challenge in using
PGM:s for a grid structured graphical model is that inference on such a graph is highly com-
putationally expensive and intractable [Koller and Friedman, 2009] due to high tree width of
these graphs. Many works [Szeliski e al., 2008b] in the past have resorted to approximate
inference techniques in such situations. In this work, we study the application of symmetries
for improving the efficiency further.

The problem of pixel labelling is described as: given an image, label each pixel in the image
from the given set of labels. Since the output variables have a spatial structure, this task is also
known as structured output prediction. The higher order potentials of the grid structured PGM
capture the neighborhood dependencies and the task reduces to finding the labelling which has
maximum probability or minimum energy, popularly called as Maximum A Posteriori (MAP)
Inference.

We argue that this task of MAP inference on a grid structured graph has immense poten-
tial for exploiting symmetries. Firstly, the structure of PGM is a grid which has symmetries
of pixels along the diagonal. Secondly, the higher order potentials imposing the smoothness
constraints on the image are often constant throughout the image. The key challenge lies in
handling unary potentials on the pixels. Each of these unary potentials is a function of image
intensities of that pixel. Since the pixel intensities vary for each pixel (for real-world images),
these potentials have distinct values for each pixel variable. This prohibits us to obtain a smaller
reduced graphical model by exact merging of pixels with each other. In response, we propose a
novel heuristic for approximately merging unary potentials.

The proposed top-K label heuristic merges all those pixels whose top-k ordered labels in
unary potential tables match with each other. The obtained grouping is further split by applying
some iterations of the popular symmetry computation algorithm in PGMs, Color Passing Al-
gorithm [Kersting et al., 2009]. Intuitively, these iterations of color passing ensure that merged
pixels have a similar neighbourhood in space. We call each such grouping as a lifted pixel.

These groupings impose a constraint on inference procedure such that all the ground pixels of
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a grouping are forced to take the same label. This constraint reduces the size of model to the
number of lifted pixels, thereby, resulting in significant computational savings.

Unfortunately, it may also impact the solution quality. We alleviate this problem by varying
the degree of approximation of symmetries. We obtain a series of coarse-to-fine lifted pixels,
which captures quality vs time trade-off. By switching from coarser-to-finer (C2F) groupings,
we ensure that the solution quality is not impacted, and at the same time, we obtain significant
computational savings. This approach gives us a template for lifted MAP inference. We apply
this C2F template to near state-of-the-art PGM based models in Stereovision and Image Seg-
mentation. Our experiments illustrate up to 60% quality gains in time constrained settings with
an order of magnitude improvement in time for obtaining the best solution.

This work is an example of use of symmetries directly in near state-of-the-art algorithms
that may have many domain specific insights and specifications. Since exact symmetries may
not be found in real world, we resort to approximate symmetries based on top-k label heuristic.
The symmetries defined are algorithm oblivious though these use many insights from computer
vision domain. Further, our C2F template is a joint symmetry aware system. It begins from an
initial set of pixel symmetries but also incrementally improve symmetries by refining the pixel

partition till a ground network is obtained.

1.5 Contributions and Outline

This thesis illustrates that symmetries and invariances have great potential in saving computa-

tions in multiple Al scenarios. Overall, it makes the following contributions:

1. We discuss the concept of symmetry aware inference which can improve the efficiency
and performance of contemporary Al and ML algorithms in Chapter 1. We enumerate
the desirable characteristics of modern symmetry aware inference algorithms. Further,
we study these characteristics in the context of symmetry aware algorithms for sequential

decision making and probabilistic inference.

2. In Part-II, we begin by discussing the framework of state symmetries in PGMs in Chap-
ter 2. We introduce multiple novel notions of state symmetries in PGMs for probabilistic
inference: Contextual Symmetries in Chapter 3, Variable-Value Symmetries and Non-
Equicardinal Symmetries in Chapter 4, and Block-Value Symmetries in Chapter 5. We
are also the first to use these symmetries in multi-valued graphical models. We further
illustrate the effectiveness of these symmetries in Markov Chain Monte Carlo (MCMC)
methods by developing novel variants that exploit symmetries, and show significant em-
pirical gains in domains where these symmetries are present. We develop hierarchy of

state symmetries in Chapter 6.
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3. In sequential decision making, we introduce a novel notion of ASAP abstractions which
merges the state-action pairs in addition to states in Chapter 7. We also illustrate how to
incorporate symmetries in Monte Carlo Tree Search framework via two methods: ASAP-
UCT in Chapter 7 and OGA-UCT in Chapter 8, and obtain roughly 25% improvements
in quality.

4. Lastly, we develop techniques for exploiting symmetries in MAP inference for computer
vision algorithms in Chapter 9. We developed a coarse-to-fine lifted MAP template for
exploiting symmetries using a novel k-label heuristic. We apply this template to near
state-of-the-art algorithms in Stereovision and Image Segmentation and obtain up to 60%

quality gains in time constrained settings.

This thesis is also arranged in three parts and discusses symmetry aware algorithms for state
symmetries in PGMs, sequential decision making and structured output prediction in computer
vision. Each part begins by building relevant background and related work to that part. Part
II discusses the symmetry aware inference algorithms for the problem of efficient probabilistic
inference. Part III applies the idea of exploiting symmetries to the sequential decision making
under uncertainty. Part IV focuses on using symmetries directly in computer vision applica-
tions, specifically, for Stereovision and Image Segmentation. Lastly, we conclude our work and
discuss key directions for future work in epilogue.

Work done in Chapter 3 and Chapter 7 was done jointly with Aditya Grover. Work done
in Chapter 4 and Chapter 8 was done jointly with Ritesh Noothigattu. Work done in Chapter 9
was done jointly with Haroun Habeeb. Work done in Chapter 5 was done jointly with Gagan
Madan. In each case, the part done by the collaborators appeared in their respective bachelor’s

or master’s theses.
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Chapter 2
Foundations and Setup

“The most important questions of life are indeed, for the most part, really only problems of
probability.”

Pierre-Simon Laplace

Probability theory has been the key mathematical tool to model uncertainties present in the uni-
verse. In fact, many real world events are described by defining probability distributions over
their occurrence. Reasoning over these probability distributions is one of the central tasks in ML
and Al Probabilistic Graphical Models (PGMs) [Koller and Friedman, 2009] like Bayesian and
Markov networks were proposed for reasoning by utilizing model independencies present in the
distribution. The probability distributions are specified by a graphical structure and the inde-
pendencies are captured by special connectivity notions within these graphs. One of the popular
forms of reasoning commonly performed in PGMs is Marginal Inference. The task of marginal
inference is to determine the probability of a particular variable (or a small subset of variables)
given some observations (called evidence). As the number of variables increase, reasoning over
these distributions become more complex. An important area of research is to perform efficient
reasoning or inference over these distributions. Many classical algorithms [Koller and Fried-
man, 2009] like variable elimination, junction tree, message passing etc. have been proposed
for inference on PGMs. The complexity of these algorithms is exponential in a property of
the graph, called the tree width [Koller and Friedman, 2009]. This exponential complexity is a
major concern and a bottleneck when applying PGMs to problems having high tree width.

A popular approach for efficient inference in PGMs, called lifted inference is to exploit sym-
metries present in the underlying domain. It is especially useful for statistical relational learning
models such as Markov logic networks [Richardson and Domingos, 20061, which exhibit re-
peated sub-structures — many objects are indistinguishable from each other and their associated

relations have identical probability distributions. Lifted inference algorithms (see [Kimmig et
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al., 2015] for a survey) exploit this phenomenon by grouping symmetric states (variables) into
meta-states (meta-variables) and performing inference in a reduced (lifted) graphical model.

Early approaches to lifted inference devised first order extensions of propositional inference
algorithms. These include approaches for lifting exact inference algorithms such as variable
elimination [Poole, 2003; Braz et al., 20051, weighted model counting [Gogate and Domingos,
20111, knowledge compilation [Van den Broeck et al., 2011], as well as lifting approximate
algorithms such as belief propagation [Singla and Domingos, 2008; Kersting et al., 2009;
Singla et al., 2014], Gibbs sampling [Venugopal and Gogate, 2012] and importance sam-
pling [Gogate et al., 2012]. In all of these, the lifting technique is tied to the specific algo-
rithm being considered. More recently, another line of work [Jha et al., 2010; Bui et al., 2013;
Niepert and Van den Broeck, 2014; Sarkhel et al., 2014; Kopp et al., 2015] has started look-
ing at the notion of lifting independent of the inference technique. In several cases, these
symmetries are compactly represented using permutation groups. The computed symmetries
have been used downstream for lifting existing algorithms such as variational inference [Bui
et al., 2013], (integer) linear programming [Noessner et al., 2013; Mladenov ef al., 2014], and
Markov-chain Monte Carlo (MCMC) [Niepert, 2012; Van den Broeck and Niepert, 2015]. We
focus on symmetries defined using permutation groups and their use in MCMC algorithms.

Specifically, Niepert [2012] illustrated that states having the same probability (equi-probable
states) can be utilized to improve the mixing time of MCMC methods. They computed and
represented these states by defining permutations over variables. For example, consider the
graphical model defined in figure 2.1, states {X; = 0, X» = 1} and {X; = 1, Xy = 0} have
same unnormalized probability given by the value b and this equivalence can be captured by
the permutation which permutes the values of X; and X,. These permutations called variable
permutations, form a group and can represent exponential number of state equivalences in a
polynomial representation. Although the idea is powerful, it cannot find equivalence between
many states which have the same probability. For example, consider a simple graphical model
over 4 variables in figure 2.2. It can be easily seen that many states have the same probability in
this simple graphical model, for example, states s; = {X; = 0, Xy = 0, X3 = 0, X4, = 0} have
unnormalized probability of a x b which is exactly equal to unnormalized probability of state
s ={X; =0,X5 =1,X3 =1,X,; = 1}. In fact, every state has an unnormalized probability
given as product of two terms v; X vo and one can obtain an equi-probable state by reversing
the order in which v; and v, are picked from two potential table. This discussion is true for
all graphical models having similar form irrespective of numeric values {a, b, ¢, d}. More im-
portantly, none of these equi-probable states can be represented by defining a permutation over
variables and hence, cannot be computed and used by previous work.

In this work, we focus on capturing all these equi-probable states in a single equivalence

class for each probability value. Particularly, we focus on those type of equi-probable states
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which have the same probability irrespective of numerical values of weights or potential table.
These type of equi-probable states arise due to sharing of parameters in the graphical model
and similarity in structure and hence, we refer to them as state symmetries of graphical models.
For example, for the graphical model in figure 2.2, parameter-value is shared between features
(=X1 A =X3) and (X3 A X,) represented by value a. The similar parameter sharing can be
seen for other values. To represent these equi-probable states, we begin by defining a novel
representation of graphical model, called weight-tying representation. Weight-tying represen-
tation separates the numeric parameter values and parameter-sharing in the graphical model at
the representation. We formalize this idea by defining a novel notion of weight-signature of
a state which is a symbolic equivalent of the probability of that state. Under this framework,
we define the partition of state space based on their equivalence in weight-signature. All states
having the same weight-signature are assigned to the same equivalence class.

This chapter defines the framework of what all state equivalence we intend to represent in
subsequent chapters. It begins by defining the notation and background work on symmetries
in graphical models using permutation groups. It, then, introduces weight-tying representation
of a graphical model and introduce the symbolic equivalent of probability of a state, called
the weight-signature. The subsequent chapters define novel notion of symmetries to capture
significantly more states (having same weight-signature) as equivalent than done in previous
work.

Particularly, we defined a novel notion of symmetry, called contextual symmetry that capture
state equivalences arising only under a particular context. Contextual symmetries also result in
weight-signature preserving state partition and subsume the state equivalences captured by vari-
able symmetries. Subsequently, we defined permutations on the set of variable-value pairs and
called the resulting symmetries as Variable-Value (VV) symmetries. VV symmetries can rep-
resent significantly more state equivalences than identified by variable permutations. Though,
VV symmetries can represent a significant number of state equivalences, it still misses out
some states that have same weight-signature. This was addressed in our work of Block-Value
(BV) symmetries where permutations are defined on block-value pairs. A Block is a subset of
variables. BV permutations can represent all the possible state-equivalences based on weight-
signature at the cost of computational effort. We also study hierarchy of state symmetries and

relationships between them in Chapter 6.
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X 15 1@
0 0 a
0 1 b
1 0 b
1 1 C

Figure 2.1: A 2-variable graphical model with its potential table. States {0,1} and {1,0} have
same probability and can be captured by a simple permutation X; <+ Xo.

XX 1@ X 1 X 1@
0 0 a 0 0 b
0 1 b 0 1 d
1 0 C 1 0 c
1 1 d 1 1 a

Figure 2.2: A 4-variable graphical model with its potential tables. Pair of states {0,0,0,0} and
{0,1,1,1} have the same probability but variable permutations are not able to capture these as
symmetric states
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2.1 Related Work

Lifted inference algorithms typically cluster symmetric states (variables) together and use these
clusters to reduce computation, for example, by avoiding repeated computation for all mem-
bers of a cluster via a single representative. There are multiple ways to classify the literature on
lifted inference in PGMs as described in Chapter 1. This could include approximate or exact
symmetries, state or variable symmetries, algorithm oblivious or algorithm dependent symme-
tries and symmetries in marginal or MAP inference. Our work in this part deals with exact
state symmetries which are oblivious to the algorithm. These symmetries are, then, utilized in
MCMC algorithms which are typically used for marginal inference.

Closely related to our work, the earliest notion of state symmetries was described for clausal
theories using permutation groups by Crawford er al. [1996]. Bui ef al. [2013] used this idea by
defining automorphic group of an exponential family or a graphical model. Instead of working
at the algorithm level, they studied these generic notion of symmetries in their variational for-
mulations. Parallely, Niepert e al. [2012] used a similar idea of state symmetry as permutation
groups to improve the mixing time of MCMC. They defined permutations over the set of vari-
ables. This idea was further extended to incorporate approximate state symmetries in MCMC
by a Metropolis Hastings extension by Broeck and Niepert [2015].

Our work falls in this category of expressing state equivalences (of equi-probable states) as
permutation groups. Specifically, we start from the framework of state symmetries proposed by
Niepert [2012] and extend it further to understand the complete space of equi-probable states
in PGMs. Though the notion of symmetries as permutation of variables is a powerful idea as
it captures exponential state equivalences in polynomial representation, it misses out on many
equi-probable states present in the problem. These missed states if potentially utilized could
further speedup the downstream inference algorithms.

We ask the question: What is the largest set of equi-probable states which can be represented
independently of numerical values? In response to this, we develop the idea of weight-signature
of a state and define weight-signature preserving state partition. It characterizes the largest set of
states that have same probability based on how weights are shared and the structure of graphical
model. Further, we propose multiple novel notions of state symmetries which capture more and
more state equivalences than done by Niepert [2012]. Further, we develop a complete hierarchy
of state symmetries and define the notion of block-value symmetries which capture all the state
equivalences based on weight-signature.

One of the closely related concepts to our work is the idea of exchangeability and partial
exchangeability. The works of [Niepert and Van den Broeck, 2014; Niepert and Domingos,
2014] have focused on developing the theory of partial exchangeability in graphical models

and connected the ideas of exchangeability with tractable inference in graphical models. Our
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work, on the other hand, proposes novel notions of symmetry in graphical model related to
these ideas and, also, proposes algorithms to compute and use these symmetries in MCMC
algorithms.

In addition, there is related work which has focused on symmetric clique potentials [Gupta
et al., 2010] where symmetries are captured within a single clique potential. However, these
works are limited to the cases where the counts of Os and 1s match in symmetric states. These
symmetries have been exploited in computer vision for higher order potentials [Tarlow et al.,
2010], in Natural Language Processing (NLP) for models used for collective inference [Gupta
et al., 2010] and lifted inference, in general [Milch et al., 2008].

2.2 Preliminaries and Background

Let XY = {X;, X5, -, X,} denote a set of random variables with each variable X; having
a domain D;. For Boolean valued domains, D; = {0,1}. We further call a variable with its
assignment as a literal. We will denote the probability distribution associated with the set X as
P. Astate s = {(X;,v;)}, is a complete assignment to variables in X, with values v; € D;.
We will use the symbol S to denote the entire state space. We denote s(X;) to the value of
variable X in state s.

A typical graphical model G over the set of variables X is defined as the set of pairs
{fi,w; };”:1 where f; is a feature function and wj is the corresponding weight [Koller and Fried-
man, 2009]. In general, a feature can be any real valued function of a state s. For simplicity, we
assume binary valued features i.e f(s) € {0, 1} and unless specified, a feature is clausal' where
a clause is a disjunction of finite set of literals. For multi-valued graphical models, a feature is
a disjunction of variables equated to their values i.e {X; = v;} where v; € D;. We denote the
subset of variables participating in a feature f; as Vars(f;). The probability of a state s under

G is defined as follows:

1% wif(s)
P(S) = Eej:l 773 (21)
where N
7 = ea; wifi(s)
ses

is the normalization constant or the partition function. The calculation of Z involves sum over

exponential number of states and hence, calculation of exact probability is computationally

'Each model can be pre-converted to an equivalent model in which all features are clausal.



Foundations and Setup 27

expensive. A variable X; € Vars(f;) is said to be consistent in s with f; if (X; = s(X;)) €f;.

Graphical models can also be equivalently represented as a set of functions called potential
functions or potential tables ®. Each potential function is defined over a sub-set of variables
and has domain as all possible assignments of that sub-set of variables which is mapped to a
non-negative real number. Any given potential function can be equivalently converted to a set of
features with each row denoting a feature over conjunction of variables along with their values
in that row. The weight of feature is given by logarithm of potential function value in that row.
For example, in Figure 2.3 , the potential function can be represented in feature representation
by the features { f; = AA—B, fo = “AA B} where both f; and f> will have weight log(w). We
will interchangeably use feature representation and potential function representation for ease of

explanation in this thesis.

2.2.1 Symmetries of a Graphical Model

Symmetries of any structured object has traditionally been defined in terms of permutations. A
permutation 6 of X is a bijection of the set X" onto itself.6(X;) denotes the variable that X; is
mapped to by permutation . We will refer to 6 as a variable-permutation.

Definition 2.2.1. The application of a permutation 0 on state s, denoted by 0(X;) results in
another state s' = 0(s), s.t. if X; takes the value v; in state s, then, 0(X;) takes the value v; in

S/

For example, consider the variable-permutation 6; given by 6;(A) = B and 6;(B) = A,
then, for s = (1,0), 6, (s) results in a new state (0, 1).

Definition 2.2.2. Similar to 0(s), we define application of § on a feature f; as f; = 0(f;) which
is given by replacing each variable X; in clausal form of f; by 0(X;).

Further, we define application of 6 on a graphical model G = {f;,w;}L, as 6(G), a graph-
ical model constructed by applying 6 on each f; i.e. 0(G) = {0(f;), w;}7,. A set of permu-
tations O is called a permutation group if it is closed under composition, contains the identity
permutation, and each # € O has its inverse in the set.

Drawing parallels from graph automorphism where the permutation over vertices maps the
graph back to itself, we define the notion of automorphism (referred to as symmetry, henceforth)

of a graphical model as follows [Niepert, 2012].

Definition 2.2.3. Given a graphical model G, a permutation 0 of X is a variable symmetry of
G if application of § on G results back in G itself, i.e., it returns the same set { f;,w;}7., as in

G. We also call such permutations as variable permutations.



28 Foundations and Setup

A | B D

0 0 1

Enm

A -AAB w 1 0 log(w)

log(w)

1 1 1
Feature Potential Table
Representation Representation

Figure 2.3: Graphical Model G; shown in form of potential table and weighted features

For example, 6; defined above is a variable symmetry of G; as it results in the same set of

formula with equal weight.

Theorem 2.2.1. Given a graphical model G, the set of all variable symmetries form a group ©.
This group is called as automorphism group of the graphical model G.

Another important concept is the notion of an orbit of a state resulting from the application

of a permutation group.

Definition 2.2.4. The orbit (I') of a state s under the permutation group ©, denoted by I'g(s),
is the set of states resulting from application of permutations 6 € © on s, i.e., T'g(s) = {s'|30 €

0,0(s) = ¢}

Note that orbits form an equivalence partition of the entire state space. In this work, we
are interested in orbits obtained by application of an automorphism group, because all states
in such an orbit have the same joint probability. Let P denote the joint probability of a state
s under G. The following theorem captures the relation between variable automorphism group

and probabilities.

Theorem 2.2.2. [Niepert, 2012] Given a graphical model G, let © be a variable automorphism
group of G. Then for all states s € S and permutations 0 € O, the application of 6 on s
preserves the probability i.e. V8 € O, s € S, P(s) = P(0(s)).
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fl

f2 -AAB w

Figure 2.4: Colored graph for Graphical Model G; defined in Figure 2.3

2.2.2 Graph Isomorphism for Computing Symmetries

The procedure for computing an automorphism group [Niepert, 2012] first constructs a colored
graph Gy = T'(G) from the graphical model G. In this graph there are |D;| nodes for each
variable, one for each of its value, and a node for each feature in G. We add an additional node
for each variable which is connected to all its value. This represents a feature having oo weight
representing mutual exclusivity between all values of a variable. There are edges between a
literal node and a feature if that literal appears in that feature in the graphical model. For

example, the graphical model G, along with its associated colored graph is shown in Figure 2.4.

For Boolean graphical model, each node is assigned a color such that all 1 value nodes get
the same color, all 0 value nodes get the same color (but different from 1 node color), and all
feature nodes get a unique color based on their weight (including the oo weight feature). That
is, two feature nodes have the same color if their weights in G are the same. The similar ideas

can be extended to non-boolean graphical models.

A graph isomorphism solver (e.g., Saucy [Darga et al., 2008]) over G/ (G) outputs the au-
tomorphism group of this graph through a set of permutations. These permutations can be
easily converted to variable permutations of G. Any output permutation always maps a vari-
able’s 0 and 1 nodes to another variable’s 0 and 1 nodes, respectively because 0 value nodes
are given the same color and 1 value nodes are assigned the same color and these two nodes
are connected by a feature having infinity weight (corresponding color). These permutations

collectively represent an automorphism group of G.

Theorem 2.2.3. [Niepert, 2012] The automorphism group of colored graph G\ (G) constructed
from the graphical model G gives the automorphism group of graphical model G
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2.2.3 Orbital Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods [Koller and Friedman, 2009] are one of most
popular methods for approximate inference. In these methods, a Markov chain M is set up over
the state space and samples are generated. Running the chain for a sufficiently long time, starts
generating samples from the true distribution. Gibbs sampling is one of the simplest MCMC
methods.

Orbital MCMC [Niepert, 2012] adapts MCMC to exploit the given variable symmetries of
the graphical model G.

Given a Markov Chain M, a variable automorphic group © and starting from state s,

Orbital MCMC generates the next sample s; 1 in two steps:

* It first generates an intermediate state s} by sampling from the transition distribution of

M starting from s;
* It then samples state s, ; uniformly from I'g(s}), the orbit of s,

The Orbital MCMC chain so constructed converges to the same stationary distribution as orig-

inal chain M and is proven to mix faster, because of the orbital moves.

Theorem 2.2.4. [Niepert, 2012] Let the Markov Chain M has the transition probability func-
tion T. Further, let M be regular and has unique stationary distribution 7. The orbital markov
chain M’ constructed from variable automorphism group © is also regular and also converges

to the unique stationary distribution .

2.3 Understanding probability preserving partitions

The potential gain in Orbital MCMC is related to the number of equivalences among equi-
probable states. Larger number of equivalences leads to more gain in MCMC. This motivates
us to find the largest set of state equivalences of equi-probable states. We understand this notion
by defining a partition of the state-space of a graphical model based on probability and, then,

defining the granularity of these partitions.

Definition 2.3.1. Given a graphical model G, we define A = {A1, Ay - - - Ay} as a partition of
state-space S into k equivalence classes s.t. ¥j € [LLE|;A; €S, A;NA; = 0ifi # jand
Ule A; = S. We call equivalence classes Ay, Ay - - - Ay, as the partition-elements of partition

A.

The state space could be partitioned in multiple ways. For example, the simplest partition is

to have a separate equivalence class for each state. On the other extreme, accumulating all states
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in a single class is another partition. We formally capture this spectrum of different partitions

by defining the notion of coarser and finer partitions.

Definition 2.3.2. Given a graphical model G, a state space partition A" = {A}, Ay, -+ A}, }
is said to be coarser than another state space partition A = {A1, Ag, -+ [ Ar}ifVA; € A 35
such that A; C A’ Equivalently, A is then said to be a finer partition than A'.

Further, for the purpose of our work, we are interested in a special types of partition, called

probability preserving partition.

Definition 2.3.3. Given a graphical model G, a partition A is probability preserving par-
tition if all states belonging to the same equivalence class have equal probability i.e. ¥j €
[1,k]V(s,s") € Aj, we have P(s) = P(s)

As described earlier, variable automorphism group creates a partition of state space among
equivalence classes which is probability preserving. But variable automorphism group misses
out on many states which have same probability because these states cannot be expressed as
permutation of variables.

Ideally, we would like to compute the coarsest probability preserving state partition for a
given PGM G, i.e. get the probability preserving partition with the minimum number of orbits,
which, among other applications, would eventually lead to faster mixing in MCMC style in-
ference algorithms. But finding the coarsest probability preserving partition is computationally
hard problem. Infact, we can show that even to find the number of orbits in coarsest partition is
a NP-Hard problem. We begin by giving a decision version of a subproblem, which we would
use to show this is NP-Hard.

Definition 2.3.4. PGM-Num_Orbit: Given a graphical model G, is the number of orbits in the

coarsest probability preserving partitioning of the state space < k?

We show that the problem PGM-Num_Orbit is NP-Hard by reducing 3-SAT to PGM-

Num_Orbit. For the ease of readability, the proof is given in the appendix.
Theorem 2.3.1. PGM-Num Orbit is NP-Hard.

In fact, finding the coarsest probability preserving partition is not the focus of our work. We
intend to find equivalence among those states which have same probability based on how pa-
rameters are shared and the structure of model. This differs from the equivalence among states
based on numeric value of probability. For example, consider the 2-variable toy graphical
model G, shown in Figure 2.5 with 3 features and their corresponding weights. The unnormal-
ized probability value for all the states is also shown in the figure on the right. While states (0, 1)

and (1, 1) have the same unnormalized probability, this equivalence in probability is dependent
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on numeric values of parameters in the model (0.2 + 0.2 = 0.4). Changing the numerical value
of parameters breaks this state equivalence. Instead of focusing on probability equivalence,
we focus on symbolic equivalence of probability which is independent of parameter values but
only dependent on how parameters are shared.

Interestingly, only symbolic equivalences can only be captured by graph autormorphism
based methods. Graph automorphism methods assign a unique color to each weight value
while computing symmetries of a graph. Hence, it computes only those equivalences which
are independent of numerical value of parameters but only capture which numerical values are
same. The next section formally characterize these equivalences by defining a weight-tying
representation of graphical model which separates the parameter values from the information,
how parameters are shared. Then, it defines the weight-signature of state which captures sym-
bolic equivalence of probability and then, it defines partition of state-space based on the idea of

weight-signature.

2.4 Weight-signature preserving state partitions

In this section, we begin by defining a new representation of a graphical model which explicitly
separate the weight values and weight tying. We begin by defining a partition of the feature set,

and then defining weight tying representation of a graphical model.

A B )
 AAB

0 0 e02)

1 0 e(0.0)

1 1 e©4
Feature Representation Unnormalized probability

Figure 2.5: States (0,0) and (0,1) have the same probability but automorphism based algorithms
would not capture this state equivalence
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2.4.1 Weight Tying Representation

A typical graphical model G = { f;, w;}, is represented as a set of weighted features. Though,
in general, each of these features can be associated with a different real valued weight. However,
many real-world scenarios have a small number of weights where these weights are shared
across multiple features in the graphical model. For example, the weight between neighbouring
pixels in an image is shared through out the image in Potts model [Koller and Friedman, 2009].

We capture this sharing of weights by defining a partition of features based on weight values.

Definition 2.4.1. Given a graphical model G = { f;, w;}7L,, let F' = {f;}]., denote the set of
all features, a feature-partition, A7 = {A{ , Ag e A£ } is defined analogous to state partition
stACF UL A =Fand A0 A =0ifi#j. .

Further, we can define a weight-preserving feature partition as follows:

Definition 2.4.2. Given a graphical model G = { f;,w;}7L,, let A7 be a feature partition.
A/ is weight-preserving feature partition if weights of all features belonging to the same
partition-element are equal i.e V' f,, f, € F, VA; e A iffa, f» € Af, then w, = wy,.

We are interested in coarsest weight-preserving feature partition. For example, the weight-
preserving feature partition for G, defined in Figure 2.5 is given by {(f1), (f2, f3)} where fo
and f5 belong to one cluster while f; belongs to a separate cluster. This allows us to define a

new representation of a graphical model based on weight tying in features.

Definition 2.4.3. Given a graphical model G, its weight-tying representation, G is given by a
set of pairs {wj, A;}le where A;-c is a sub-set of features all having the same weight w; and

{Aj—c };‘?:1 forms the coarsest weight-preserving partition of feature-set F'.

This weight-tying representation further allows us to define a family of graphical models,

whose partition of feature set is same irrespective of weight values.

Definition 2.4.4. A family of graphical models having identical weight-tying, F consists of
all the graphical models whose feature-set F' is same and they have identical coarsest weight-
preserving feature partition N'. This means that the weight-tying representation of all the

members in the family differ only by the weight-values (w)).

It should be noted that while defining the family, we have not taken into consideration the
actual weight values but have only considered the tying of features based on weights. Further,
all automorphism based algorithms (including those of variable symmetries) while computing
symmetries only consider weight tying and not the weight values. Therefore, all automorphism
based algorithms will compute exactly same set of symmetries for all graphical models in the

family.
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Next, we define the equivalence of states in a symbolic notion of unnormalized probability

which we call as em weight signature of state.

2.4.2 Weight-Signature of a State

Intuitively, a weight-signature of a state is a symbolic notion of probability of a state in the
absence of weight-values. Since, weight-signature of a state only uses weight-tying given by
feature partition, the weight-signature of a state will be same for all the members in the family

of graphical models having identical weight-tying.

Definition 2.4.5. Given a family of graphical models F having identical weight-tying, given by
feature-partition A/. We define the weight-signature of a state s, W (s) as a set of 2-tuples
of {(Alf ,C))}_| where there is an exactly one element for each partition-element of feature-

partition and count-value C describes the number of features associated with Alf which holds
true in state s i.e Cy = 3 [fi(s) = 1A f; € Af]
fi€g

For example, consider the graphical model G, described in Figure 2.5. The feature-partition
of Go is {(f1), (f2, f3)}. Let A be partition element associated with (f;) cluster while AJ be
partition-element associated with {(f2, f3)} cluster. Then, the weight-signature of state (0, 0)
is {(A1,0), (A], 1)} while weight-signature of state (1,1) is {(A], 1), (A, 0)} and so on.

Since, the unnormalized probability of a state s is given by e="/i(*) where f;(s) € {0,1},
the unnormalized probability is dependent on how many times each weight (feature) holds true
in that state. This is exactly the same information which is captured by weight-signature of
a state. The following theorem captures the relation between probability values and weight-

signature.

Theorem 2.4.1. Given a family of graphical models F having identical weight-tying, given by
feature-partition A/, If weight-signature of s and s' are equal, then P(s) = P(s') holds true
for all graphical models in the family

Proof. We will prove that this statement holds for any arbitrary member of the family G and
hence, it holds for all members of the family. Let the weight-signature of states s and s’ be

W(s) = {Alf , C1}. Let us denote the weight of Alf equivalence class in any particular graphical

> w; f5(s)
model G by w;. Then, the unnormalized probability of any s given by e/ """ can be rewritten
S Cprwyx[AT (5)]
aseT ' where [A{ | =1if3f; € Alf such that f; = 1. Exactly, same expression for

unnormalized probability will be written for s’ as it also has same weight-signature, hence,

P(s) = P(s). O
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Interestingly, one can define a partition of state-space based on equivalence of weight-
signature i.e if two states have the same weight-signature, then, they belong to same equivalent
class. Since similar weight-signature leads to same probability of states, the resulting partition
is probability preserving. We can also define a hierarchy of weight-signature based state parti-
tions from coarse-to-fine as described earlier. The finest partition contains only singleton states
in an equivalent class while the coarsest partition has only a single equivalent class for each

weight-signature.

Definition 2.4.6. Given a family of graphical models F having identical weight-tying, given
by coarsest weight-preserving feature-partition A. Let A = {Ay,Ay--- Ay} be a state-
partition. A is weight-signature preserving state partition if any two states belonging to the

same equivalent class have the same weight-signature i.e Vs, s' € S, VA, € A, if s € A; and
s' € Ay, then, W(s) = W(s')

In this framework, we intend to find the coarsest weight-signature preserving state partition.
Interestingly, all the state partitions resulting from automorphism based algorithms results in
weight-signature preserving state partitions. We now prove that the partition resulting from the
variable automorphic group preserves weight-signature. To prove this, we need to prove the

following lemma.

Lemma 2.4.1. Given a graphical model G, If 0 is a variable symmetry of G and f; = 0(f;) and
s' = 0(s), then, f; holds true in s if and only f} holds true in s'.

Proof. Without loss of generality, we assume f is described in clausal form (disjunction of
literals). We prove this lemma in two parts: In first part, we prove that if f; holds true in s, then,
f} holds true in s'. Since, f; holds true in state s, then, it means 3.X; € Var(f;) stX;insis
consistent with f;. Let 0(X;) = X], then, X; will be consistent w.r.t f; since s'(X;) = s(X;)
and f; will have X wherever X; is present. Hence, f7 will hold true in state s'.

On the other side, if f; is false for state s, it means V.X; € Var(f;) , the value of X in s is
not consistent with f;. For f7 to be false in state s', each X| € Var(f}) should not be consistent
with f7. This is true since each X; = 0(X;) where X; € Var(f;) and X; in s is not consistent

with f;. Therefore, similar to the argument in first part, X is not consistent with f; [

Having proved the given lemma, we now prove that variable automorphic group results in

weight-signature preserving partition.

Theorem 2.4.2. Given a family of graphical models F having identical weight-tying, given
by coarsest weight-preserving feature-partition A'. The variable automorphic group © of any
arbitrary graphical model G belonging to the family F results in a weight-signature preserving
partition i.e V0 € ©, s.t ' = 0(s), we also have W (s) = W (s')
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Figure 2.6: Examples of Symmetries: a) Variable Symmetries: (01)-(10) b) VV Symmetries:
(00)-(11) and (01)-(10) ¢) BV symmetries: (00)-(01) d) Contextual Symmetries: (001)-(010)
with context as (X; = 0) e) NEC symmetries: (01)-(02)-(10)

Proof. Let 6 be a variable symmetry of G. This means that §(G) = G. Consider a feature f; € F
having weight w;. Application of 6( f;) results in a new feature f;. If ¢ is a variable symmetry,
then f'(j) € F (as 6 results in the same graphical model). Also, f; has same weight as f; in
graphical model G. This means, f; and f; belong to same partition element (Alf € Al as Afis
coarsest weight preserving partition). Lemma 2.4.1 proves that for every feature true in state s,
there is a corresponding feature which is true in s’. Since, both these features belong to same
partition, the count of the number of features belonging to a particular partition which are true
in both the states s and s’ are equal. Also, this property holds true for all the partition-elements,

hence, weight-signature of state s and s’ are same. O

The variable automorphic group captures weight-signature preserving state partition but
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clearly it does not capture the coarsest weight-signature preserving state partition. The next few
chapters define novel notions of permutations based on automorphism which captures more and
more state symmetries and results in coarser partitions than those obtained by variable automor-
phic groups. Specifically, we defined novel notion of contextual symmetries, Variable-Value
(VV) symmetries, Non-Equi Cardinal (NEC) Symmetries and Block-Value (BV) symmetries
each of which captures significantly more symmetries than variable symmetries. Figure 5.1
gives simple toy examples on 2 or 3 variables showing each of these symmetries. (a) shows
the classical notion of variable symmetries where symmetric states are captured as permutation
of variables. (b) shows the case of variable-value symmetries where no variable permutation is
able to capture symmetry between { A=0, B=0} and {A=1, B=1} and hence, permutation has to
be defined over variable-value pairs. The third example demonstrates the case where symmetry
is expressed between block-value pairs where block is a subset of variables. (d) shows con-
textual symmetries where variable symmetries only arise under a particular context (X; = 0)
while (e) shows symmetries among variables of different cardinalities. It should be noted that
variable symmetries and contextual symmetries are only able to capture symmetries between
states where counts of Os, 1s, 2s (and so on) match while VV, BV and NEC symmetries are able
to capture more general symmetries where counts may not match.

We also propose novel MCMC variants to use these symmetries. Lastly, we also charac-
terize the complete space of state symmetries in graphical models, the relationships between
proposed symmetries and finally, show that the block-value symmetries gives the representa-
tion to capture the coarsest weight-signature preserving state partition while paying additional

computation costs.
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Chapter 3
Contextual Symmetries

A key shortcoming of existing lifted inference algorithms is that they only identify and exploit
sets of variables (states) that are symmetric unconditionally. In this chapter, our goal is to ex-
tend the notion of symmetries to contextual symmetries, sets of states that are symmetric under
a given context (variable-value assignment). Our proposal is inspired by the extension of condi-
tional independence to context-sensitive independence [Boutilier ef al., 19961, and analogously
extends unconditional symmetries to contextual. As our first contribution in this chapter, we
develop a formal framework to define contextual symmetries. We also present an algorithm to
compute contextual symmetries by reducing the problem to graph isomorphism.

Figure 3.1(a) illustrates an example of contextual symmetries. A couple A and B may like
to go to a romantic movie. They are somewhat less (equally) likely to go alone compared to
when they go together. However if the movie is a thriller, A may be less interested in going
by herself, but B may not change his behavior. Hence, A and B are symmetric to each other
if the movie is romantic, but not symmetric if the movie is a thriller. We will call the A and B
contextually symmetric conditioned on the movie being romantic.

Our work extends the line of work on Orbital MCMC [Niepert, 2012] (described in chap-
ter 2) which was a state-of-the-art approach to exploit unconditional symmetries in a generic
MCMC framework. Orbital MCMC achieved reduced mixing times compared to Gibbs sam-
pling in domains where such symmetries exist. We design CON-MCMUC, an algorithm that
uses contextual symmetries within the MCMC framework. Our experiments demonstrate that
on various interesting domains (relational and propositional), where contextual symmetries may
be present, CON-MCMC can yield substantial gains compared to Orbital MCMC and Gibbs
Sampling. We also release a reference implementation of CON-MCMC sampler for wider

use.!

'https://github.com/dair-iitd/con-mcmc
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Genre(G) A B | @ Genre(G) A| B | @
Movie Genre
Thriler |0 0 | 2 Thriller 0| 0| 2
Thriller 0 1 | 4 Thriller 0| 1| 4
Thriller 1 0|3 Thriller 1| 0 | 4
Thriller 1. 1|6 Thriller 11| 6
Romantic 0 0 | 2 Romantic 0| 0 | 2
Romantic 0 1 | 4 Romantic 0| 1 | 4
Romantic 1 0 | 4 Romantic 1|/ 0 | 4
Romantic 1 1 | 6 Romantic 1 | 1 6

(a) (b)

Figure 3.1: Illustration of (a) Contextual Symmetry (with Genre="“Romantic”) (b) Variable
Symmetry in the Movie Network.

3.1 Contextual Symmetries

Our work proposes the novel notion of contextual symmetries — symmetries that only hold
under a given context. We now extend the definitions of the variable symmetries (described in

Chapter 2) to their contextual counterparts. First we define a context.

Definition 3.1.1. A context C' is a partial assignment, i.e., a set of pairs (X, v;), where X; € X
and v; € D;, and no X, is repeated in the set.

For example, in Figure 3.1, we can define a context (Genre, “Romantic”). We refer to a
context as a single variable context if there is only one element in the context set. We say that
a variable X; appears in a context if there is a pair (X;,v;) € C. Given a context C, we will
use X to denote the subset of variables of X which appear in C. We will use X to denote the
complement of this set. Given a state s, we will use (x;,(s) to denote the value of X in state s.
We say that a state s is consistent with the context C' iff V(X;, v;) € C we have v; = (x, (s).

In order to define contextual automorphism, we will need to define the notion of a reduced

model.

Definition 3.1.2. Given a graphical model G = { fx,wi}i,, and a context C, the reduced
model G, is defined as the new graphical model obtained by substituting X, = v; in each

formula fy, for all (X;,v;) € C and keeping the original weights wy,.

Note that G- is defined over the set X. As an example, if the model is represented by the
formulas {(P V Q, wy), (RV Q V S, ws)}, the reduced model under the single variable context
{(R,0)} willbe {(PV Q, wy) and (Q V S, ws)}. In the factored form representation, reduction
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by a context corresponds to fixing the values of the context variables in the potential table. E.g.,
in Figure 3.1 given the context "Romantic”’, we reduce the factor to the bottom four rows of the
potential table where Genre has value "Romantic”. We are now ready to define a contextual
symmetry of a graphical model.

Definition 3.1.3. A contextual symmetry of a graphical model G under context C' is repre-
sented as a permutation 0 of variables in X s.t. a) 0(X;) = X;, VX; € X¢ i.e. variables in
the context are mapped to themselves, and b) 3 a variable symmetry 0" of the reduced model
Gr such that 0(X;) = 0"(X;) VX; € Xg, i.e. mapping of the remaining variables defines a

variable symmetry of the reduced graphical model under context C.

For example, in Figure 3.1, let a permutation 6* be: 6*(G) = G,0*(A) = B,6*(B) = A.
0* is a contextual symmetry under the context (Genre, “Romantic”), but not under the context
(Genre, “Thriller”).

Definition 3.1.4. A contextual automorphism group of a graphical model G under context C'
is defined as a permutation group (O¢) over G, such that each 6 € O is a contextual symmetry
of G under context C.

Definition 3.1.5. The contextual orbit of a state s under the contextual automorphism group
O¢ (given the context C) is the set of those states which are consistent with C' and can be
reached by applying 0 € O¢ to s, ie, To,(s) = {s € D* | 30 € O¢ st. O(s) =
s AV(Xi,v) € C)Cx,(s') = v}

Note that s must be consistent with C' for it to have a non-empty contextual orbit. Anal-
ogous to variable symmetries, contextual symmetries preserves weight-signature and are also
probability preserving. Similar to variable symmetries, we prove the following lemma which

relates the validity of feature in a state to the validity of transformed feature in state s’

Lemma 3.1.1. Given a graphical model G, If 0 is a contextual symmetry with context C' and
f; = 0(f;) and s' = 0(s) where context is true in s and ', then, f; holds true in s if and only f;

holds true in s'.

Proof. If 6 is a contextual symmetry, then, #” on non-context variables is a variable symmetry.
Hence, if for a feature f;, if Vars(f;) N Xc = @, then, those features do not go any trans-
formation in reduced graphical model . Hence, lemma trivially holds by extending variable
symmetry to contextual symmetry. If Vars(f;) N X # @, then, those features got eliminated
( f; is clausal and context-variable has its value consistent with that feature) or got reduced (not
consistent). If features got eliminated, then, the lemma holds. If the features got reduced, then,
on the reduced model, since, 0" is a variable symmetry, the lemma holds again by extension of
variable symmetry to contextual symmetry. [
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Theorem 3.1.1. A contextual symmetry 0 of G under context C = {(X;, v;)} results in a weight-

signature preserving state partition if s is consistent with C. Also, contextual symmetry pre-

serves probability i.e. P(s) = P(0(s)).

Proof. This argument is similar to the theorem 2.4.2. Since 6 is a contextual symmetry, then,
application of 6 results in the same graphical model. Hence, f; and transformed feature 6( f;)
belong to original features of graphical model and have the same weight. Hence, they belong
to the same partition-element of feature-set partition. Using lemma 3.1.1, for any feature f;
which holds true in state s, there is a corresponding feature §( f;) which holds true in state s’
which is in same partition-element. Hence, the count of number of features which are true in
state s in any partition-element is exactly equal to number of features which are true in state s’
in any partition-element. Therefore, weight-signature of states are preserved under contextual
symmetry. And as per theorem 2.4.2, if two states have same weight-signature, then, they have
same probability.

O

3.1.1 Relationship with Related Concepts

The set of contextual symmetries subsumes that of variable symmetries — any variable symme-
try is a contextual symmetry under a null context (). The two notions are even more related,
as the following two lemmas show. Let X/ be the set of variables that map onto itself in a
permutation 6, i.e. VX € X} : §(X) = X.

Theorem 3.1.2. A variable symmetry 0 is a contextual symmetry under a context C'if Xo C XJ.

Hence, contextual symmetries subsume variable symmetries trivially for X = ().

Proof. The proof is trivial following the definition of contextual symmetry. If Xo C X/, then,
all the context variables map to themselves. The second thing we need to prove is that there
exists a variable symmetry over the reduced graphical model. Consider the reduced graphical
model and the reduced permutation " over the subset X — x> of remaining variables. We argue
that if ¢ defines a transformation of feature f; into another feature f’, then, under 6", either f;
does not exist (if context variable is true in that feature in clausal form) or the reduced f; is
transformed into f;" (since 0" and 6 maps all other variables in exactly same way. And so, all
the features are mapped identically under ¢ and 6" resulting in the same set of reduced weighted

features if theta results in the same set of weighted features in original graphical model. [

We now distinguish the notions of context and contextual symmetries from two other related
concepts. First, a context is different from evidence. External information in the form of

evidence modifies the underlying distribution represented by the graphical model. In contrast,
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a context has no effect on the underlying distribution. Second, it might be tempting to confuse
contextually symmetric states with contextually independent states [Boutilier ef al., 1996]. In
the example of Figure 3.1(a) given Genre=“Thriller”, A and B are contextually independent,
i.e., probability of A does not change depending on B. For this context A and B are non-
symmetric. For Genre="“Romantic” A and B are symmetric but not independent. Finally, in
Section 3.5, we discuss the relationship between contextual symmetries and the recent notion

of conditional decomposability [Niepert and Van den Broeck, 2014].

3.1.2 Computing Contextual Symmetries

Computing contextual symmetries for G under a context C' is equivalent to computing variable
symmetries on the reduced model G5, = {fr,wi}7,. To compute variable symmetries we
adapt the procedure from Niepert [2012]. Following Niepert, we describe the construction
when each f] is a clause, though it can be extended to the more general case.

Niepert’s procedure creates a colored graph, with two nodes corresponding to every variable
(one each for the positive and negative state), and one node for every formula f;. Edges exist
between the positive and negative states of every variable, and also between the formula nodes
and the variable nodes (either positive or negative) appearing in the formula. Finally, colors are
assigned to nodes based on the following criteria: (a) every positive variable node is assigned
a common color, (b) every negative variable node is assigned a different common color, and
(c) every unique formula weight wj, is assigned a new color. The formula nodes f; inherit the
color associated with their weight wy,.

This color graph is then passed through a graph isomorphism solver (e.g., Saucy), which
computes the automorphism group for G.. This is equivalent to computing contextual auto-

morphism group for G under C":

Theorem 3.1.3. The automorphism group for the color graph of the reduced graphical model
G¢ along with an identity mapping of the context variables gives a contextual automorphism

group of G under C.

Proof. To prove this, we need to prove for every permutation on reduced graphical model G/,
along with identity mapping gives a new permutation which when applied to a graphical model
results in the original graphical model. The proof holds by extension of similar theorem for
variable symmetry. By theorem 2.2.2, the permutation on G, gives a variable symmetry on
X — X and appending identity mapping for X gives the contextual symmetry as per definition
of contextual symmetry. [

Note that in case we have any evidence E available, the reduced model over which we

induce a colored graph corresponds to G/, . This is in contrast with original Niepert’s proce-
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dure, where evidence nodes are not removed from the color graph and instead act as additional
formulas for the original graphical model with infinity weights. This elimination of evidence
nodes helps discover many more symmetries in the corresponding color graph while still pre-
serving correctness. For example, if the model is represented by formulas {(P V R, wy), (Q,
w1)}, and evidence is (—R), P and () become symmetric only if R is eliminated from the color

graph, and not in Niepert’s procedure.

3.2 Contextual MCMC

We now extend the Orbital MCMC algorithm from chapter 2 so that it can exploit contextual
symmetries; our algorithm is named CON-MCMC, and is parameterized by « € [0, 1). Orbital
MCMC reduces mixing times over original MCMC, because it can easily transition between
high probability states falling in the same orbit, which may otherwise be separated by low
probability regions. Unfortunately, as Figure 3.1 demonstrates, a domain may have little vari-
able symmetry, but still important contextual symmetry. CON-MCMC(«) exploits these for
inference.

We are given a set of context variables IV C & (more on this later). Let Cy, denote the
set of all possible contexts involving all the variables in V. Overloading the notation, we will
use Cy (s) to denote the (unique) context in Cy consistent with state s. We compute contextual
symmetries O under each context C' € Cy using the algorithm from Section 9.2. We are also
given an original regular Markov chain M that converges to the desired probability distribution
7(s). CON-MCMC(«) runs a Contextual Markov Chain M,,,(c) that samples a state s(‘+!)

from s® as follows:

1. Gibbs-orig move: We sample an intermediate state s'**'1) from the current state s as:
(a) with probability o (Gibbs): flip a random context variable in s using Gibbs transi-
tion probability.

(b) with probability 1-c (original): make the move from s(*) based on the transition prob-
ability in M.

2. Con-orbital move: Let C = Cy(s'**1)) be the context consistent with 5’0+, Let
To.(s'F1) denote the contextual orbit of s’*+1) under the context C. Sample a state

s+ uniformly at random from ['g, (s'+1).

When o = 0 our algorithm reduces to a direct extension of Orbital MCMC, where in second
step, we sample uniformly from a contextual orbit instead of the original orbits. In the more
interesting case of o > 0, we enable the Markov chain to move more freely between different

contexts using a Gibbs flip over the context variables. This Gibbs transition helps us carry
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Algorithm 1 Contextual Markov Chain

Contextual MCMC(Markov Chain M, ContextFlipProb «, Context Variables V', NumSam-
ples n)
Cy < CreateAllContexts(1)
Sample Initial state s
fort :=0—n—1do
Sample r uniformly from (0, 1)
if r < o then
X, < SampleUniformly(V")
s’ « GibbsTransition(s®, X,)
else
§'t+1) « MarkovChainTransition(M, s*)

C < GetContext((s'*1))
O¢ < PrecomputedGroup(C')
s+ < SampleUniformly(Tg . (s"+1))

return List of states s® : ¢t :=0—n—1

over the effect of symmetries exploited under one context (via the orbital moves in step 2) to
others. This can be especially useful when symmetries are unevenly distributed across multiple
contexts (as also confirmed by our experiments).

In order to sample a state uniformly at random from a contextual orbit, we use the prod-
uct replacement algorithm [Pak, 2000] as described and used by Niepert [2012]. Recall that
since we are working with contextual permutations, the context variables are mapped to them-
selves and we are guaranteed to not change the context. Next, we show that CON-MCMC(«)

converges to the desired stationary distribution 7(s). We need the following lemma.

Lemma 3.2.1. Let M, and M; be two Markov chains defined over a finite state space S with
transition probability functions Py and P,, respectively, such that w(s) is a stationary distri-
bution for both Py, P, i.e., mw(s) = > .om(r) * Pi(r — s), i € {1,2}. Further, let M,
be regular. Then, the Markov chain M’ with the transition function P'(r — s) = a * Py(s —

s)+(1—a)*xPy(r — s) is also regular and has a unique stationary distribution 7 for o € [0, 1).

Proof. The chain P’ is regular since, there is non-zero probability of returning back to same
state. This is because P’ is composed of two probabilities and o« # 1. As P, is regular, so
there is non-zero probability of returning back to same state, so, second term of summation is
non-zero for returning back to same state. So, P’ is regular and converges to a unique stationary

distribution. Next, we prove that it converges to 7. To prove this, we need to prove that

m(s) = ZW(T’)P/(T — 8) (3.1)

res
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Taking R.H.S,
S w(r)P'(r—s)=> w(r)axPi(r—s)+ (1 —a)xPys —r) (3.2)
- = afs )Pi(r = s)+ (1—a)> w(r)Pa(s = 1) (3.3)
~ —ax7(s)+ (1 —ZS) x 7(s) = m(s) (3.4)

The above calculation uses simple algebra and the facts that M; and M> converge to the same

stationary distribution 7. [

Let M9 («) refer to the family of Markov chains constructed using only step 1 of our
algorithm i.e. no symmetry moves. M is regular with the stationary distribution 7(s). Further,
each individual Gibbs flip over a variable satisfies stationarity with respect to the underlying
distribution 7(s) [Koller and Friedman, 2009]. Hence, using Lemma 3.2.1, M9°(«) is regular

with 7(s) as a stationary distribution.

Theorem 3.2.1. The family of contextual Markov chains M“"(«) constructed using CON-
MCMC(«) converges to the stationary distribution of original Markov chain M for any choice
of context variables V and o € [0, 1).

Proof. Let 7(s) be the stationary distribution of M. Since M9°(«) is regular it is easy to see
that M“"(«) is also regular (there is always a non-zero probability of coming back to the same
state in an orbital move). Therefore, M“"(«) converges to a unique stationary distribution.
Then, we only need to show that 7(s) is the stationary distribution of M“"(«). Let S = {0, 1}"
denote the set all of all the states. Forr, s € S, let P9°[a](s — r) and P°"|a(s — r) represent
the transition probability functions of M9°[a] and M“°"[a], respectively. In order to show that

Me"[a] also converges to 7(s), we need to show that:

w(s) =Y _7w(r)P"[a](r — s) (3.5)

res

The RHS of the above equation can be written as:

9°la(r — & ;
= > 7w(r) Y. P”l)(r— )|r@CV(S)(s)I

res s’eF@CV(S) (s)

9T 1 (r s’ ;
- Y wm)Pr - )|F9CV(S)(S)|

res S,EF@CV(S) (s)
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S/GF@CV(s) |F9CV(5
1
= 2. )
s’EF@cv(s) |F@CV(§) (S> |

= 7(s)

Here, recall that ©¢,, ;) denotes the contextual automorphism group for the (unique) context
Cy (s) consistent with the state s, and Loc, o) (s) denotes the corresponding orbit. Step 1 above
follows from the definition of contextual orbital move. Step 4 follows from the stationarity of
M?9°[a]. Step 5 follows from the fact that all the states in the same contextual orbit have the

same probability (Theorem 3.1.1). 0

3.3 Experimental Evaluation

Our experiments evaluate the use of contextual symmetries for faster inference in graphical
models. We compare our approach against Orbital MCMC, which is the only available algo-
rithm that exploits symmetries in a general MCMC framework. We also compare with vanilla
Gibbs sampling, which does not exploit any symmetries. We implement CON-MCMC(«) as an
extension of the original Orbital MCMC implementation® available in the GAP language [GAP,
2015]. The existing implementation uses Saucy [Darga et al., 2008] for graph isomorphism and
Gibbs sampler as the base Markov chain. We experiment on two versions each of two different
domains, with context variables pre-specified. We next describe our domains. These domains
are synthetically designed to show the effectiveness of our approach if contextual symmetries

are present but no or only limited variable symmetry is present.

3.3.1 Domains and Methodology

Sports Network: This Markov network models a group of students who may enter a future
sport league, which could be for one of two sports, badminton or tennis (modeled as the variable
Sport). Each student belongs to one of the dorms on campus. The league accepts both singles
as well as doubles entries. For each student X, the domain has a variable for playing singles,
Sx. For each pairs of students X, Y coming from the same dorm, we have a variable indicating

that they will play doubles together, D xy. Multiple students (in the same dorm) train together in

’https://code.google.com/archive/p/lifted-meme/
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Figure 3.2: (a) CON-MCMC effectiveness increases tremendously with increasing domain
sizes. Note that y-axes are on different scales. (d) New variable symmetries are created with
increasing evidence, leading to improved performance of Orbital MCMC. (b, d) Curves for
Sports Network (Single) and Y & O (Single) respectively — CON-MCMC(0.01) performs the
best and vastly outperforms CON-MCMC(0).
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training groups, which are different for the two sports. A student’s participation in the league for
a given sport is (jointly) influenced by the participation of other students in her training group
for that sport. Moreover, if two students decide to play singles, it increases the probability that
they may also team up to play doubles independent of their training groups. In this domain,
different subsets of students in a dorm (based on their training groups) are symmetrical to
each other depending upon Sport, which becomes a natural choice for the context. In our

experiments, we use training groups of 5 students and dorms with 25 students each.

Young and Old: This domain is modeled as an MLN and is an extension of the Friends
and Smokers (FS) [Singla and Domingos, 2008] network. Y &O has a propositional vari-
able /sY oung determining whether we are dealing with a population of youngsters or older
folks. For every person X in the domain, we have predicates Smokes(X ), Cancer(X) and
FEatsOut(X). We also have the predicate F'riends(X,Y") for every pair of persons. We have
rules stating that young persons are more likely to smoke and older people are less likely to
smoke. Similarly, we have rules stating that young people are more likely to eat out and old
people are less likely to eat out. When the population is young, everyone has the same weight
for the smoking rule and slightly different weight (sampled from a Gaussian) for eating out.
When the population is old, everyone has a slightly different weight (again sampled from a
Gaussian) for smoking and the same weight for eating out. As in the original FS, we have rules
stating smoking causes cancer and friends have similar smoking habits. We also have rules
stating that cancer and friends variables have low prior probabilities. In this domain, smoking,
cancer and friends variables are symmetric to each other when population is young, whereas all
eating out variables are symmetric when the population is old. Clearly, /sY oung is a natural

choice for context in this domain.

An important property of both these domains is that different contextual symmetries ex-
ist for both assignments of the respective context variables. To test the robustness of CON-
MCMC we further modify these domains so that contextual symmetries exist only on one of
the two assignments of context variable. In Y& O (Single), we give (slightly) different weights
to EatsOut(X) variables when /sY oung is false, i.e., symmetries exist only when /sY oung
is true. In Sports Network (Single), Sx variables involved in a training group are symmetric
only for tennis; for badminton, each Sy in a group behaves (slightly) differently. We refer to
these two variations as the Single side versions of the original domains.

For these four domains, we plot run time vs. the KL-divergence between approximate
marginal probabilities computed by each algorithm and the true marginals.® For both Orbital
MCMC and CON-MCMC, the time to compute symmetries is included in the run time. For

each problem we run 20 iterations of each algorithm and take the mean of the marginals to

3computed by running a Gibbs sampler for sufficiently long time.



50 Contextual Symmetries

reduce variance of the measurements. We also plot the 95% confidence intervals. We show
CON-MCMC results for = 0 and 0.01, which was chosen based on performance on smaller
problem sizes. We perform various control experiments by varying the size of domains, amount
of available evidence, marginal posterior probability of the context variable and the value of «

parameter. All the experiments are run on a quad-core Intel i-7 processor.

3.3.2 Results

Figures 3.2 and 3.3 show the representative graphs across multiple domains and varying ex-
perimental conditions. We find that CON-MCMC(0.01) almost always performs the best or
at par with the best of other three algorithms. CON-MCMC(0) usually performs better than
Gibbs and Orbital MCMC, but its performance can be closer to Gibbs or CON-MCMC(«)
depending upon the experimental setting. Orbital MCMC does not usually offer much advan-
tage over Gibbs, primarily because these domains do not have many variable symmetries. For
Sports Network, there are no variable symmetries at all; Orbital MCMC avoids the overhead
of the symmetry move and performs at par with Gibbs. For Y &O, Orbital MCMC finds a few
symmetries, which do not particularly help in reducing mixing time. However, it still incurs the

overhead of symmetry moves, leading to a significantly worse performance compared to Gibbs.

Variation with Domain Size: Figure 3.2(a) compares the algorithms as we increase the do-
main size for the Sports network from 50 to 200 students. The overall trends remain similar,
1.e., CON-MCMC algorithms outperform Gibbs and Orbital MCMC by huge margins. A closer
look reveals that the y-axes are at different scales for the three curves — the relative edge of

CON-MCMC algorithms increases substantially with larger domain sizes.

Variation with Amount of Evidence: Figure 3.2(c) compares the performance of the algo-
rithms as we vary the amount of (random) evidence available from 0% to 60% in the Y &O
domain on predicates other than Friends(X,Y’) using a domain size of 50. As earlier, CON-
MCMC algorithms outperform others. We observe that the relative gain of CON-MCMC
algorithms with Orbital MCMC decreases with increasing evidence (for 30% evidence Orbital
MCMC overlaps with Gibbs, for 60% evidence, Orbital MCMC overlaps with CON-MCMC).
We believe that this is due the fact that more evidence tends to disconnect the network intro-
ducing additional symmetries which can be exploited by Orbital MCMC. Nevertheless, CON-
MCMC algorithms perform at least as well as Orbital MCMC for all values of evidence that

we tested on.

Variation across Versions of a Domain: Figure 3.2(b) and 3.2(d) show the plots for the Single
side versions of Sports network and Y & O, respectively. We observe a significant difference in

the performance of the two CON-MCMC algorithms. The reason is subtle. Since symmetries
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Figure 3.3: CON-MCMC effectiveness increases in Single Side Symmetry cases as we in-
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MCMC(0.01) provides significant gains even at very low posterior values. CON-MCMC(0)
performance improves with increase in the marginal.
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exist only on one side, that side mixes quickly for CON-MCMC(0); however, the other side
does not mix as well, because of lack of symmetries. CON-MCMC(«) for o > 0 mitigates this
by upsampling the flip of the context variable. This enables the rapid mixing on symmetry side
to regularly influence the non-symmetry side (via Gibbs move), which leads to a faster mixing
on that side too. Nevertheless, CON-MCMC(0) is still able to outperform both Gibbs sampling
as well as Orbital MCMC by exploiting the single sided symmetry. The posterior of symmetry
side is 0.33 in Sports network (Figure 3.2(b)) and 0.37 in Y &O (Figure 3.2(d)).

We also observe in the first graph of Figure 3.2(c), that CON-MCMC(0) performs somewhat
worse than CON-MCMC(0.01). We believe that the reason for performance in this two-sided
symmetry domain is similar to the single-sided case. In Y&O, when [sY oung =true, sub-
stantial symmetries may exist due to smoking, cancer and friends variables. However, on the
other side, the symmetries are far less (only for eating out variables). This implies that CON-
MCMC(0) will have much faster mixing on one side, but not on the other. On the other hand,
CON-MCMC(0.01) will upsample context variable flips and allow the stronger symmetry side
to influence the other. In general, CON-MCMC(«) performance is highly robust to varieties of

symmetric and asymmetric domains.

Variation with Posterior of Context Variable: We investigate performance on Single-sided
domains further by varying the posterior marginal probability of the context variable. Figure
3.3 shows the results for Sports network (Single) with marginal probability of Sport = tennis
varying from 0.09 to 0.91. Note that Sport = tennis side is the side where symmetries exist.

The graphs show an interesting trend. Even for very low marginals, CON-MCMC(0.01) is
able to benefit from one sided symmetries. Since the marginal is low we expect any MCMC
algorithm to spend most of its time on the non-symmetry side. However, CON-MCMC(0.01)
will still go back and forth several times between two sides; each flip to symmetry side and back
will help in potentially reaching a different region of the state space leading to better mixing on
the non-symmetry side.

Not surprisingly, CON-MCMC(0) does not perform as well for low marginals — it does not
get to switch contexts as often, and ends up mixing slowly on the important, non symmetry side.
As marginal of the context variable increases, the relative performance of CON-MCMC(0)
improves substantially. As marginal becomes high (0.91), both CON-MCMC samplers end up
sampling mostly on the symmetry side, and can reap benefits of symmetries similarly. We also

conduct these experiments for the Y &O domain and observe a very similar behavior.

Variation with o Parameter: Figure 3.4 shows the performance of CON-MCMC(«) for dif-
ferent values of « in the range 0.001 to 0.5 for both Sports network (single) and Y &O (single)
domains. Our algorithm is fairly robust for values of o between 0.01 and 0.1. Its performance

starts to degrade for very low as well as very high values of . For very low values of «, algo-
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rithm’s behavior approaches that of CON-MCMC(0). For very high values of «, the algorithm
spends too much time flipping the context variable and not enough time exploring the state
space, resulting in poor performance.

Overall, we conclude that CON-MCMC(0.01) is robust to various experimental settings and
obtains the best results significantly outperforming Orbital MCMC and Gibbs. This underscores

the importance of our contextual symmetry framework for probabilistic inference.

3.4 Discussion and Future Work

While our work extends the capability of lifted inference to a wider range of settings, it also
raises important questions. In many cases, the set V' of context variables is known from domain
knowledge or domain description especially in relational models. An open question is how
to automatically compute a good set V/, since trying all possible sets can be prohibitive. We
have designed a heuristic approach that greedily chooses the most useful context variable every
iteration and adds it to the context set. It uses a few initial rounds of the color passing algo-
rithm [Kersting et al., 2009] to approximate the amount of additional symmetry obtained by
making a variable part of the context. More experiments are needed to assess the effectiveness
of our approach.

Another important observation is that the set of contextual symmetries may not monoton-
ically increase with increasing context size. This may happen if additional context variables
break existing symmetries, since context variables are forced to undergo identity mapping.
Then, how do we design algorithms so that their effectiveness monotonically increases with
larger contexts in all cases? This is an important direction for future work.

Another question concerns the robustness of performance of symmetry-based inference al-
gorithms. Over the course of our experiments, we tested our algorithms on several domain
variations. While in most cases CON-MCMC(0.01) and CON-MCMC(0) performed much
better than Gibbs, in rare cases, the performance was worse too. Further investigations revealed
two main sources of lower performance.

The first and more prominent cause is the trade-off between mixing speed and sampling
time. Because all symmetry-based algorithms run an expensive product replacement algorithm
[Pak, 2000] to sample from an orbit, next samples for CON-MCMC (and Orbital MCMC) are
generated much slower than Gibbs. In domains where symmetries are prevalent, this slower
sampling is mitigated by rapid mixing, but in other domains, it could result in a worse perfor-
mance. An intelligent wrapper that guesses whether to exploit symmetries or not in a given
domain will be crucial for developing a robust inference algorithm. The second reason for

lower performance is subtle. CON-MCMC(«) is able to exploit contextual symmetries (even
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single-sided) in a wide variety of settings, but in one situation it can lose to other algorithms.
This happens when the context variable has a huge Markov blanket, so much so that one Gibbs
move that flips the context variable becomes overbearingly costly. Since CON-MCMC(«) up-
samples flips of context variables, this can cause significant loss to overall performance, even
though the mixing is much faster with respect to number of samples.

Another observation relates to the effect of evidence in a domain. Evidence can both help
and hurt symmetries in an inference problem. In some cases, evidence can break existing
symmetries and reduce the relative gain of symmetry-based algorithms. In other cases, evidence
can break edges and create new symmetries and help them. While in our experiments, we did
not find CON-MCMC(0.01) to be ever worse than Gibbs due to additional evidence, such
pathological cases can be constructed.

It would be interesting to see how algorithms other than MCMC can benefit from our con-
textual symmetry framework. In the future, we would also like to explore approximate contex-
tual symmetries that could make our contribution applicable to several other domains, where
exact contextual symmetries cannot be found. We would also like to theoretically analyze the
mixing time of CON-MCMC.

3.5 Related Work

Some papers have discussed methods for computing symmetries under a given evidence [Van den
Broeck and Darwiche, 2013; Venugopal and Gogate, 2014b; Kopp et al., 2015]. As discussed
in Section 3.1.2, the algorithm for computing contextual symmetries is closely related to com-
puting evidence-based symmetries. The main difference is in the way we use these symmetries
for downstream inference.

While our general notion of contextual symmetries is novel it has connections to a few
recent works. The Rocklt system [Noessner et al., 2013] identifies contextual symmetries in a
very special case in which the domain theory has a set of disjunctive clauses of a specific kind
g; V c where each g; is a single literal (or its negation). For this setting, ¢ is a natural context and
symmetries among g;s can be exploited. Rocklt does not provide any general notion beyond
this special case. It constructs a reduced ILP for MAP inference instead of marginal inference,
as in our case.

There is recent work on exploring connections between the concept of exchangeability of
random variables and tractability of probabilistic inference [Niepert and Van den Broeck, 2014].
Our contextual symmetries can be seen as a generalization of their conditional decomposability
to conditional partial decomposability where the sufficient statistics are precisely the contextual

orbits. Whereas Niepert and Van den Broeck [2014] primarily focus on developing the theory
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for conditional decomposability, we propose and additionally connect this with the symmetries
present in the structure of a graphical model. Further, unlike them we develop an algorithm to
compute these conditional decompositions (contextual symmetries in our case) and show how
they can be used in practice for efficient probabilistic inference.

Our contextual symmetries are also analogous to conditional symmetries in constraint sat-
isfaction problems (CSPs) [Gent er al., 2005; Walsh, 2006; Gent ef al., 2007]. CSP symmetries
are called conditional if symmetry groups exist only in a sub-problem of the original CSP, i.e.,
in a CSP with one or more additional constraints. The CSP problem setting and their actual
manifestation in algorithms are quite different from lifted inference, but their definition and use

of conditional symmetries is in the same spirit as ours.

3.6 Conclusions

We present a novel framework for contextual symmetries in probabilistic graphical models.
Contextual symmetries generalize and extend previous notions of variable symmetry. Given
any context, we can efficiently compute these symmetries by reducing it to the problem of
colored graph isomorphism. While our framework is independent of any inference algorithm,
we illustrate its applicability by proposing CON-MCMC, an MCMC approach that exploits
contextual symmetries. Our experiments on several domains validate the efficacy of CON-
MCMC, where it outperforms existing state-of-the-art techniques for symmetry-based MCMC
by wide margins. Finally, we have released a reference implementation of CON-MCMC for

wider use by the research community.
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Chapter 4

Variable-Value and Non-EquiCardinal
Symmetries in PGMs

To the best of our knowledge, both variable and contextual symmetries consider a limited notion
of symmetries, which we call count symmetries. A count symmetry in a Boolean-valued domain
is a symmetry between two states where the total number of zeros and ones exactly match.
An illustrative algorithm for Boolean-valued PGMs (which we build upon) is Orbital MCMC
[Niepert, 2012]. It first uses graph isomorphism to compute symmetries and later uses these
symmetries in an MCMC algorithm. Symmetries are represented via permutation groups in
which variables interchange values to create other symmetric states. Notice, that if a state has k
ones then any permutation of that state will also have % ones; this algorithm can only compute

count symmetries.

Similarly, lifted inference algorithms for multi-valued PGMs (e.g., [Poole, 2003; Bui et
al., 2013]), only compute a weak extension of count symmetries for multi-valued domains —
they allow symmetries only between those sets of variables that have the same domain. And,
the count, i.e. the number of occurrences, of any value (from the domain) within this set of

variables remains the same between two symmetric states.

In response, we develop extensions to existing frameworks to enable computation of non-
count symmetries in which the count of a value between symmetric states can change. We can
also compute a special form of non-count symmetries, non-equicardinal symmetries in multi-
valued domains, in which two variables that have different domain sizes may be symmetric.
Our key insight is the framework of symmetry groups over variable-value (VV) pairs, instead
of just variables. It allows interchanging a specific value of a variable with a different value of

a different variable.

Orbital MCMC suffices for downstream inference over most kinds of symmetries except

non-equicardinal ones, for which a Metropolis Hastings extension is needed. Our new symme-
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tries lead to substantial computational gains over Orbital MCMC and vanilla Gibbs Sampling,
which does not exploit any symmetries.

Overall, in this chapter, we introduce the following concepts: We develop a novel frame-
work for symmetries between variable-value (VV) pairs, which generalize existing notions of
variable symmetries (Section 4.1). We develop an extension of this framework, which can also
identify Non-Equicardinal (NEC) symmetries, i.e., among variables of different cardinalities
(Section 4.2). We design a Metropolis Hastings version of Orbital MCMC called NEC-Orbital
MCMC to exploit NEC symmetries (Section 5.2). We experimentally show that our proposed
algorithms significantly outperform strong baseline algorithms (Section 4.4). We also release

the code for wider use'.

4.1 Variable-Value (VV) Symmetries

Existing work on variable as well as contextual symmetries (chapter 3) has defined symmetries
in terms of variable permutations. We observe that these can only represent orbits in which
all states have exactly the same count of Os and 1s. The simple reason is that any variable
permutation only permutes the values in a state and hence the total count of each value remains
the same. We name such type of symmetries as count symmetries.

We now give a formal definition of count symmetries for a general multi-valued graphical
model, since our work applies equally to both Boolean-valued as well as any other discrete
valued domains.

Let X = {X1, X5, -+, X,,} denote a set of variables where each X; takes values from a
discrete valued domain D;. A permutation ¢ of X is a valid variable permutation if it defines a
mapping between variables having the same domain. Analogously, we define a valid variable
symmetry. We will say that two domains D; and D; are equicardinal it |D;| = |D;|. We call

such variables equicardinal variables.

Definition 4.1.1. Given a set of variables X C X sharing the same domain D and av € D,

countx (s,v) computes the number of variables in X taking the value v in state s.

Definition 4.1.2. Given a domain D, let X, denote the subset of all the variables whose domain
is D. A (valid) variable symmetry 0 is a count symmetry if for each such subset Xp C X,
countx, (s,v) = countx,(0(s),v), Vv € D,Vs € S.

Theorem 4.1.1. For a graphical model G, every (valid) variable symmetry 0 is a count symme-

try.

Thttps://github.com/dair-iitd/nc-mcmc
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Proof. Let D be the set of all domains (of variables) present in G. Further, let D € D be a
domain and X denote all the variables having the domain D in G. Let 6 be a (valid) variable
symmetry of a graphical model G. Since, every (valid) variable symmetry defines a mapping
between variables having the same domain. According to definition of (valid) variable symme-
try, if X; € Xp then, 6(X;) € Xp. Let the value of X; be v; in s, then, the value of 6(X;) is
v; in O(s) (as per definition of 6(s)). Hence, every value v; present in s at X; is also present in
0(s) at 0(X;). Therefore, the count for every value v € D present in s for variables in X, is
same as count for v in 6(s) for variables in X . This holds for all domains D € D. Hence,
countx, (s,v) = countx,(0(s),v) forall v € D, D € D. Hence, every (valid) variable

symmetry is count symmetry. [ [

We argue here that count symmetries are restrictive; a lot more symmetry can be exploited
if we simultaneously look at the values taken by the variables in a state. To illustrate this, con-
sider a very simple graphical model G5 with the following two formulas: (a) wi: A A =B (b)
we: mA A B. It is easy to see that there is no non-trivial symmetry here. The permutation
0(A) = B,6(B) = A results in a different graphical model since the two formulas have dif-
ferent weights. On the other hand, if we somehow could permute A with =B and B with —A,
we would get back the same model. In this section, we will formalize this extended notion of

symmetry which we refer to as variable-value symmetry (VV symmetry in short).

Definition 4.1.3. Given a set of variables X = { X1, - - , X,,} where each X; takes values from
a domain D;, a variable-value (VV) set is a set of pairs {(X;,v})} such that each variable X;
appears exactly once with each v € D in this set where v} denotes the I'" value in D;. We will

use Sy to denote the VV set corresponding to X.

For example, given a set X = {A, B} of Boolean variables, the VV set is given by:
{(4,0),(A,1),(B,0), (B, 1)}.

Definition 4.1.4. A Variable-Value permutation ¢ over the VV set Sy is a bijection from Sy

onto itself.

Recall that a variable permutation applied to a state in a Boolean domain always results in a
valid state. However, that may not be true in multi-valued domains, since if two variables that
have different domains are permuted, it may not result in a valid state. It is also not true for
all VV permutations. For example, given the state [(A,0), (B, 0)], a VV permutation defined
as 9(A,0) = (B,1),0(A,1) = (A, 1), ¢(B,0) = (B,0),¢(B,1) = (A,0) results in the state
[(B,1),(B,0)] which is inconsistent. Therefore, we need to impose a restriction on the set of

allowed VV permutations so that they result in only valid states.
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Definition 4.1.5. We say that a VV permutation ¢ is a valid VV permutation if each vari-
able X; € X maps to a unique variable X; under ¢. In other words, ¢ is valid if, whenever
(X, v)) = (X,0)) and $(X;,v}) = (Xg,vh), then X; = X3, Yoi,v! € D;. In such a

scenario, we say that ¢ maps variable X; to X .

It is easy to see that for any valid VV permutation ¢, applying ¢ on a state s always results
in a valid state ¢(s). It also follows that if such a ¢ maps a variable X; to X, then D, and D;

must be equicardinal.
Theorem 4.1.2. The set of all valid VV permutations over Sy forms a group.

Proof. A group is defined by a set of elements and an operation defined over them. The op-
eration usually considered in permutation groups is composition. The set of (unrestricted)
permutations over any set is a group, called as permutation group [Wielandt, 2014]. We need to
prove that the sub-set of permutation group to a valid VV permutations set is also a group or the
set of VV permutations is a sub-group of permutation group over Sy. A non-empty subset of
a group is a sub-group if it satisfies the following two properties 1) Closure i1) Inverse element
exists. We will prove that both these properties hold for valid VV permutations set.
1) Closure: For proving closure, we need to prove that if ¢, ¢, are valid VV permutations over
Sx, then, ¢o(¢7) is also a valid VV permutation. Since, ¢ and ¢, are valid, let ¢; maps a vari-
able X; to a unique variable X, and let, ¢, maps variable X; to a unique variable Xj. Then,
¢2(¢1) maps the variable X; to a unique variable X}, (by the composition of permutations). This
is true for all the variables. Hence, ¢5(¢;) is also a valid VV permutation and the set of valid
V'V permutations over Sy is closed under composition.
ii) Inverse Element: For this property, we need to prove that if ¢ is a valid VV permutation,
then, ¢! is also a valid VV permutation. As per definition of inverse in a permutation group,
if (X, v;) = (Xj,vj), then, ¢~ (X;,v;) = (X;,v:), VX;, X; € X, v;,v; € Domain(X;).
Since, ¢ is a valid VV permutation, it will map X; uniquely to X ;. Therefore, ¢~' will map X
uniquely to X; ( mapping all values in inverse direction). Hence, ¢! is a valid VV permutation
and satisfies inverse property.

The set of all valid VV permutations satisfy both the closure and inverse property. Hence,
the set of all valid VV permutation is a sub group of permutation group over Sx and a group in
itself. 0 0

Consider a graphical model G specified as a set of pairs { f;, w,}. Each feature f; can be
thought of as a Boolean function over the variable assignments of the form X; = v!. Hence,
action of a VV permutation ¢ on a feature f; results in a new feature fj’- (with weight w;)
obtained by replacing the assignment X; = v by X; = v}, in the underlying functional form

of f; where ¢(X;,v}) = (X;,v},). Hence, application of ¢ on a graphical model G results in
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a new graphical model G’ where each feature (wj;, f;) is transformed through application of ¢.
We are now ready to define the symmetry of a graphical model under the application of VV

permutations.

Definition 4.1.6. We say that a (valid) VV permutation is a VV symmetry of a graphical model
G if application of ¢ on G results back in G itself.

All other definitions of the previous section follow analogously. We can define an automor-
phism group over VV permutations, and also define an orbit of a state under this permutation

group. VV symmetries strictly generalize the notion of variable symmetries.

Theorem 4.1.3. Each (valid) variable symmetry 0 can be represented as a VV symmetry ¢.

There exist valid VV symmetries that cannot be represented as a variable symmetry.

Proof. For proving the first part, recall that a variable permutation 6 is valid if it always maps
between variables that have exactly the same domain. Say, 6(X;) = X/ with both variables
having domains D;. It is easy to see that ¢ defined such that ¢(X;, v}) = (X!, v}) forall v} € D;,
will result in the same sets of symmetric states. Hence, every (valid) variable symmetry can be
represented as a VV symmetry.

To prove the second part, consider a PGM G, with two Boolean variables X; and X,. Let
there be four features fyo, fo1, f10, f11, one corresponding to each of the four states, with weights
given as wg, Wy, Wy, W, respectively. Then, we have a VV symmetry ¢ such that ¢(X;,0) =
(X2, 1), ¢(X1,1) = (X2,0), ¢(X2,0) = (X31,1) and (X3, 1) = (X1,0). Note that ¢ maps
the state [(X1,0), (X2, 0)] to [(X71, 1), (X2, 1)] and reverse, and similarly there is a symmetry ¢’
which maps [(X1,0), (X, 1)] to [(X1,1), (X2,0)] and reverse. There is no variable symmetry
which can capture the symmetries induced by ¢ since counts are not preserved. This proves
the theorem. But let us for a moment define a renaming of the form X| = —X;. Variable
symmetries will now be able to capture the symmetries due to ¢ but will miss out on the ones
due to ¢'. This is illustrative because there is no single problem formulation which can capture
both the state symmetries above using the notion of variable symmetries alone. [

]

To prove that VV symmetries preserve joint probability, we prove the lemma which captures
relationship between feature and a state s to transformed feature and transformed state as done

for Variable and contextual symmetries.

Lemma 4.1.1. If ¢ is a VV symmetry of a graphical model G, then, then, the transformed feature
fi = &(f;) holds true in transformed state s' = ¢(s) if and only if f; holds true in state s
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w1:AAﬂB w1:AAﬂB

wz:ﬁA/\B wz:ﬁA/\B

(a) (b)

Figure 4.1: (a) Variable Symmetry Graph for toy example G3 (b) VV-Symmetry Graph for G5

Proof. As usual, without loss of generalization, we assume that, features are expressed as dis-
junction of variable-value pairs. If f; holds true in state s, then, 3 a variable-value pair (X;, v;),
which is present in feature f; and s(X;) = v;. If ¢(X;,v;) = X, v;, then, (X, v;) is present
in f}. Similarly, by definition of ¢(s), (X;,v;) pair is replaced by (Xj;,v;) pair and hence,
s'(X;) = v;. Hence, fj’» holds true in state s’ . The other side is true, by considering another

VV-symmetry ¢~ 1 for these two features and applying the same argument. [

Theorem 4.1.4. VV symmetry permutation group results in a weight signature preserving state
partition and hence, VV symmetries also preserve joint probabilities. Specifically, given any VV

symmetry ¢, state s, let W (s) denotes the weight signature of state s, then, we have W (s) =

W(o(s)) and P(s) = P(¢(s)).

Proof. The proof to this theorem is exactly the same as for variable and contextual symme-
try (theorem 2.4.2) provided lemma 4.1.1 holds true. Since, we have proved the lemma, the
weight-signature is preserved. Then, if weight-signature of two states s and s’ are same, then,
probabilities of those two state are equal by theorem 2.4.2.

]

4.1.1 Computing Variable-Value Symmetries

We now adapt the procedure in Section 2.2.2 to compute VV symmetries in multi-valued do-
mains. For a PGM G with clausal theory or conjunctive theory (as before), we construct a
colored graph Gy = T'(G) with a node for each variable-value pair. We also have a node for
each feature, which is connected to the specific VV nodes it contains. We need to additionally
impose a mutual exclusivity constraint to assert that a variable can only take exactly one of
its many values. This is accomplished by adding exactly-one features with co weight between

all values of each variable. When assigning colors to each node, we assign all values of any



Variable-Value and Non-EquiCardinal Symmetries in PGMs 63

variable the same color, as opposed to different values getting different colors. This allows
the isomorphism solver to attempt discovering symmetries between different value nodes. As
before, all features with the same weight get the same color. Figure 4.1 illustrates this on G;
where Variable symmetry assigns different colors to 0 and 1 while VV-Symmetry assigns a
single color (green) to both 0 and 1 assignments of all variables.

We run Saucy [Darga et al., 2008] over Gy (G) to compute its automorphism group via a
set of permutations. These permutations are valid VV-permutations (by construction of Gy V),

and, collectively, represent a VV automorphism group of G.

Theorem 4.1.5. Any permutation ¢ that preserves graph isomorphism in Gyy = T'(G) is a
valid VV-permutation for G.

Proof. Any permutation ¢ that preserves graph automorphism in the graph Gy creates a map-
ping between features such that same weight features are mapped to same weight features, i.e.
graphical model is preserved. Further, the feature having infinity weight (mutual exclusiveness)
between variables ensure that all values of a variable are mapped to all values of another vari-
ables. This is similar to valid VV permutation. Hence, restricting the phi obtained from graph
automorphism to variable-value pairs results in a valid VV permutation which preserves the
original graphical model.

[

Theorem 4.1.6. The automorphism group of colored graph Gy = T'(G) constructed above

computes a VV-automorphism group of graphical model G.

Proof. As per theorem 4.1.1, every permutation in Gy gives rise to an analogous valid VV
permutation. Since the permutations of Gy form a group, it also gives rise to an analogous a
VV-automorphism group of graphical model G (since the same set of permutations are obtained
in two cases).

[

4.2 Non-Equicardinal (NEC) Symmetries

While VV symmetries can compute many new symmetries compared to variable symmetries,
they only consider mapping between equicardinal variables. In this section, we will deal with
symmetries which can be present across variables having different domain sizes. Consider the
following example graphical model G5 with two features: (1)w: A=1Q2)w: B=1V B = 2.
Let A and B have the domains D4 and Dp, respectively, specified as D4 = {0,1} and D =
{0,1,2}. Clearly, there is no VV symmetry between A and B since they have different domain



64 Variable-Value and Non-EquiCardinal Symmetries in PGMs

w: A=0 w: A=0

w: B=1V B=2 u w: B=1
e @ e VV Symmetry between A and B

No Symmetry between A and B

Figure 4.2: (a)Unreduced multi-valued domain G5 (b) Reduced multi-valued domain G5

sizes. But intuitively, the two states given as [(A, 1), (B,0)] and [(A,0), (B, 1)] are symmetric
to each other since in each case, exactly one of the two features having the same weight is
satisfied. Similarly, for [(A,1),(B,0)] and [(A,0), (B,2)]. Further, it is easy to see that the
two values of B = 1 and B = 2 are symmetric to each other in the sense states of the form
[(A,v), (B, 1)] have the same probability as the states [(A, v), (B, 2)] where v € {0, 1}.

We will combine the above two ideas together to exploit symmetries using domain reduc-
tion. We first identify all the equivalent values of each variable and replace them by a single
representative value. In this reduced graphical model, we then identify VV symmetries and
finally translate them back to the original graphical model. In the following, we will assume
that we are given a graphical model G defined over a set of n variables X where each X; € X
takes values from a domain D);. Further, we will use the symbol D = Dy x D, - - - D,, to denote

the cross product of the domains.

Definition 4.2.1. Consider a variable X; € X and let v,v' € D,. Let ¢, denote a VV
permutation which maps the VV pair (X;,v) to (X;,v') and back. For all the remaining VV
pairs (Xy, v"), ¢! ., .. maps the pair back to itself. We refer to ¢! ,. ., as a value swap permutation

VU
for variable X,.

In the example above, ¢F ., is a value swap permutation for B which permutes the variable
assignments B = 1 and B = 2, and keeps the remaining variable assignments, i.e., B = 0 and
A =1, fixed.

Definition 4.2.2. A value swap permutation ¢' ., is a a value swap symmetry of G if it maps
G back to itself.

In our running example, ¢2 ., is a value swap symmetry of Gg. Next, we show that the
set of all value swap symmetries corresponding to a variable X; divides its domain D); into

equivalence classes.

Definition 4.2.3. Given a graphical model G, we define a relation S'S; (swap symmetry) over
the set D; x D; as follows. Given v,v' € D;, (v,v') € SS;if ¢! ... is a value swap symmetry
of G.



Variable-Value and Non-EquiCardinal Symmetries in PGMs 65

It is easy to see that relation S'S; is an equivalence relation and hence, partitions the domain
D; into a set of equivalence classes. Given a value v € D;, we choose a representative value
from its equivalence class based on some canonical ordering. We denote this value by rep;(v).
Next, we will define a reduced domain D!? obtained by considering one value from each

equivalence set.

Definition 4.2.4. Let SS; divide the domain D; into r equivalence classes. We define the re-
i
equivalence class. We will use D% = DI x DIt x ... DE to denote the cross product of the

duced domain DI as the r-sized set {v:}j—1 where v} is the representative value for the gt

reduced domains.

Revisiting our example, the reduced domain for B is given as D% = {0, 1}. Next we define

a reduced graphical model Gt over the reduced set of domains { D} ;.

Definition 4.2.5. Let G be a graphical model with the set of weighted features {w;, f;}. Let
X; = v be a variable assignment appearing in the Boolean expression for f;. We construct a
new feature fj’ by replacing every such expression X; = v by false (and further simplifying the
expression) whenever v # rep;(v). If v = rep;(v), then we leave the assignment X; = v in f;
as is. The reduced G is the graphical model having the set of features {w;, f]’} defined over
the set of variables X with X; having the domain DI

Intuitively, in G¥, we restrict each variable X; to take only the representative value from
each of its equivalence classes. In our running example, the reduced graphical model is given
as {w: A = 0; w: (B = 1)V false} which is same as {w: A = 0; w: B = 1}. Since the
domains have been reduced in G, we may now be able to discover mappings which were not
possible earlier. For instance in our running example, we now have a VV symmetry ¢ which
maps (A4, 0) to (B, 1) and back.

Let the joint distributions specified by G and G¥ be given by P,; and Pr, respectively. The

next theorem describes the relationship between these two distributions.

Theorem 4.2.1. Let G be a graphical model and let G* be the corresponding reduced graphical
model. Consider a state s specified as { X;,v;}?_, where each v; € DE. By definition, v; € D;.
We claim that Pgr(s) = k * Pg(s) where k is some constant k > 1 independent of the specific

state s.

Proof. Note that the reduced graphical model G* is emulating the distribution specified by G
where the space of possible variable assignments is now restricted to those belonging to the
representative set, i.e., for each variable X; the allowed set of values is now DF = {v;|v; =
rep;(v),v € D;}. Therefore, G® can be thought of as enforcing a conditional distribution over

the underlying space given the fact that assignments can now only come from cross product set
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DE. Recall that state s is valid assignment in the original as well as the reduced graphical model.
Therefore, we have Pgr(s) = Pg(s|s € D?) = Pg(s)/P;(s € D). Here, the denominator
term Pg(s € D) is simply the probability that a randomly chosen state s in the original
distribution belongs to the restricted domain set. Clearly, this is independent of the state s and
let this given as 1/k, where k£ > 1 is a constant independent of s. Then, Pgr(s) = kxPg(s). [

Above theorem gives us a recipe to discover additional symmetries across variables having
different domain sizes. Let s = {X;,v;}", be a state in G. Let rep(s) denote the representative
state for s given as {(X;, rep;(v;) }1,).Following steps describe a procedure to get a new state

s’ symmetric to s using the idea of domain reduction.

Procedure NonEquiCardinalSym:

 Let u = rep(s) denote the representative state for s.

 Apply a VV symmetry ¢(u) over u in the reduced graphical model. Resulting state u’

is symmetric to u in G

* Apply a series of n value swap symmetries of the form qbf}; > OVET state u’, one for each

variable X; such that X; = v} in v/, v/ € D,. Resulting state s’ is symmetric to s in G.

Definition 4.2.6. Let T be a permutation over the state space S of G defined using the Procedure
NonEquiCardinalSym, i.e., 7(s) = ¢ 0 Z;_llﬁv;{,_l (++ Dur sy (07 (rep(s))) -+ ), where

of is a VV symmetry of G® and each ¢f},_ v 18 a value swap symmetry for variable X; in G .

We refer to T as a non-equicardinal symmetry of G.

Unlike VV symmetries whose action is defined over a VV pair, non-equicardinal symmetries
directly operate over the state space. Their transformation of the underlying graphical model
is implicit in the symmetries that compose them. Finally, we need to show that action of non-

equicardinal symmetries indeed results in states which have the same probability.

Theorem 4.2.2. Let T be a non-equicardinal symmetry of a graphical model G. Then, Pg(s) =

Pg(7(s))-

Proof. Let s = 7(s). Let u = rep(s). Since v’ is obtained by application of VV symmetry
¢"(u) in G¥, we have PZ(u) = PZ(u). Using Theorem 4.2.1, this implies that Pg(u) =
(1/k) * Pgr(u) = (1/k) * Pgr(u') = Pg(u') for some constant k. Hence, u and «’ have the
same probability under Fy.

Since u = rep(s) can be obtained by application of n value swap symmetries over s (one
for each variable), Pg(s) = Pg(u). Similarly, since s is obtained by an application of n
value swap symmetries over u/, we have Pg(u') = Pg(s). Combining this with the fact that,
Pg(u) = Pg(u'), we get Pg(s) = Pg(s'). N
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4.2.1 Computing Non-Equicardinal Symmetries

We adapt the procedure in Section 4.1.1 by running graph isomorphism over a series of two
colored graphs. Our first colored graph is constructed as in Section 4.1.1, except that all features
are given different colors. This disallows any mapping between (X;, v;) and (X, v;) for X; #
X, and only allows mapping between different values of a single variable. For example, in the
running example, this would determine that (B, 1) and (B, 2) are symmetric. We then retain
only the representative value for each equivalent set of VV pairs, and removes nodes and edges
for other values.

We take this reduced colored graph and recolor all mutual exclusivity features with a single
color. We run graph isomorphism again to obtain the VV symmetries of the reduced model.
These permutations together with the single-variable permutations from the previous step gives

the non-equicardinal symmetries of the original model.

4.3 MCMC with VV & NEC Symmetries

Recall from Section 2.2.3 that variable symmetries are used in approximate inference via the
Orbital MCMC algorithm. It alternates original MCMC move with a symmetry move, which
uniformly samples from the orbit of the current state. We first observe that the same algorithm
will work for VV symmetries computed in Section 4.1.1, except that the orbital move will now
sample from the orbit induced by VV permutations — we call this algorithm VV-Orbital MCMC.

We now consider the case of non-equicardinal symmetries in multi-valued PGMs. The
main idea from Orbital MCMC remains valid — we need to alternate between original chain
and symmetry move. However, sampling a random state from an orbit is tricky now, because a
non-equicardinal orbit may have a two-level hierarchical structure — it is an orbit over suborbits.
The top level orbit is in the reduced model and is an orbit over representative states. At the bot-
tom level, each representative state may represent multiple states via application of a variable
number of value-swap symmetries.

As an example, consider the state partition in our running example, as illustrated in Figure
4.3. Each orbit is shown by a unique color, and suborbits by large ovals. The green orbit (top
level) has two representative states (0,0) and (1,1) in the reduced model. If we make an orbital
move in the reduced model, we can easily pick a representative state uniformly at random.
However, the state (1,1) has a suborbit — it further represents two states in the original model,
(1,1) and (1,2), via value-swap symmetries on variable b. Our sampling goal is to pick uniformly
at random from an orbit in the original model, which means we need to pick a representative
state in the reduced model proportional to the size of suborbit it represents. Once a suborbit is

picked, we can easily pick a state uniformly at random from within it. To pick a representative
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Figure 4.3: State Partition for Toy Example §5. Same Colored States are in same orbit. Large
Ovals show sub-orbits and representative states of sub-orbits are with dark outline.

proportional to the size of the suborbit, we use Metropolis Hastings in the reduced model — we
name the resulting algorithm NEC-Orbital MCMC.

Let ¢(s) represent the cardinality of the suborbit of state s, i.e., the number of states for
which the representative state is the same as that of s: |{s'|rep(s’) = rep(s)}|. Let ¢'(s)
represent the number of states in the orbit of s which differ from s at most on the value of X ,
ie., [{s'|rep(s’) = rep(s),s.X; = s'.X;Vj # i}|, where s.X; represents the value of X in s.

Given a Markov chain M over a graphical model G, a sample from s; to s;1 in NEC-Orbital
MCMC is generated:

* Generate s, by sampling from transition distribution of M starting from s;.

e Let u; = rep(s;). Sample u} (in G*) from the orbit T4z (u;) via a Metropolis Hastings

step using the uniform proposal distribution ¢(-) = | and desired distribution

1
[PTICAIE
p(-) o< e(uy).

 Apply a series of n value swap symmetries of the form ¢’ over state u;, one for

117 1
O R

each variable X;, where u}.X; = v}, and v}, is chosen uniformly at random from the

set of values equivalent with v}* with probability ( T This is equivalent to sampling

uniformly from the suborbit of w;.

Notice that sampling from the proposal distribution (uniform) from an orbit is easily ac-
complished by Product Replacement Algorithm [Pak, 2000]. MH accepts or rejects the sample
with an Acceptance probability A, which can be computed by MH’s detailed balance equation:

Alu, — ) = min (
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The second equality above follows form the fact that ¢(.) is a uniform proposal.

Let the transition probability from s; to s, ; in NEC-Orbital MCMC be given by TVEC (s, —
Se+1)- And, let T5(s} — s;41) denote the transition probability because of the last 2 steps given

in Section-5. Then, we can write TNEC as:

TNFPC (s, — s141) = Z TM (s, — s)) - To(s), — 5441)

SQEFq)(St+1)

where I'¢(s;,1) denotes the orbit of s, ; with respect to the original domain

Obeying the notation in Section 5, u; = rep(s;) and u} = rep(s;+1). Also, since the last
step (given in Section 5) is equivalent to sampling s;;; uniformly at random from the sub-orbit

TMH

uy, and, if we represent as transition probability for the second step, we get:

To(sy = sip1) = T (g — uf) - Plsigaluf)
1

:TMH /_> AW
(ut ut) C(U;’)

Therefore, we get:

;

1 / " 1 . , "
<|F<I>R(u;)| . A(ut - Ut)> . c(uy)’ if Uy 7& Uy

TQ(S; — St+1) =

1 1 / 1 . !
\ <|F;R(u;>| el () Tor ()] (1 —Aup — Z>>> oy Hu =

Having defined 75, concretely, we show that it obeys detailed balance.

Lemma 4.3.1. Vs,Vsy such that uy = rep(s1),us = rep(ss) and Ugr(uy) = Tgr(ug), we
have:

T2(51 — 82) = T2(82 — 51)

This lemma basically shows that T obeys detailed balance with respect to the uniform distri-

bution over states in the (original) orbit of s, and ss.
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Proof. Case 1: u; # us

T3t 59 = (e 40~ ) g
—\r;(um e (1 Z%) c<i2> ‘|r@R1<u1>| mm(c(;),c(;))

Case 2: u; = uo
It trivially holds for this case because the expression of 75 does not depend on the states s; and
5o but just their sub-orbit (which is the same in this case).
Now, let 7 denote the unique stationary distribution of the Markov Chain M. We show that

TNEC also has 7 as its stationary distribution, i.e. for any state s € S, we show that:

Z m(s0) - TVFC (59 — s)
spES

Having shown that, 75 obeys detailed balance, we show that NEC-Orbital Markov Chain

converges to the same stationary distribution as original distribution.

Theorem 4.3.1. The Markov Chain constructed by NEC-Orbital MCMC converges to the

unique stationary distribution of original markov chain M.

Proof. Now, let 7 denote the unique stationary distribution of the Markov Chain M. We show

that TVEC also has 7 as its stationary distribution, i.e. for any state s € S, we show that:

m(s) = Z m(sg) - TVEC (59 — s)

S0ES



Variable-Value and Non-EquiCardinal Symmetries in PGMs 71

Starting from RHS,
— Z m(sg) - TVEC (59 — 5) “4.1)
S0ES

= mlso) | D, TY(s0 = sp) - Talsy = s) (4.2)

S0ES 86€F<1>( )
— Z Z H(sg — sp) - Ta(sy — 5) (4.3)

S0€S s €la(s)
=Y Y w(sy) - TM(sh — so) - Tals, — s); (detailed balance of 7") (4.4)
S0€S s €ls (s)

_ Z Z ) - TM(sh, — s0) - Ta(s}y — s); s, and s are in same orbit) 4.5)

S0ES s(Els(s)

s) - Z Z TM (s} — s0) - To(sh — 8) (4.6)

S0€ES s(€lp(s)

=m(s)- > | DT (sh— s0)| - Talsh — 9) (4.7)

s0€lg(s) LsoES
=m(s)- Y Ta(sh—s) (4.8)

syl s (s)
=m(s) - Z Ty(s — sp); because of the lemma 4.9)
sp€l s (s)

—n(s)-1  (4.10)
=LHS (4.11)
(4.12)
Hence, proved. [

4.4 Experiments

We empirically evaluate our extensions of Orbital MCMC for both Boolean and multi-valued
PGMs. In both settings, we compare against the baselines of vanilla MCMC, and Orbital
MCMC [Niepert, 2012]. In all orbital algorithms including ours, the base Markov chain M
is set to Gibbs. We build our source code on existing code of Orbital MCMC.? It uses the
Group Theory package Gap [GAP, 2015] for implementing the group-theoretic operations in

the algorithms. We release our implementations for further research. 3 All our experiments

Zhttps://code.google.com/archive/p/lifted-mcmc/
3 Available at https://github.com/dair-iitd/nc-mcme
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are performed on Intel core i-7 machine. All our reported times include the time taken for
computing symmetries.

Our experiments are aimed to assess the comparative value of our algorithms against base-
lines in those domains where a large number of symmetries (beyond count symmetries) are
present. To this end, we construct two such domains. The first is a simple Boolean domain that
shows how simple value renaming can affect baseline algorithms. The second is a multi-valued
domain showcasing the potential benefits of non-equicardinal symmetries. The domains are:

Value-Renamed Ring Message Passing Domain: In this simple domain, NV people with
equal number of males and females are placed in a ring structure alternately with every male
followed by a female, and they pass a bit of message to their immediate neighbor over a noisy
channel. If X; denoted the bit received by the i*" person, then we would have a formula for
PGM X; — X, with weight w; if 7 is a male and weight w, if 7 is female. As a small
modification to this domain, we randomly rename some X;s to mean —bit received by that
agent, and change all formulas analogously. All the symmetries in the original ring should
remain after this renaming. Our experiments test the degree to which the various algorithms are
able to identify these.

Student-Curriculum Domain: In this multi-valued domain, there are K students taking
courses from |A| areas (e.g., theory, architecture, etc.). Each area a € A has a variable number
of N(a) courses numbered 1 to N(a). Each student has to fulfill their breadth requirements
by passing one course each from any two areas. A student has no specific preference to which
of the N (a) courses they take in an area. However, each student has a prior seriousness level,
which determines whether they will pass any course. This scenario is modeled by defining
a random variable F;,, which is a multi-valued variable where value 0 denotes that student s
failed the course in the area a, and value i € {1 : N(a)} denotes which course they passed. The
weight for failing depends on the student but not on area. Finally, the variable Cy,, denotes
that s completed their requirements by passing courses from areas a and a’.

The Curriculum domain is interesting, because, for a given s, various values of P, other
than O are all symmetric for all areas. And once, all P;,s are converted to a representative value
in the reduced model, all areas become symmetric for a student.

We compare different algorithms by plotting the KL-divergence of true marginals and an
algorithm’s marginals with time. True marginals are calculated by running Gibbs sampling for
a sufficiently large duration of time. Figure 4.5 compares VV-Orbital MCMC with baselines on
the message passing domain. The dramatic speedups obtained by VV-Orbital MCMC under-
scores Orbital MCMC’s inability to identify the huge number of variable-renamed symmetries
present in this domain, whereas VV-Orbital MCMC is able to benefit from these tremendously.

Before describing results on Curriculum domain, we first highlight that, out of the box,

Orbital MCMC cannot run on this domain, because both its theory and implementation have
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only been developed for Boolean-valued PGMs. To meaningfully compare against Orbital
MCMC, we first binarize the domain, by converting each multi-valued random variable P,
into many Boolean variables Pi,., one for each value c. We need to add an infinite-weighted
exactly-one constraint for each original variable before giving it to Orbital MCMC. A careful
reader may observe that this binarization is already very similar to the VV construction of
Section 4.1, but without non-equicardinal symmetries. Thus, this is already a much stronger
baseline than currently found in literature.

Figure 4.4 shows the results on this domain. NEC-Orbital MCMC outperforms both base-
lines by wide margins. Orbital MCMC does improve upon vanilla Gibbs since it is able to find
that all P;,.s for different cs are equivalent, however, it is unable to combine them across areas.

In domains where symmetries beyond count symmetries are not found, the overhead of our
algorithms is not significant, and they perform almost as well as (binarized) Orbital MCMC
(e.g., see Figure 4.5(b)). This is also corroborated by the fact that the time for finding symme-
tries is relatively small compared to the time taken for actual inference on both the domains.
Specifically, this time is 0.250 sec and 0.009 sec for curriculum and ring domains, respectively.

In summary, both VV-Orbital MCMC and NEC-Orbital MCMC are useful advances over
Orbital MCMC.

4.5 Conclusion and Future Directions

Existing lifted inference algorithms capture only a restricted set of symmetries, which we define
as count symmetries. To the best of our knowledge, this is the first work that computes sym-
metries beyond count symmetries. To compute these non-count symmetries, we introduce the
idea of computation over variable-value (VV) pairs. We develop a theory of VV automorphism
groups, and provide an algorithm to compute these. These can compute equicardinal non-count
symmetries, i.e., between variables that have the same cardinality. An extension to this allows
us to also compute non-equicardinal symmetries. Finally, we provide MCMC procedures for
using these computed symmetries for approximate inference. In particular, the algorithm to use
non-equicardinal symmetries requires a novel Metropolis Hastings extension to existing Orbital
MCMC. Experiments on two domains illustrate that exploiting these additional symmetries can
provide a huge boost to convergence of MCMC algorithms.

We believe that many real world settings exhibit VV symmetries. For example, in the
standard Potts model used in Computer Vision [Koller and Friedman, 2009], the energy function
depends on whether the two neighboring particles take the same value or not, and not on the
specific values themselves (hence, 00 would be symmetric to 11). Exploring VV symmetries in
the context of specific applications is an important direction for future research.

We will also work on extending the theoretical guarantees of variable symmetries [Niepert,
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2012] to VV symmetries. Several notions of symmetries already exist in the Constraint Sat-
isfaction literature [Cohen et al., 2006]. It will be interesting to see how our approach can be

incorporated into the existing framework of symmetries in CSPs.
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Chapter 5
Block-Value Symmetries

Permutations over variables [Niepert, 2012] and over variable-value (VV) pairs [Anand et al.,
2017] have been studied, with latter being a generalization of the former, capturing many more
state symmetries. While more general, VV permutations clearly do not capture all possible state
symmetries in a domain. For example, state s; = (0,0, 0,0) is symmetric to s, = (0,1,1,1) in
Figure 5.1(b), but VV permutations cannot represent it.

A natural question arises: are there more general representations which can capture (a subset
of) these larger set of symmetries? We note that the problem of computing all possible symme-
tries is intractable since there is an exponential number of permutations over an exponentially
large state space, each of which could be a symmetry (or not). Nevertheless, we hope there
are representations which can capture additional symmetries compared to current approaches
in bounded polynomial time. More so, it would be interesting to come up with a representation
that enables computation of larger and larger sets of symmetries, while paying additional costs,

which could be controlled as a function of a parameter of the representation.

As a significant step toward this research question, we develop the novel notion of sym-

metries defined over block-value (BV) pairs. Here, a block is a set of variables, and its value

X,= X,=1 (0] X,= X,=1 (0] X,= X,=1 (0]
0 0 a 0 0 a 0 0 b
0 1 b 0 1 b 0 1 d
1 0 c 1 0 c 1 0 c
1 1 c 1 1 d 1 1 a

(a) (b)

Figure 5.1: Block-Value Symmetries (a) BV Symmetries within a block (b) BV Symmetries
across blocks

7
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is an assignment to these variables. Intuitively, BV pairs can capture all such VV pairs that
are not permuted independently, instead, are permuted in subsets together. For example, it can
capture symmetry of states s; and s, via a BV permutation which maps {(X7,0), (X3,0)} <
{(X5,1), (X4, 1)} and {(X1,0), (X2, 1)} <> {(X5,0), (X4,0)}.

Clearly, symmetries defined over BV pairs are a strict generalization of those over VV pairs,
since each VV pair is a BV pair with a block of size 1. Our blocks can be of varying sizes and
the size of each block essentially controls the set of symmetries that can be captured; larger the
blocks, more the symmetries, coming at an additional cost (exponential in the max size of a
block).

In this chapter, we formally develop the notion of symmetries as permutations defined over a
subset of BV pairs. Some of these permutations will be invalid (when blocks overlap with each
other) and their application may lead to inconsistent state. In order to ensure valid permutations,
we require that the blocks come from a disjoint set of blocks, referred to as a block partition.
Given a block partition, we show how to compute the corresponding set of symmetries by
reducing the problem to one of graph isomorphism. We also show that our BV symmetries can
be thought of as VV symmetries, albeit over a transformed graphical model, where the new
variables represent the blocks in the original graph.

Next, we show that jointly considering symmetries obtained from different block partitions
can result in capturing symmetries not obtainable from any single one. Since, there is an ex-
ponential number of such block partitions, we provide an efficient heuristic for obtaining a
promising partition of blocks, referred to as a candidate set.

Use of BV symmetries in an MCMC framework requires uniform sampling of a state from
each orbit, i.e., a set of symmetric states. This turns out to be a non-trivial task when the or-
bits are defined over symmetries corresponding to different block partitions. In response, we
design an aggregate Markov chain which samples from orbits corresponding to each (individ-
ual) candidate set in turn. We prove that our aggregate Markov chain converges to the desired
distribution. As a proof of the utility of our BV symmetries, we show that their usage results in
significantly faster mixing times on two different domains.

This work was done jointly with Gagan Madan. While the initial idea was developed by
Gagan, Ankit filled in important details, and also contributed to the experiments. The part done

by Gagan appeared in his master’s thesis.

5.1 Block-Value Symmetries

In this section, we will present symmetries defined over blocks of variables, referred to as

BV Symmetries which strictly generalize the earlier notions of symmetries defined over VV
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pairs. As a motivating example, Figure 5.1 shows two Graphical Models §; and Gg. For ease
of explanation these have been represented in terms of potential tables. These can easily be
converted to the weighted feature representation, as defined previously. In Gz, state (1,0) has
the same joint probability as (1, 1) and in Gg, state (0,0, 0, 0) has the same joint probability as
(0,1,1,1). However, none of these can be captured by Variable or VV symmetries.

We start with some definitions.

Definition 5.1.1. Ler B = {X;, X,,..., X, } denote a set of variables (X; € X) which we
will refer to as a block. Similarly, let b = {vy,vs,...,v,.} denote a set of (corresponding)

assignments to the variables in the block B. Then, we refer to the pair (B, b) as a Block-Value
(BV) pair.

Definition 5.1.2. A BV pair (B, b) is said to be consistent with a state s if VX; € B, s(X;) = v;

where v; is the value for variable X; in block B.

Let A}, denote some subset of all possible BV pairs defined over blocks of size less than
equal to r. For ease of notation, we will drop superscript r and denote Aj, as Ay where r is
a pre-specified constant for maximum block size. Then, we are interested in defining permu-
tations over the elements of the set Ay. Considering any set of block-value pairs in Ay and
allowing permutation among them may lead to inconsistent states. Consider a graphical model
defined over four variables: {X;, X, X3, X4}. Let us consider all possible blocks of size < 2.
Then, a BV permutation permuting the singleton block { X; } to itself (with identity mapping on
values) while at the same time, permuting the block { X7, X3} to the block { X5, X, } is clearly
inconsistent since X;’s value can not be determined uniquely. A natural way to avoid this in-
consistency is to restrict each variable to be a part of single block while applying permutations.

Therefore, we restrict our attention to sets of blocks which are non overlapping.

Definition 5.1.3. Let A = {By, By, ..., Br} denote a set of blocks. We define A to be a
partition if each variable X; € X appears in exactly one block in A. For a partition A, we
define the block value set Ay as a set of BV pairs where each block B; € A is present with all

of its possible assignments.

We would now like to define permutations over the block value set Ay, which we refer to
as BV-permutations. To begin, we define the action of a BV-permutation ¢ : Ay, — Ay ona
state s. The action of a BV-permutation ¢ : Ay, — Ay on a state s results in a state 5" = ()
such that V(B, b) € Ay, (B, b) is consistent with s if and only if ¢/(B, b) is consistent with s’

However, similar to the case of VV symmetries, any bijection from A, — Ay may not
always result in a consistent state. For instance, consider a graphical model with 4 variables. Let
the partition A = {(X1, X5), (X3, X4)}. Consider the state s = (0, 1, 1,0). In case 1 is defined
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as ¢({X17 X2}7 {07 1}) = ({Xh X2}7 {17 0}) and ¢({X37 X4}7 {17 0}) = ({Xla XQ}’ {1’ 1})’ the
action of ¢ results in an inconsistent state, since the action of ¢/ would result in a state with X,
equal to both 0 and 1 simultaneously. To address this issue, we define a BV-permutation to be

valid only under certain conditions.

Definition 5.1.4. A BV-permutation ) : Ay — Ay is said to be valid if V(B;, b;) € Ay, ¢(B;, b;) =
(Bj,b;) = Vb, 3V such that 1) (B;, b;) = (Bj, )

VR

Intuitively a BV-permutation ¢ is valid if it maps all assignments of a block B to assign-
ments of a fixed block B’.

Presently, it is tempting to define a new graphical model where each block is a multi valued
variable, with domain of this variable describing all of the possible assignments. This would
be useful in a lucid exposition of symmetries. To do this we must suitably transform the set of
features as well to this new set of variables. Given a block partition A, we transform the set of
features f; such that for each block either all the variables in this block appear in the feature
or none of them appear in the feature, while keeping all features logically invariant. We denote
the set of all variables over which feature f; is defined as V(f;). Further, for a block B; and a
feature f;, let B, =B, — V(f;)ie B, contains the additional variables in the block which are
not part of feature f;.

Definition 5.1.5. Given a variable X;, which appears in a block B; € A and a feature f;,
a block consistent representation of the feature, denoted by f!, is defined over the variables
V(f;)UB,, such that, f}(x;, b)) = f;(x;) where x;, b, denote an assignment to all the variables
in V(f;) and B, respectively.

For instance consider the feature f = (X5). Let the block B; be {(X1, X5)}. Then the
block consistent feature f’is given by f’ = (X1 A Xo) V (=X A Xo).
We extend the idea of block consistent representation to get a partition consistent represen-

tation fj.

Definition 5.1.6. A partition consistent representation of a feature f;, fj is defined by itera-

tively converting the feature f; to its block consistent representation for each X; € V(f;).

The set of partition consistent features {( fj, w;) }7L, has the property that for all B; € A,
By C Var(f;) or ByNVar(f;) = ¢, i.e. all variables in each block either appear completely,
or do not appear at all in any given feature. This property allows us to define a transformed
graphical model C; over a set of multi valued variables ), where each variable Y; € ) represents
a block B; € A. The domain size of Y] is the number of possible assignments of the variables

in the block B;. The set of features in this new model is simply the set of transformed features

{(fj,wj)};il.
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As the blocks are non overlapping, such a transformation can always be carried out.

Since the transformation of features to partition consistent features always preserves logical
equivalence, it seems natural to wonder about the relationship between the graphical models G
and G. We first note that each state s in G can be mapped to a unique state S in G by simply
iterating over all the blocks B; € A, checking which BV pair ( By, b;) is consistent with the state
s and assigning the appropriate value y; to the corresponding variable Y;. In a similar manner,

each state § € G can be mapped to a unique state in s € G.

Theorem 5.1.1. Let s denote a state in G and let § be the corresponding state in G Then, this
correspondence is probability preserving i.e., P(s) = 75(§) where P and P are the distributions

defined by G and G, respectively.

Proof. For every feature f; which holds true in state s, 3 a partition consistent feature fj which
holds true in state § since f; and fj features are logically equivalent. The unnormalized prob-
ability of s is given by e2i=1-m @ifi($) " This expression will evaluate exactly same for s in
transformed graphical model with f; replaced by fj and s replaced by 5 with numerical values

exactly same. Hence, probability is preserved for s and 8, i.e. P(s) = P(3).
[

Similar to the mapping between states, every BV-permutation i) of G corresponds to an
equivalent VV-permutation ngS of G obtained by replacing each BV pair in G by the correspond-
ing VV pair in G (and vice-versa). Since the distributions defined by the two graphical models

are equivalent, we can define BV symmetries in G as follows:

Definition 5.1.7. Under a given partition A, a BV-permutation 1) of a graphical model G is a
BV-symmetry of G if the corresponding permutation g5 under G is a VV-symmetry of G.

We can now state the following results for BV-symmetries.

Theorem 5.1.2. BV-symmetries preserve weight-signature. Also, they are probability preserv-
ing transformations, i.e., for a BV-symmetry 1), P(s) = P(¢(s)) for all states s € S.

Proof. This proof trivially extends using the similar theorem 4.1 for VV-symmetries. BV-
symmetries are obtained by transforming the model and then, applying VV-symmetries over the
transformed model. Since, VV symmetries preserve weight-signature. Hence, BV-symmetries
preserve weight-signature. Further, given two states s and s’ such that s = (), consider their
equivalent states in transformed graphical model G, §and &' respectively. For every 1, there
is a corresponding VV-symmetry ¢ in transformed model. Using theorem 4.1, P(5) = 73(§’ ).
Also, from theorem 5.1.1, P(s) = P(3) and P(s') = P(s'). Hence, P(s) = P(s') and BV-

symmetries are probability preserving transformations. [
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It is easy to that the set of all BV symmetries under a given partition A form a group V.
Similar to the VV orbits, we define the BV orbit of a state s as I'y(s) = {¢(s)|¢ € ¥},
When the partition A is such that each variable appears in a block by itself, all the BV-

symmetries are nothing but VV-symmetries.

Theorem 5.1.3. Any VV-symmetry can be represented as a BV-symmetry for an appropriate
choice of A.

Proof. We can define the A as each variable belonging to a separate block. Then, we can
transform a permutation on variable-values into singleton sets of variables and their values or
blocks and their values. Hence, any VV-symmetry can be seen as BV-symmetry for blocks of

singleton variable sets. ]

Computing BV Symmetries

Since BV symmetry on a graphical model G is defined in terms of VV symmetry of a
transformed graphical model G, BV symmetry can be trivially computed by constructing the
transformed graphical model and then computing VV symmetry on G as described by Anand
etal. [2017].

5.2 Aggregate Orbital Markov Chains

Given a block partition A, BV symmetry group ¥ of G can be found by computing VV symme-
try group @ in the auxiliary graphical model G. We further setup a Markov chain BV-MCMC(«)
over U to exploit BV symmetries where o € [0, 1] is a parameter.

Definition 5.2.1. Given a graphical model G, a Markov chain M and a BV symmetry group ¥,
one can define a BV-MCMC(«) Markov chain M’ as follows: From the current sample s;

a) Sample a state s' from original Markov chain M

b) i) With probability o, sample a state s;.; = Uy(s") uniformly from BV orbit of s' and return
S¢11 as next sample.

ii) With probability 1 — «, set state s;.1 = s’ and return it as the next sample

BV-MCMC(«) Markov chain is defined similar to VV-MCMC except that it takes an orbital
move only with probability « instead of taking it always. For av = 1, it is similar to VV-MCMC,
and reduces to the original Markov chain M for & = 0. When o = 1, sometimes, it is observed
that the gain due to symmetries is overshadowed by the computational overhead of the orbital

step. The parameter o captures a compromise between these two contradictory effects.

Theorem 5.2.1. Given a Graphical Model G, if the original Markov chain M is regular, then,
BV-MCMC(«) Markov chain M, constructed as above, is regular and converges to the unique

stationary distribution of the original Markov chain M.
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Proof. M’ is regular since there is non-zero probability of returning to the same state. Firstly,
M is regular and so, it brings to the same state with non-zero probability. Further, step b brings
to the same state for all values of « since both part 1) and ii) bring to the same state with some
probability (part i i.e B.V orbital step also returns to same state). Hence, M’ is regular and
converges to a unique stationary distribution. We need to prove that it converges to the same
unique stationary distribution of M. Let 7 be unique stationary distribution of M and P be its

transition probability matrix i.e

m(r)P(r — s) (5.1)
=2

res
Let P’ be transition probability matrix of M. Then, we can write P’ as follows:
1

P'(r—s)=a Z )

Pir—s)+(1—a)P(r—s) (5.2)
s'eQ(s) (S)l

where the first first denotes step 1) of b while second part of summation denotes step ii) of b and
Q(s’) denotes BV orbit of s'. We need to prove this :

w(s) =Y _w(r)P'(r —s) (5.3)

res
Taking R.H.S,
1

Y w(r)P(r—s)=> w(r)a > |Q(3)|P(r — Y+ (1—a)P(r—s)] (54

res res s'eQ(s)
=« Z 1/ ZW(T)P(T’—)S (1—-a) Zﬂ' P(r —s) (5.5)

s'eQ(s (S )‘ resS reS
=« Z )+ (1 —a) x7(s) (5.6)
q€Q(s’) (

=axm(s)+(1—a)xn(s)=axmn(s)+ (1 —a) x7(s) =m7(s) (5.7)

The above calculation uses simple algebra and the fact that P has stationary distribution 7.
Hence, M’ converges to the unique stationary distribution 7.
]

It should be noted that two different block partitions may capture different BV symmetries
and hence may have different BV symmetry groups. In order to fully utilize all symmetries
which may be present in multiple block partitions, we propose the idea of Aggregate Orbital
Markov Chain.
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Consider K different block partitions Ay, Ay, ..., Ax. We set up K independent BV-
MCMC(«) Markov chains, where each chain generates samples as per BV-MCMC(«) corre-
sponding to partition Ay. Let these chains be M'y, My, -+ | Mk, and let the corresponding
automorphism groups be Wy, Wy, ... Wi, Given an intermediate state s’, we would like to
sample uniformly from the union of orbits | J, Wx(s’). Since these orbits may overlap with
each other, sampling a state uniformly from the union of orbits is unclear. We circumvent this
problem by setting up a new Markov chain, Aggregate Orbital Markov Chain. This Aggre-
gate Orbital Markov Chain utilizes all available symmetries and converges to the true stationary

distribution.

Definition 5.2.2. Given K different BV-MCMC(«v) Markov chains, M'{, M'y,--- . Mk, an
Aggregate Orbital Markov Chain M* can be constructed in the following way: Starting from
state s; a) Sample a BV-MCMC(«) Markov chain M’y uniformly from M'y, My, -+ M’k b)

Sample a state sy 1 according to M.

Theorem 5.2.2. The aggregate orbital Markov chain M* constructed from K BV-MCMC(«)
Markov chains, M'y, M's, -, M'k, all of which have stationary distribution T, is regular

and converges to the same stationary distribution .

Proof. Given each of BV-MCMC(«) Markov chains M}, are regular, firstly, we prove that the
aggregate Markov chain is regular. In each step of aggregate chain, one of the BV-MCMC(«) is
applied and since, there is non-zero probability of returning to the same state in BV-MCMC(«)
chain, there is non-zero probability of returning to the same state in M* . Hence, aggregate
chain so defined is regular and therefore, it converges to a unique stationary distribution. [Koller
and Friedman, 2009].

The only fact that remains to be shown is that the stationary distribution of M* is 7. Let
T*(s — s') represent the transition probability of going from state s to s’ in aggregate chain
M*. We need to show that

m(s") = Z?T(S) * T*(s — &) (5.8)

seS

Let T),(s — ') represent the transition probability of going from state s to s" in M’y

Zﬂ(s)*T*(s%s’) :ZW(S)*%*ZTk(S—)S,) (5.9)

seS seS k=1

K K
ZZ )+ Ti(s = ') = Z = 7(s) (5.10)
k k=1

Equation 5.9 follows from the definition of aggregate chain while equation 5.10 holds since

M’} converges to stationary distribution 7.
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O

Aggregate Markov chain M* so obtained not only converges to the correct stationary distri-
bution but also results in faster mixing since it can exploit the symmetries associated with each

of the individual orbital Markov chains.

5.3 Heuristics for Block Partitions

We have so far computed BV symmetries given a specific block partition. We now discuss our
heuristic that suggests candidate block partitions for downstream symmetry computation (see
supplementary material for pseudo-code). At a high level, our heuristic has the following two
desiderata. Firstly, it ensures that there are no overlapping blocks, i.e., one variable is always
in one block. Secondly, it guesses which blocks might exhibit BV-symmetries, and encourages
such blocks in a partition.

The heuristic takes the hyperparameter r, the maximum size of a block, as an input. It
considers only those blocks (upto size ) in which for each variable in the block, there exists
at least one other variable from the same block, such that some clause in G contains both of
them. This prunes away blocks in which variables do not directly interact with each other, and
thus are unlikely to produce symmetries. Note that these candidate blocks can have overlapping
variables and hence not all can be included in a block partition.

For these candidate blocks, for each block-value pair, the heuristic computes a weight sig-
nature. The weight signature is computed by multiplying weights of all the clauses that are
made true by the specific block-value assignment. The heuristic then buckets all BV pairs of
the same size based on their weight signatures. The cardinality of each bucket (i.e., the number
of BV pairs of the same size that have the same weight signature) is calculated and stored.

The heuristic samples a block partition as follows. At each step it samples a bucket with
probability proportional to its cardinality and once a bucket is selected, then it samples a block
from that bucket uniformly at random, as long as the sampled block does not conflict with
existing blocks in the current partition i.e., it has no variables in common with them. This
process is repeated until all variables are included in the partition. In the degenerate case, if
a variable cannot be sampled from any block of size 2 or higher, then it gets sampled as an
independent block of size 1. Once a partition is fully sampled, it is stored and the process is
reset to generate another random block partition.

This heuristic encourages sampling of blocks that are part of a larger bucket in the hope
that multiple blocks from the same bucket will likely yield BV symmetries in the downstream
computation. At the same time, the non-conflicting condition and existence of single variable

blocks jointly ensure that each sample is indeed a bona fide block partition.
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Domain Rules Weights | Variables

V x TakesML(x) A GetsJob(x) +wy TakesML(x),
Job Search | V x —TakesML(x) A GetsJob(x) +ws GetsJob(x),

V (x,y) Connected(x,y) A TakesML(x) = TakesML(y) | ws Connected(x,y)

V x Maths(x) A CS(x) +wy

V¥ x Maths(x) A =CS(x) +wWs
Student V¥ x =Maths(x) A CS(x) +ws Maths(x)
Curriculum | V x =Maths(x) A =CS(x) +wy CS(x)

V (x,y) € Friends, Maths(x) = Maths(y) w

Y (x,y) € Friends, CS(x) = CS(y) w

Table 5.1: Description of the two domains used in experiments. A weight of the form +w,
indicates that the weight is randomly sampled for each object.

5.4 Experiments

Our experiments attempt to answer two key research questions. (1) Are there realistic domains
where BV symmetries exist but VV symmetries do not? (2) For such domains, how much faster
can an MCMC chain mix when using BV symmetries compared to when using VV symmetries

or not using any symmetries?

5.4.1 Domains

To answer the first question, we construct two domains. The first domain models the effect of
an academic course on an individual’s employability, whereas the second domain models the
choices a student makes in completing their course credits. Both domains additionally model
the effect of one’s social network in these settings. Table 5.1 specifies the weighted first order
formulas for both the domains. The domains are constructed in such a way that no or limited
VV symmetry is present but the domains exhibit BV symmetries. The aim is to validate that
our approach is really effective if BV symmetry is present in the domain.

Job Search: In this domain, there are N people on a social network, looking for a job.
Given the Al hype these days, their employability is directly linked with whether they have
learned machine learning (ML) or not. Each person z has an option of taking the ML course,
which is denoted by T'akesM L(x). Furthermore, the variable Connected(x, y) denotes whether
two people z and y are connected in the social network or not. Finally, the variable GetsJob(x)
denotes whether = gets employment or not.

In this Markov Logic Network (MLN)[Domingos and Lowd, 2009], each person x par-
ticipates in three kinds of formulas. The first one with weight w; indicates the (unnormalized)
probability of the person getting a job and taking the ML course (T'akesM L(x) AGetsJob(x)).

The second formula with weight w5 indicates the chance of the person getting a job while not
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taking the course (—T'akesM L(xz) A GetsJob(x)). Our domain assigns different weights w;
and ws for each person, modeling the fact that each person may have a different capacity to
learn ML, and that other factors may also determine whether they get a job or not. Finally, z is
more likely to take the course if their friends take the course. This is modeled by an additional
formula for each pair (z, y), with a fixed weight ws.

In this domain, there are hardly any VV symmetries, since every = will likely have different
weights. However there are intra-block BV symmetries for the block (T'akesM L(x), GetsJob(x))
for every x. This is because within the potential table of this block the block values (0, 0) and
(1, 0) are symmetric and can be permuted.

Student Curriculum: In this domain, there are N students who need to register for two
courses, one from Mathematics and one from Computer Science to complete their course
credits. There are two courses (basic or advanced) on offer in both disciplines. Variables
Math(x) and C'S(z) denote whether the student = would take the advanced course in each
discipline. Since courses for Mathematics and CS could be related, each student needs to give
a joint preference amongst the 4 available options. This is modeled as a potential table over
(Math(zx),CS(z)) with weights chosen randomly from a fixed set of parameters. Further,
some students may also be friends. Since students are more likely to register in courses with
their friends, we model this as an additional formula, which increases the probability of regis-
tering for a course in case a friend registers for the same.

In this domain, VV pairs can only capture symmetries when the potential tables (over Math
and C'S) for two students are exactly the same. However, there are a lot more inter-block BV
symmetries since it is more likely to find pairs of students, whose potential tables use the same

set of weights, but in a different order.



88

Block-Value Symmetries

Job Search - People:30, Evidence:0

10.020 : :
g +—4 Vanilla-MCMC
S0.015) =B VV-MCMC
> < < BV-MCMC
3
=
50.0107
=
20.005F
a
-
~
0'0000 2 4 6 8 10 12 14 16 18
Time(s)
(a)
Job Search - People:50, Evidence:0.1

0.05 T r :

g +—4 Vanilla-MCMC

§0.047 E-E VW-MCMC |

p << BV-MCMC

20.03} - 1

'_

=

;0.027

Z

00.01+

-

¥

000 L L L n
0 5 0 1 20 25

Time(s)
(©)

0 05Student Curriculum - Students:1200, Evidence:0
g 44 Vanilla-MCMC
§0.047 ‘|m-m VV-MCMC
p << BV-MCMC
20.03}

’_
s
';0.027
=
00.01+
-
¥4

0.00 :

0 1 2 3 6
Time(s)
(e)

Figure 5.2: BV-MCMC(a =

Job Search - People:50, Evidence:0

10.05
3 4+—4 Vanilla-MCMC
§0.047 m-E VV-MCMC 1
° < < BV-MCMC
20.03} g
[
S
;0.027 g
=
00.01+ g
-
¥
0'000 5 10 15 20 25 30 35 40 45
Time(s)
(b)

Student Curriculum - Students:600, Evidence:0

o
o

‘ 44 Vanilla-MCMC

0.015 B E VV-MCMC

< <« BV-MCMC

KL Div. With True Margs.
o
o
=
(=]

0.005+
0.000
0 3 4
Time(s)
(d)

N ggudent Curriculum - Students:1200, Evidence:0.1
g 3 4+—4 Vanilla-MCMC
§0.047 |m-m vv-MCMC
v |« Bv-MCMC
20.03} : T :

'_
s
';0.02 +
=
00.01+
-}
v

0.00 :

0 1 2 3 6
Time(s)

1) and BV-MCMC(a = 0.02) outperforms VV-MCMC and

Vanilla MCMC on Job Search and Student Curriculum domains respectively with different

size and evidence variations



Block-Value Symmetries 89

Student Curriculum - Students:600, Evidence:0 Job Search - People:50, Evidence:0

0 0.5
§ ----- alpha = 0.01 é’, O alpha = 0.01
20'15 alpha = 0.10|| §04 alpha = 0.104
Py + alpha = 0.50 o « alpha = 0.50
2 —_ = 20.3} —_ = E
|_0 " alpha = 1.00 = : alpha = 1.00
s ] s
'; ;0.2
> >
5005 80.1
- -

v v
0.00 - - 0.0 - - -
0 1 2 3 4 5 6 0 2 4 6 8 10 12 14 16
Time(s) Time(s)
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domain while o = 1 is best in Job-Search domains

5.4.2 Comparison of MCMC Convergence

We now answer our second research question by comparing the convergence of three Markov
chains — Vanilla-MCMC, VV-MCMC, and BV-MCMC(«). All three use Gibbs sampling as the
base MCMC chain. All experiments are done on Intel Core 17 machines. Following previous
work, and for fair comparison, we implement all the three Markov chains in group theoretic
package - GAP [GAP, 2015]. This allows the use of off-the-shelf group theoretic operations.
The code for generating candidate lists is written in C++. We solve graph isomorphism prob-
lems using the Saucy software [Darga et al., 2008]. We release our implementation for future
use by the community .

In all experiments, we keep the maximum block size in a block partition to be two. For
each chain we plot the KL divergence of true marginals and computed marginals for different
runtimes. We estimate true marginals by running the Gibbs sampling algorithm for a sufficiently
long period of time. Each algorithm is run 20 times to compute error bars indicating 95%
confidence interval.

For VV-MCMC and BV-MCMC, the run time on x-axis includes the preprocessing time of
computing symmetries as well. For BV-MCMC, this includes the time for generating candidate
lists, running Saucy for each candidate list, and initializing the Product Replacement algorithm
for each candidate lists. The total preprocessing time for Job Search domain is around 1.6 sec
and for Student Curriculum domain is around 0.6 sec.

Figures 5.2 shows that BV-MCMC substantially outperforms VV-MCMC and Vanilla-MCMC
in both the domains. The parameter « is set to 1.0 for Job Search Domain and 0.02 for Student
Curriculum Domain. Since these domains do not have many VV-Symmetries, VV-MCMC only
marginally outperforms Vanilla MCMC. On the other hand BV-MCMC is able to exploit a con-

siderably larger number of symmetries and leads to faster mixing. BV-MCMC scales well with

Thttps://github.com/dair-iitd/bv-mcmc
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domain size, significantly outperforming other algorithms as domain size is changed from 30
to 50 people in Job Search and 600 to 1200 in Student Curriculum domain. This is particularly
due to more symmetries being captured by BV-MCMC for larger domain sizes. 2

Figure 5.2(c) and 5.2(f) plot the variation with introduction of 10% evidence in each domain.
BV MCMC still outperforms VV-MCMC and Vanilla-MCMC and is robust to presence of
evidence.

Finally, we also test the sensitivity of BV-MCMC with the o parameter. Figure 5.3 plots
this variation on both these domains. We find that for Job Search, a high value o = 1 performs
the best, whereas a lower value is better in Student Curriculum. This is because Job Search
mostly has intra-block BV symmetries, which can be computed and applied efficiently. This
makes sampling an orbital step rather efficient. On the other hand, for Student Curriculum,
the inter-block symmetry between different pairs of people makes the orbital step costlier, and

reducing the fraction of times an orbital move is taken improves the overall performance.

5.5 Conclusion

Permutations defined over variables or variable-value (VV) pairs miss a significant fraction of
state symmetries. We define permutations over block-value (BV) pairs, which enable a subset of
variables (block) and their assignment to jointly permute to another subset. This representation
is exponential in the size of the maximum block r, but captures more and more state symmetries
with increasing 7.

Novel challenges arise when building the framework and algorithms for BV permutations.
First, we recognize that all BV permutations do not lead to valid state symmetries. For sound-
ness, we impose a sufficient condition that each BV permutation must be defined on blocks
with non-overlapping variables. Second, to compute BV symmetries, we describe a graph-
isomorphism based solution. But, this solution expects a block partition as an input, and we
cannot run it over all possible block partitions as they are exponential in number. In response,
we provide a heuristic that outputs candidate block partitions, which will likely lead to BV sym-
metries. Finally, since the orbits from different block partitions may have overlapping variables,
they cannot be explicitly composed in compact form. This makes it difficult to uniformly sam-
ple from the aggregate orbit (aggregated over all block partitions). To solve this challenge, we
modify the Orbital MCMC algorithm so that in the orbital step, it uniformly samples from the
orbit from any one of the block partitions (BV-MCMC). We prove that this aggregate Markov
chain also converges to the true posterior.

Our experiments show that there exist domains in which BV symmetries exist but VV sym-

2Most of the error-bars are negligible in size.
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metries may not. We find that BV-MCMC mixes much more rapidly than base MCMC or
VV-MCMC, due to the additional mixing from orbital BV moves. Overall, our work provides a
unified representation for existing research on permutation groups for state symmetries. In the
future, we wish to extend this notion to approximate symmetries, so that they can be helpful in

many more realistic domains as done in earlier works [Habeeb et al., 2017].
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Chapter 6
Complete Space of State Symmetries

Having introduced multiple novel notions of state symmetries, we analyze the complete space
of all state symmetries in this chapter. As discussed previously, variable symmetries defined
as permutation over variables are simplest of state symmetries. This was generalized to VV
symmetries by defining permutations over variable-value pairs. We also proposed contextual
symmetries which arise only under a given context. We further proposed BV symmetries which
defined permutation over Block-value pairs. To make things complete, we begin by defining
a class of BV-K symmetries and then analyze the relationship between all these sets of sym-
metries. The goal of this chapter is to develop a complete hierarchy of state symmetries in
PGMs. In this chapter, we assume that contextual symmetries are defined for the context size
of 1 though ideas can be extended to context having multiple variables. We begin by defining a

class of BV-K symmetries.

Definition 6.0.1. Given a graphical model G, BV-K symmetry class includes all the BV sym-

metries defined over block partitions having block-size less than or equal to K

Going from bottom to top, we know that variable symmetries are simplest notion of state
symmetries. According to theorem 3.1.1, contextual symmetries subsume variable symmetries.
Also, as per theorem 4.1, VV-symmetries subsume variable symmetries. The following theorem

relates the relationship between VV-symmetries and BV-symmetries.

Theorem 6.0.1. Given a graphical model G, VV-symmetry class is equivalent to the BV-1 sym-

metry class.

Proof. BV-1 symmetry class is identified over block-partitions having maximum block size 1.
This means each block has a singleton variable and symmetries are defined over this single
variable and its value which is precisely the class of VV symmetries. Hence, they result in

equivalent state-partitions. [
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The following theorem relates the relationship between BV-(K-1) symmetry class and BV-K

symmetry class.

Theorem 6.0.2. Given a graphical model G, BV-K symmetry class subsumes all symmetries
identified by BV-(K-1) symmetry class.

Proof. This simply results from the definition of BV-K symmetries. Since, BV-K symmetries
are defined over block-partitions having blocks of size less than or equal to K. Hence, BV-
symmetries are also defined over block-partitions which have block-size less than or equal to
(K-1). This is the definition of BV-(K-1) symmetries. Hence, BV-K symmetries subsumes all
symmetries identified by BV-(K-1) symmetries. [

Next, we prove that BV symmetries with block-size equal to the number of variables capture

the coarsest weight-signature preserving state-partition.

Theorem 6.0.3. Given a graphical model G, the state partition resulting from BV-N symmetries

results in the coarsest weight-signature preserving state partition.

Proof. BV-symmetries preserve weight signature as per theorem 5.1 and hence, they identify
weight-signature preserving state partition. To prove BV-N partition is coarsest, we need to
prove that any two states, having same weight-signature can be expressed as BV-N symmetry.
Consider the two states s and s’ having same weight-signature /. Now, we can define a BV-N
symmetry 1) which captures exactly this state equivalence. In BV-N, symmetry class consider
the partition where there is only one block of size /N. Now, each state in itself is a BV pair.
We define 1) such that s is mapped to s’ and vice-versa and rest all other, states or BV pairs
have identity mappings. Hence, all states having same weight-signature can be expressed as
a BV-N symmetry. Therefore, BV-N captures the coarsest weight-signature preserving state

partition. 0

Although BV-N symmetries can represent the coarsest weight-signature preserving state
partition, in the current setup BV-N symmetries will require explicitly enumerating exponen-
tially large number of states. This is because for any given K, BV-K has to worry about permu-
tation over all possible values that a K-sized block can take and clearly, number of such values
is exponential in K. This points us to multiple open questions: a) An important research ques-
tion is to explore whether BV-N symmetries can be represented and computed in a tractable
fashion. The first and foremost thing could be to explore the specific conditions which must be
met that render BV-N symmetries tractable. b) Secondly, we would to explore if a bigger block
size symmetry can be captured by combining two smaller block size BV symmetries? A related
question is how to combine symmetries from two different 2-BV partitions such that resulting

symmetric group has compact representation? c) Lastly, it would be interesting to explore the
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Figure 6.1: Hierarchy of different types of state symmetries

sampling approach where one samples a symmetry on the fly without explicitly computing the
complete symmetric group. We believe answering these questions satisfactorily will result in
developing further theoretical insights as well as new algorithms to compute symmetries.

The complete hierarchy looks as shown in the Figure 6.1. The innermost core consists of
variable symmetries which lies inside VV-symmetries or BV-1 symmetries. BV-1 symmetries
is successively enveloped by BV-2, BV-3 .... BV-K symmetries where BV-K strictly subsumes
BV-(K-1) symmetry class. The outermost layer is of BV-N symmetries which captures the
coarsest weight-signature preserving state partition. Further, we denote the contextual symme-
tries with the shaded region which has slightly complex relationship with other classes.

Relations with Contextual Symmetry: It is interesting to see how contextual symmetry
is placed in this hierarchy. Since, BV-N symmetries capture the coarsest weight-signature pre-
serving state partition, it subsumes contextual symmetries as well. But, contextual symmetries
with a single-variable context is able to capture symmetries which cannot be identified even
with a BV-(N-1) symmetry having block-sizes less than or equal to NV — 1. Consider a graphical
model G having N-variables X = {X;, X5 -- Xy} and N — 1 features all having different
weight fi = {wy : Xi V Xo}, fo = {ws + Xi V X5} ---fyo1 = {wyor © Xi VvV Xva}
Since, all variables have different weights, if X; = 0, then, there is no symmetry in reduced
model, all variables (X5, X3 - -+ X are different. But there is are many contextual symmetries
for X; = 1, since, all variables are identical. This cannot be captured by BV-(N-1) symmetries.
Hence, contextual symmetries are very powerful. Even with a single variable context, they are

able to capture some symmetries which cannot be identified even with BV-(N-1) symmetries.
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Further, consider another graphical model G’ which has 5 variables X = { X7, X5, X3, Xy, X5}.
The features are defined such that for X; = 0, X5 and X3 permute their values and similarly,
for X; = 0, X, and X5, permute their values. These symmetries can be clearly captured by
BV-5 symmetries but intuitively, we will like to have these identified by BV-3 since at maxi-
mum 3 variables interact together in a feature. This contextual symmetry cannot be identified
with BV-3 since context variable is global and shared across multiple blocks while the current
BV framework does not allow overlapping B V-partitions.

Also, one should note that there is no contextual symmetry which is not variable symmetry
but a BV-1 or BV-2 symmetry since context variable at least needs 2 other variables in the
block to permute. This could be done if we define contextual symmetries over variable-value
and block-value pairs as contextual VV or contextual BV with some additional changes in the
definition of these symmetries. To formally define these frameworks is an interesting direction
for future work.

This work has studied the spectrum of state symmetries comprehensively in Probabilistic
Graphical Models. In this work, state symmetries have only been applied for improvements in
MCMC algorithms. Though some of the works [Bui et al., 2012; Kopp et al., 2015] have used
some of these state symmetries or similar ideas in other algorithms, how the formal framework
defined here can be used in other algorithms both for Marginal and MAP inference is still not
clear and an interesting direction to be explored. This will help in more widespread usage of
these generic notion of state symmetries. More importantly, most of the experimentation in
these works is performed on synthetic benchmarks illustrating the efficacy of the symmetries in
question. An important direction is to apply these ideas in the real world problems where some
of these symmetries naturally exist.

It should be noted that the current work only finds symmetry in states based on how pa-
rameters are shared. It does not consider equivalence among states that depend on exact values
of parameters. For example, it will not be able to find equivalence between two states which
have same probabilities (P(s;) = 0.4 x 0.1 and P(sy) = 0.2 % 0.2) due to equal product of
weights though the actual weights being considered are different. We believe that computing
these types of symmetries in general will require factorization of parameter values in poten-
tial tables and characterizing the symmetries in terms of prime factors. Developing complete
end-to-end methods and techniques for computing and using these symmetries is an interesting

future work direction.
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Chapter 7

Abstraction of State-Action Pairs in UCT

“Decision making is an art only until the person understands the science.”

Pearl Zhu

The science of decision making is central to the areas of operations research as well as
artificial intelligence. In fact, automated decision making [Russell and Norvig, 2003] is con-
sidered one of the fundamental problems in the design of any autonomous agent. In this part
of the thesis, we deal with the task of sequential decision making where an agent interacts
with the environment to make a sequence of decisions. In addition, the agent operates in the
real world and has to deal with the uncertainty present there, which makes the problem more
complex. This problem of sequential decision making under uncertainty is often modeled as a
Markov Decision Process (MDP) [Puterman, 1994] in the fields of Al planning and reinforce-
ment learning. The key difference between Al planning and reinforcement learning is whether
the environment dynamics are known to the agent apriori or not. If the environment dynamics
is known to the agent, the problem is studied as an Al planning problem. On the other hand,
if the environment dynamics are not known, the problem is studied as a reinforcement learning
[Sutton and Barto, 1998] problem. For the purpose of our discussion, we restrict ourselves
to the area of Al planning, though many ideas in the thesis can be extended to reinforcement
learning field.

Traditional MDP planning algorithms (value iteration and variants) perform offline dynamic
programming in flat state spaces and scale poorly with the number of domain features due to
the curse of dimensionality. A well-known approach to reduce computation is through domain
abstractions. Domain abstractions merges some state and actions together to obtain a smaller
model which can be solved efficiently. The solution obtained for the smaller model is then
transferred back to obtain the solution for the original unabstracted model. One of the popular

way to abstract a domain without compromising any quality is to reduce the model by exploiting
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symmetries. Although, there are multiple ways of applying abstractions in MDPs like state
abstractions [Li ef al., 2006], action abstractions and temporal abstractions [Sutton er al., 1999],
we restrict ourselves to only symmetry based state and action abstractions. The advantage of
symmetry based abstractions is that they are exact and hence, abstracted problem can return
optimal solution for original problems. For the ease of readability and following the literature,
we call symmetry based model reductions as abstractions in this part of thesis.

Existing offline abstraction techniques [Givan et al., 2003; Ravindran, 2004] compute equiv-
alence classes of states such that all states in an equivalence class have the same value or return.
This projects the original MDP computation onto an abstract MDP, which is typically of a much
smaller size. In this work, we develop a novel notion of abstraction, state-action pair (SAP)
abstraction, where in addition to computing equivalence classes of states, we also compute
equivalence classes of state-action pairs, such that return or value of state-action pairs in the
same equivalence class are the same. This is different from merging similar actions within a
state as done in some of previous works. Instead, we also merge state-action pairs even when
the parent states of those actions are not equivalent. SAP abstractions generalize previous no-
tions — abstractions studied in Givan ef al. [2003] and Ravindran [2004]. These are special
cases of SAP abstractions. Moreover, SAP abstractions may find symmetries even when there
are not many available state abstractions.

Recently, Monte-Carlo Tree Search (MCTS) algorithms have become quite an attractive
alternative to traditional MDP algorithms. MCTS algorithms, exemplified by the well-known
UCT algorithm [Kocsis and Szepesvari, 20061, intelligently sample parts of the search tree in
an online fashion. They can be stopped anytime and usually return a good next action. A
UCT-based MDP solver [Keller and Eyerich, 2012] won the last two probabilistic planning
competitions [Sanner and Yoon, 2011; Grzes e al., 2014]. Unfortunately, UCT builds search
trees in the original flat state space too, which is wasteful if there are useful symmetries and
abstractions in the domain.

In our work, we implement SAP abstractions inside a UCT framework and call the resulting
algorithm ASAP-UCT — Abstraction of State-Action Pairs in UCT. ASAP-UCT is an example
of joint symmetry aware learning, since abstractions are computed within the UCT algorithm.
Experiments on several probabilistic planning competition problems show that ASAP-UCT
significantly outperforms both vanilla UCT as well as UCT with state abstractions obtaining
upto 26% performance improvements. We implement and release’ ASAP-UCT, an algorithm
that exploits SAP abstractions in a UCT framework..

We begin by introducing the notation and giving the required background on MDPs, the

history of abstractions in MDPs and Monte Carlo Tree Search algorithms. We also discuss

! Available at hitps://github.com/dair-iitd/asap-uct
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some related work that uses abstractions within MCTS algorithms. Then, we formally define
state-action pair abstractions and discuss the ASAP-UCT algorithm in detail. We also illustrate
the effectiveness of ASAP-UCT on several benchmark domains and conclude this chapter by

pointing out some interesting future problems.

7.1 Background and Related Work

The problem of sequential decision making under uncertainty is modelled as a Markov Decision
Process (MDP) [Puterman, 1994]. Specifically, we restrict ourselves to the class of Stochastic
Shortest-Path (SSP) MDPs [Bertsekas, 1995]. SSP MDPs are used to model scenarios where
an agent needs to find the minimum expected cost of reaching any one of goal states in a
stochastic environment. In this section, we introduce the notation of SSP MDPs which will
be followed throughout this part of thesis. Further, we describe popular model abstraction
techniques for MDPs developed in the past. We also give a brief overview of Monte Carlo
Tree Search Algorithms (MCTS) like UCT [Kocsis and Szepesvari, 2006]. Finally, we discuss
relations of our work with a few recent works that applied abstractions in Monte Carlo Tree

Search Algorithms.

7.1.1 Markov Decision Processes

A Markov Decision Process (MDP) is a mathematical framework for sequential decision mak-
ing under uncertainty. Depending on the time-frame and number of decisions, an MDP can
either be infinite horizon, finite horizon or indefinite horizon MDP. Infinite horizon discounted
MDPs have infinite number of decision steps, so the cost of future decisions is discounted (by
a factor y) to keep the longterm cost bounded. Finite horizon MDPs have limited and known
number of decision steps. Indefinite horizon MDPs have fixed but unknown number of decision
steps. As described in [Mausam and Kolobov, 2012], the most general framwork to handle all
the above three scenarios is captured by Stochastic Shortest-Path (SSP) MDPs. A SSP MDP is
modeled as a 5-tuple (S, A, 7, C, G) where:

S is the set of states

A is the set of actions

T is the stationary transition function definedas 7 : S x A x S — [0, 1]

C is the stationary cost function associated with the actions applicable at a given state
denotedby C': S x A - R
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» G C Sis the set of goal states where Vs, € G, s ¢ G, a € A, we have T (s,,a,s) =0
and C'(sg4,a) = 0.

An agent in a state s € S executes an action a € A and makes a transition to s € S with
a probability 7 (s, a, s’). The agent incurs a cost C'(s,a). A policy 7 : S — A is a mapping
that returns an action to be executed in a state s € S. In general, a policy can be stochastic
or deterministic. Further, we define a proper policy 7 as a policy such that starting from any
state s and following the policy 7, we end up in one of the goal states s, € G with probability
1 in finite number of time steps. One of the strict conditions associated with a SSP MDP is
existence of at least one proper policy [Mausam and Kolobov, 2012].

Given a starting state sy € 9, the total expected cost from state s or the state-value func-
tion V™ (s) associated with a policy 7 is given by V7™ (s) = E[> 2, C(s',a")|n(s") = a',t >
0, s = so] where the expectation is taken over the transition probability 7 (s, a’, s'™!) of mov-
ing from state s’ to s under action a,. Similarly, the total expected cost of a state-action
pair or the state-action value function Q™ (s, a) under the policy m denotes the cost of firstly
taking action a in state s and then following 7 thereafter. The aim of an agent is to find a pol-
icy that minimizes the expected cost from the initial state s;. The optimal policy 7* is given
as: m*(sg) = argmin,V™(so). Further, we use Q*(s,a) and V*(s) shorthand notations for
Q™ (s,a) and V™ (s) respectively and call them optimal value functions. The expected cost of
reaching any goal state can be recursively described by Bellman equations across multiple time

steps as follows:

Vii(s) = argerzm [C(s,a) + ZS’GST<S7 a,s) x Vi(s)]

The value iteration algorithm [Bellman, 1957] starts with random initial V-Values (state-
value function) and solves this equation repeatedly till there is no change in state-value function
of all states. The V-Value so obtained gives the optimal value function V'* and the optimal policy
is obtained 7*(s) = argmingeaV*(so).

An MDP can be equivalently represented as a acyclic AND-OR graph [Mausam and Kolobov,
2012] in which OR nodes are MDP states and AND-nodes represent state-action pairs whose
outgoing edges are multiple probabilistic outcomes of taking the action in that state. Value
Iteration [Bellman, 1957] and other dynamic programming MDP algorithms can be seen as
message passing in the AND-OR graph where AND and OR nodes iteratively update Q(s,a)
and V(s) (respectively) until convergence.

For the purpose of our discussion in this thesis, we restrict ourselves to the problem of
Finite-Horizon MDPs. Finite-Horizon MDPs have a finite fixed number of maximum decision

steps D explicitly defined. All the states at the depth of D are treated as goal or absorbing states.
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We will refer to this fixed number of decision steps as execution horizon of MDPs. Since these
MDPs have fixed number of decision steps, the same world state at different decision step
should be treated as a different state. Hence, any finite horizon MDP can be converted to an
SSP by augmenting the state with a depth variable i.e., if S is the state space of finite-horizon
MDP, then, the state-space of the corresponding SSP is given by S’ = S x D. Further, we
distinguish between the terms planning horizon and execution horizon. Planning horizon refers
to the maximum depth explored by an MDP planner while taking a single decision. On the
other hand, execution horizon refers to the maximum number of decisions to be executed by a

planner.

7.1.2 Model Abstraction Techniques in MDPs

Many states and actions in MDPs behave similar to each other (are symmetric) and can be
abstracted out. Several works in the past have attempted to reduce the original MDP model by
exploiting symmetries and have developeds a variety of model abstraction techniques. Most of
these model abstraction techniques have three key steps. The first step is to obtain a reduced
model by merging states and actions based on some criteria. The second step is to solve the
reduced model using a standard MDP algorithm. Finally, the values and policies obtained
from the reduced model are mapped back to the original model. The premise behind such an
approach is that solving a reduced model would be substantially faster or would be the only
feasible method when it is not possible to directly solve the original MDP. Broadly, all these
model abstraction techniques can be divided into exact and approximate techniques. Exact
model abstraction methods reduce the model in such a way that solving the abstracted MDP
optimally and mapping back the values yield value functions and policies which are optimal in
the original MDP. Approximate model abstraction techniques yield values and policies which
may not be exactly same or optimal but are hopefully near those obtained with original model.
Approximate techniques could be of great value in many practical scenarios with limited time
and memory.

Typically, the model is abstracted out by merging states and actions that behave identically
to one another. Earlier works have exploited state abstractions by merging states based on
notions of bisimulations [Givan er al., 2003] and graph homomorphism [Ravindran, 2004]. We
describe these two notions and illustrate them with a toy example of soccer domain (Figure
7.1). Here, a player wishes to score a goal and can be in any of four positions. A player in
central position (SO) can pass the ball left (L), right (R) or shoot at the goal straight (S). Hence,
for a state (S0O), there are 3 feasible actions: L,R,S. The player in top position (S1) can hit the
ball right to shoot the goal. A player at the bottom positions (S2, S3) can hit the ball left for a

goal. All the actions for simplicity are assumed to have uniform probability distribution over
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Figure 7.1: An example showing abstractions generated by various algorithms on a soccer
domain. Givan’s AS, Ravindran’s ASAM and our ASAP frameworks successively discover
more and more symmetries.

its outcome states and the cost of taking any action is 1. It should be noted that right action
(SO,R) of central position (S0) leads to (S2) and (S3) with uniform probabilities. The equivalent
AND-OR graph for this domain is the leftmost graph in the figure.

7.1.2.1 Abstractions as Bisimulations

The initial idea of bisimulations was used to define state equivalence in Finite State Machines
(FSMs) and concurrent processes literature [Park, 1981; Hartmanis, 1966]. Later, this was ex-
tended to Markov Decision Processes by Givan et al. [2003]. Given an MDP M (S, A, T,C,G)
where the notations are as defined in Section 7.1.1, we define a relation E85 C S x S as a
bisimulation if it satisfies the below mentioned conditions. Additionally, these conditions also
ensure that £ is reflexive, symmetric and transitive and hence, we define the set of equiva-

lence classes under £2° by the set X’ and the corresponding equivalence function by igss.

Definition 7.1.1. A relation E% C S x S is a bisimulation if and only if ¥ (s,s') € £P%, it
satisfies the following conditions: Ya € A

* C(s,a) = C(5',a), i.e for any action label, cost of taking that action in both the states s

and s' should be equal.

» Secondly,

Vo e X, Z 1pers(s") = x] X T(s,a,s") = Z Lpers(s") = x] x T(s',a,s")
s'"eS s'"eS
where 1 is the indicator function. Intuitively, both the states s and s' should transition to

the same set of equivalences classes with matching probabilities.

For example, in Figure 7.1, £8° = {(52, S3), (53, 52), (52, 52), (S3,.93)}. It is trivial to
find that both S2 and S3 have a single action L which transitions deterministically to goal State
G.
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It should be noted that this bisimulation relation £5°

abstracts a given MDP M into a
smaller MDP M’ defined in terms of equivalence classes X induced by the equivalence relation.
In addition, the original bisimulation relation is fairly general and can also be defined over state
spaces of two different MDPs. We have restricted that definition to a single MDP for the
purpose of abstraction of states of a single MDP. We specifically call the abstractions based on

bisimulations as Abstraction of States (AS) in this work.

7.1.2.2 Abstractions as Homomorphisms

The above definition of state abstraction using bisimulation is strict and does not allow abstrac-
tion of two states when the action labels of two states do not match. For instance, in Figure 7.1,
state S1 behaves similar to state S2 (or S3) if we replace the action label R of S1 with L of S2
(or S3). This strict notion was relaxed by the idea of homomorphisms [Ravindran and Barto,
2004]. Given an MDP M (S, A, T,C,G), a homomorphism is a surjection h : M — M’ where
M'(X, A, T',C',G’) is a smaller MDP which preserves the structure and dynamics of M. Let
A, denotes the set of actions applicable in a state s.

Definition 7.1.2. A homomorphism h : M — M’ is a surjection defined by a 2-tuple (f : S —
X, {gs : As — Alls € S;x € X}) where f is a surjection over state space and {gs|s € S}
is a set of surjections from ground actions of state s € S to actions of an equivalent state  in
smaller MDP M'. Further, f and {gs|Vs € S} are defined as follows:

» Two states s,s' € S have f(s) = f(s') if Va € A, 3a' € Ay for which g5(a) = g« (a’)

and vice versa.
o Further, we have gs(a) = gy (d’) iff

1. C(s,a) = C(s',d’) i.e cost of taking action a in state s is equal to cost of taking

action a' in state s'.

2. Similar to bisimulations, transition effect of taking action a in state s is equivalent

to effect of taking action o’ in state s

Vo e X, 1[f(s") =] x T(s,a,8") = > 1[f(s") = 2] x T(s',a’,5") (7.1)

s"’esS s'"eS

It should be carefully noted that conditions for gs(a) = gy (a’) can also be applied to define
action equivalence within a state by having s = s’ and hence, can be used to prune redundant ac-
tions of a state. For subsequent discussions, we refer to abstractions based on homomorphisms
as Abstraction of States with Action Mapping (ASAM). Further, the partition of state-space

induced by bisimulation is finer than the partition of state-space induced by homomorphism.
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Theorem 7.1.1. For any given MDP M, If £55 is the bisimulation relation, jigss is the cor-
responding equivalence function then, 3 a homomorphism h : (f,{gs}) s.t. Vs, s € S if

pens(s) = pens(s'), then, f(s) = f(s').

Proof. If pgns(s) = pers(s'), then, Va € Ay, 3a’ € Ay sita’ = a and gs(a) = gy (a) is true.
This is because Condition 1 and 2 are true Va € A according to definition of bisimulations.

Hence, f(s) = f(s) as per definition of homomorphisms. O

Therefore, the notion of homomorphism is strictly more general than the notion of bisim-
ulations as it reduces the original model much more than abstractions based on bisimulations.
This can also be seen in Figure 7.1 where the model based on homomorphism is smaller than

that obtained by bisimulations.

7.1.2.3 Other Notions of Abstractions

Apart from bisimulations and homomorphisms, many other notions of abstraction have been
proposed in the literature. Li e al. [2006] have comprehensively surveyed different notions of
state abstractions for MDPs. These also include approximate bisimulations and approximate
homomorphisms. In addition, they define a special type of state abstractions for MDPs called
Q-irrelevance abstraction. Two states belong to a same abstract class under Q-irrelevance ab-
straction if Q-values (for same action) of those two states are exactly equal. This Q-irrelevance
abstraction could then preserve Q-values for all policies or only the optimal policy. They also
define an o irrelevance criteria where all states in the abstract class have same optimal action
and value functions. This criteria is relaxed in the 7* irrelevance criteria where ground states in
the abstract class have only same optimal action. Ferns et. al. [2004] have also studied various
bisimulation metrics for finite MDPs.

Our proposed ASAP framework unifies and extends the exact notions of abstractions par-
ticularly bisimulations and homomorphisms. Further, we go beyond just an equivalence re-
lation £ over states, and compute equivalences of state-action pairs. This additional notion
of abstractions leads to many more nodes getting merged together and can obtain significant
computational savings. Next, we describe an alternative approach to handle large state and
actions spaces by a popular sampling based method, called Monte Carlo Tree Search (MCTS)

algorithms.

7.1.3 Monte-Carlo Tree Search (MCTS)

Traditional offline MDP algorithms store the whole state space in memory and scale poorly with

number of domain features. Sampling-based MCTS algorithms offer an attractive alternative.
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They solve finite-horizon MDPs in an online manner by interleaving planning and execution
steps. A popular variant is UCT [Kocsis and Szepesvari, 2006], in which during the planning
phase, starting from the root state, a tree is constructed based on sampled trajectories. It main-
tains an estimate for the () value for each state at a given depth. UCT chooses an action « in
a state s at depth d based on the UCB rule, argming,ca (Q(s, d,a) — K X %) where
K > 0. Here, n(s, d) denotes the number of trajectories that pass through the state s at depth
d and n(s,d,a) is the number of trajectories that take action a after visiting state s at depth
d. Note that above rule means that if a particular action a has not been tried at some state
depth pair (s, d)?, then its score will be —oco and hence, will be preferred over already explored
actions in that state.

Evaluation of a leaf node is done via a random rollout, in which actions are randomly
chosen based on some default rollout policy until a goal or some planning horizon is reached.
This rollout results in an estimate of the Q-value at the leaf node. Finally, this Q-value is backed
up from the leaf to the root. UCT operates in an anytime fashion — whenever it needs to execute
an action it stops planning and picks the best action at the root node based on the current Q-
values. The planning phase is then repeated again from the newly transitioned node. Due to
the clever balancing of the exploration-exploitation trade off, MCTS algorithms can be quite
effective and have been shown to have significantly better performance in many domains of
practical interest [Gelly and Silver, 2011; Balla and Fern, 2009].

There have been multiple works which studied UCT in the context of probabilistic plan-
ning. Specifically, the state-of-the-art planner Prost [Keller and Eyerich, 2012] that has won In-
ternational Probabilistic Planning Competition-2011 and IPPC-2014 [Sanner and Yoon, 2011;
Grzes et al., 2014] is based on UCT. It employs multiple additional heuristics to improve the
performance of UCT. In addition, many works [Bonet and Geffner, 2012; Kolobov et al., 2012]
have compared performance of UCT with other planning techniques. Bonet et al. [2012] com-
pared performance of UCT with non-admissible heuristic algorithms. It argues that heuristic
algorithms have stronger theoretical properties but UCT performs better when the planning
time is very small. Similar to this, Kolobov ef al. [2012] compared performance of UCT with
dynamic programming based LRTDP algorithms. It demonstrated scenarios of large finite hori-
zon MDPs where UCT algorithms are likely to make mistakes. Inspite of these results, UCT

has been the algorithm of choice for many real-world probabilistic planners.

7.1.4 Abstractions in MCTS

Some recent works [Hostetler er al., 2014; Hostetler et al., 2015; Jiang er al., 2014] have real-

ized that abstraction based approaches and MCTS have complementary advantages for improv-

2Such states are called the partially explored states
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ing the efficiency of planning in large domains. While abstraction based approaches reduce
the search space by merging similar states and actions together, MCTS explores only useful
parts of search space by carefully managing exploration-exploitation trade-off. In light of this

insight, many recent works applied abstractions in MCTS algorithms.

Hostetler et al. [2014] develop a theoretical framework for defining a series of state abstrac-
tions in sampling-based algorithms for MDP. But they do not provide any automated algorithm
to compute the abstractions themselves. Another work [Jiang er al., 2014] applies Givan et.
al. [2003]’s definitions of state abstractions within UCT. The key insight is that instead of an
offline abstraction algorithm, they test abstractions only for the states enumerated by UCT.
Their approach first puts all partially explored nodes (not all of whose actions are present in
the UCT tree) in a single abstract state per depth. Since UCT solves finite-horizon MDPs, only
the states at the same depth will be considered equivalent. Then, at any given depth, they test
Givan’s conditions (transition and cost equality) on pairs of states to identify ones that are in the
same equivalence class. This algorithm proceeds bottom-up starting from last depth all the way
to the root. Jiang et al. [2014] also consider two approximation parameters e and e which ag-
gregate two states together if the corresponding transition probabilities and costs are within e
and e¢, respectively. Their paper experimented on a single deterministic game playing domain
and its general applicability to planning was not tested. In this chapter, we advance Jiang’s
ideas in our algorithm ASAP-UCT by applying our novel state-action pair (SAP) abstractions

in UCT, and show that they are more effective on a variety of domains.

Another work, [Hostetler et al., 2015] applies adaptive abstraction computation in an
MCTS framework called Progressive Abstraction Refinement for Sparse Sampling (PARSS).
PARSS applies abstractions to sparse sampling framework [Kearns ez al., 2002]. It begins from
a fully abstract tree, and in later iterations, splits some of the merged nodes. This process of
splitting an abstract node into two or more than two parts is called as refinement. The refine-
ment procedure is somewhat ad hoc in that it splits an abstract node into two nodes arbitrarily
and does not use any domain information whatsoever. It is also not clear how PARSS scales
with increase in depth. Its strength is its ability to find better solutions when planning time is
extremely small due to heavy initial abstraction. Moreover, it is an incremental algorithm i.e.

computes abstractions in a non-batch manner.

There is also recent work on improving exploration in UCT when rewards are sparse using
local manifold learning [Srinivasan et al., 2015]. They improve exploration by generalizing the
rollout values across all nearest neighbor states based on a distance metric determined by man-
ifold learning of state space. Another recent work [Jiang ef al., 2015] investigates selecting an
appropriate level of abstraction among candidate abstractions in a model-based reinforcement

learning framework.
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7.2 Abstraction of State-Action Pairs (ASAP) Framework

In this section, we formalize our abstraction framework. The key contribution of our work is to
introduce the notion of state-action pair (SAP) abstractions. Earlier approaches to abstraction
in MDPs dealt either with state abstractions only [Givan er al., 2003] or state abstractions with
a (complete) mapping of actions belonging to two different states [Ravindran, 2004]. This can
be restrictive in cases where two states may not behave identically to each other but application
of a subset of allowed actions in them results in identical transition behavior (and leads to
same or similar behaving states). Our SAP abstractions overcome this limitation by effectively
allowing for partial mapping of actions between two different states. We will first formally
define our abstraction framework followed by an illustrative example. We will then show that
our approach strictly generalizes existing notions of abstractions.

To formally define the framework we introduce some notation. Consider an MDP M =
(S, A, T,C,G). We use P to denote the set of State-Action Pairs (SAPs)i.e. P = S5 x A. We
define an equivalence relation £ over pairs of states as earlier i.e. £ C S x S and A denotes
the set of equivalence classes under the relation £. Let e : S — & denote the corresponding
equivalence function mapping each state to the corresponding equivalence class. Similar to
states, we define an equivalence relation H over pairs of SAPs, i.e. H C P x P. LetU
denote the set of equivalences classes under the relation #, and, analogously, let uy : P — U
denote the corresponding equivalence function mapping state-action pairs to the corresponding
equivalence classes. Following previous work, we will recursively define state equivalences
using state-action pair equivalences and vice-versa.

Suppose we are given SAP abstractions, and 4. Intuitively, for state equivalence to hold,
there should be a correspondence between applicable actions in the two states such that the

respective state-action pair nodes are equivalent. Formally,

Definition 7.2.1. State Abstractions: Let a,a’ € A denote two actions applicable in s and s/,
respectively. We say that two states s and s' are equivalent to each other (i.e, j1g(s) = pg(s'))

if for every action a applicable in s, there is an action o’ applicable in s' (and vice-versa) such
that M'H(Sv CL) = MH(SI, a/)‘

For stochastic shortest path MDPs, all goal states are in an equivalence class: Vs,s' €
G, pe(s) = pe(s').

To define SAP abstractions, assume we are given state abstractions and the y¢ function.
Definition 7.2.2. SAP Abstractions: Two state-action pairs (s,a), (s',a’) € P are said to be
equivalent i.e. iy (s,a) = py(s',ad') iff:

Vo e X,y colue(s") = 2T (s,a,8") = D cg Upe(s") = 2]T(s',d’,s") where 1

is indicator function (Condition 1)
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e ((s,a) =C(s,a") (Condition 2)

In other words, for state-action pair equivalence to hold, the sum of transition probabilities,
to each abstract state that these state-action pair transition to, should match. Second condition
requires the costs of applying corresponding actions to be identical to each other.

It is important to note that ASAP framework does not reduce the original MDP M into
an abstract MDP as done in earlier work. The reason is that the framework may abstract two
state-action pairs whose parent states are not equivalent. It is not possible to represent this as
an MDP, since MDP does not explicitly input a set of SAPs. However, ASAP framework can
be seen as directly abstracting the equivalent AND-OR graph G, in which there is an OR node
for each abstract state x € X', and an AND node for each abstract SAP v € U. There is an edge
from z to v in Gr if there is a state-action pair (s, a) such that a is applicable in s, pg(s) =
and py(s,a) = u. The associated cost with this edge is C'(s, a) which is the same for every
such (s, a) pair (follows from Condition 2). Similarly, there is an edge from u to z if there
is a state-action-state triplet (s, a, s;) such that application of a in s results in s, (with some
non-zero probability), 1(s,a) = w and ug(s;) = . The associated transition probability is
Y ses Lpe(sy) = 2] T (s, a, s;) (follows from Condition 1).

Example: Figure 7.1 illustrates the ASAP abstractions on this soccer domain. Our ASAP
framework in this domain will additionally recognize that SO’s straight is equivalent to S1’s
right and merge these two SAP nodes in addition to states and actions merged by AS and
ASAM. Overall, ASAP will identify the maximum symmetries in the problem. [

ASAP framework is a strict generalization of past approaches. Here, it is important to state
that there are certain key differences between our SAP abstraction definitions and Ravindran’s
ASAM. Past work constrains SAPs to be equivalent only if the parent states were equivalent too.
It did not directly use SAP abstractions in planning — they used those merely as a subroutine to
output state abstractions. Our definitions differ by computing SAP equivalences irrespective of
whether the parent states are equivalent or not, and thereby reducing the AND-OR graph of the

domain further.

Theorem 7.2.1. Both AS and ASAM are special cases of ASAP framework. ASAP subsumes all
abstractions computed by AS and ASAM.

Proof. As proved in Section 7.1.2.2, abstractions computed by bisimulations are a special case
of abstractions computed by homomorphisms. Hence, ASAM computes all symmetries com-
puted by AS. The only thing remaining to prove is that ASAP subsume the abstractions com-
puted by ASAM. If ASAM symmetries consider s; and s, as equivalent, then, the same states
will also be considered equivalent in ASAP since if g, (a1) = g¢s,(az2) then, it should have
pa(S1,a1) = pz(S2, az) by the same definition. Hence, ASAP abstractions computes all ab-

stractions computed by ASAM. On the other hand, ASAM merges only those state-action pairs
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Abstraction of State-Action Pairs
(Anand et. al. 15)

Abstraction of States with Action Mapping
(Homomorphisms [Ravindran’ 04]

Abstraction of States

(Bisimulations [Givan et. al. 03])

Figure 7.2: ASAP abstractions subsume ASAM abstractions which in turn subsume AS ab-
stractions

whose parent states match, i.e it will not merge any p; = {s1,a;} € P and p, = {s9, a2} € Pif
e (s1) # pe(s2) since it only discusses equivalences of states and does not exploit equivalence
of state-actions pairs if their corresponding states are not equivalent. ASAP abstractions, will
consider p; and p, as equivalent, if the required conditions match, and hence, lead to a much
more reduction in graph. Figure 7.2 shows the relation among different types of abstractions
defined here. [

Finally, we can also prove correctness of our framework, i.e., an optimal algorithm operating

on our AND-OR graph converges to the optimal value function.

Theorem 7.2.2. Optimal value functions V3, (), Q¢, (u), computed by Value Iteration on a
reduced AND-OR graph Gr, return optimal value functions Vy;(s), Q4,(s,a) for the original
MDP M. Formally, V{, (x) = V3;(s), and Qf,(u) = Q3s(s,a), Vs € S, a € As.t. pg(s) =

x, 1y (s, a) = u.

Proof. Givenan MDP M = (S, A, T, C, ), Let Gr be the reduced AND-OR graph constructed
from M by replacing the OR nodes in original AND-OR Graph, s € .S, with pig(s) and the AND
nodes, p € P, with g (p). We now show, by induction, that the t-step discounted Q-value for
any pair, p, is equivalent to the t-step discounted Q-value of the abstract pair, y3(p). The base
case for this induction is the initialization step. The Q-value and V-value for each abstract
state-action pair and state is initialized to the same value as the ground state-action pair and

state respectively. Hence, base-case trivially holds. For the ¢ time step,
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(p) = C(p) +7 X wes T(p, §)Vi () [Definition] (7.2)
= C(p) + 72 e wyea T, pe(s)) Ve (e (s')) [Abstraction Defn.] — (7.3)
= Clum(p) +7 2 owrea (D), ne(s)VE (e (s')) [Abstraction Defn.|(7.4)
= QG (1w (p)) (7.5)

The two simplification steps above follow from the definitions of AS and ASAP respectively.
Since the Q-values do not change when abstracting M to G, the value V' for any state at any
time step (defined as the minimum of all state-action pair Q-values for that state) is also retained
and hence, the optimality is preserved.

]

7.3 ASAP-UCT

We now present ASAP-UCT, a UCT-based algorithm that uses the power of abstractions com-
puted via the ASAP framework. Since UCT constructs a finite-horizon MDP tree (see Sec-
tion 7.1.3), states at different depths have to be treated differently. Therefore, ASAP-UCT tests
state equivalences only for the states at the same depth. To compute abstractions over UCT tree,

we adapt and extend ideas presented by Jiang et al. [2014].

How to Compute Abstractions: Algorithm 2 gives the pseudocode for computing abstractions
using ASAP-UCT . The algorithm takes as input a UCT Search Tree (ST) and outputs an Ab-
stracted Search Tree (AST). Starting from the leaves of the UCT tree, it successively computes
abstractions at each level (depth) all the way up to the root. At each level, it calls the functions
for computing state and state-action pair abstractions alternately. It is helpful to understand
each depth as consisting of a layer of state nodes and a layer of SAP nodes above it. We use
pd (ud,) to denote the state (SAP) equivalence function at depth d. Similarly, we use S to
denote the set of states at depth d and P? to denote the set of SAP nodes at depth d. To keep
the notation simple, we overload the equivalence function (map) ¢ to also represent the actual
equivalence relationship over state pairs (and similarly for ).

Algorithm 3 gives the pseudocode for the computation of state abstractions at a depth using
conditions from the previous section. getPartiallyExplored(S?) returns the subset of states at
depth d not all of whose applicable actions have been explored. Apply(s) returns the set of all the
actions applicable in s. Following Jiang et al. [2014], we mark all the partially explored nodes
at each depth to be in the same equivalence class. This is an approximation, but is necessary

due to the limited information about states available in UCT tree at any given time.



Abstraction of State-Action Pairs in UCT 113

For the states all of whose applicable actions have been explored, we put states (s, s’) in the
same equivalence class if conditions for state equivalence (Definition 1) are satisfied.

Algorithm 4 gives the pseudocode for computing SAP abstractions. Out(s,a) returns the
set of all states sampled in the UCT tree after application of a in s. Tx and Ty are arrays
storing the total transition probabilities to each abstract state at next level for the two SAPs
being compared, respectively. Two SAP nodes (s, a) and (s, a’) are put in same equivalence

class if conditions for state-action pair equivalence (Definition 2) are satisfied.

Algorithm 2 Computing Abstract Search Tree

ComputeAbstractSearchTree(SearchTree ST)
dinaz + getMaxDepth(ST), pgye= " + {}
ford :=d,,,., — 1do
¢ < ComputeAS(SY, pudh;
14, < Compute ASAP(P?, 1)
AST < SearchTree with Computed Abstractions
Initialize Q-Values of abstract nodes
return AST

Algorithm 3 Abstraction of States

ComputeAS(States S¢, Eq-Map 3, ™)
S¢ < getPartiallyExplored(S9)
Vs, s’ € 8¢, ud(s) = ud(s') (base case)
S¢ ¢+ 81\ s¢
for all s, s’ € S¢ do
mapping = True;
for all « € Apply(s) do
If(Aa’ € Apply(s'): pg (s, a) = pg (s, a'))
mapping = False;
for all ' € Apply(s') do
If(ha € Apply(s): pg (s, a') = pi ™ (s, a))
mapping = False;
if(mapping) then ¢ (s) = pg(s')
return ;¢

Updating Q-Values: For all the nodes belonging to the same equivalence class, we maintain
a single estimate of the expected cost to reach the goal both in the state as well as state-action
layers. In the beginning, Q-values for an abstract node are initialized with the average of the
expected cost of its constituents as shown in Algorithm 2. During the backup phase, any Q-
value update for a node in the original tree is shared with all the nodes belonging to the same

equivalence class in the abstract tree, effectively replicating the rollout sample for every node.
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It should be noted that node expansion as well as the random roll out after expansion in the
UCT tree are still done in the original flat (unabstracted) space. It is only during the upward

update of the Q-value computation where abstractions are used.

When to Compute Abstractions: In order to compute abstractions, we need to construct the
sampled UCT tree upto a certain level. But waiting until the full expansion of tree is not helpful,
since the tree would already be constructed and we would not be able to use the abstractions. In
our approach, we start by allocating a decision time 7 for the current step using a dynamic time
allocation strategy (described below). Similar to Jiang et al. [2014], we then interleave the steps
of tree expansion with abstraction computation. Abstractions are computed after every 7/(I+1)
time units where [ is a parameter which can be tuned (we used [ = 1 in our experiments).
Since future expansions might invalidate the currently computed abstractions, every phase of
abstraction computation is done over the flat tree. Algorithm 5 provides the pseudocode for the
above procedure. ST denotes the search tree in the flat space and AST" denotes the search tree

in the abstract space.

Algorithm 4 Abstraction of State-Action Pairs

ComputeASAP(States-Action Pairs P¢, Eq-Map u%)
forall p = (s,a),p' = (s',d’) € P¢do
Va € ud, Tx[x] = 0and T¢[z] = 0
for all s; € Out(s, a) do
Tx[pg(si)l+ =T (s,a,5)
for all s, € Out(s',d’) do
Ti[pé(s)l+=T(s'.d',s7)
if(Vz € pd: Tx(z) = T{(x) & C(s,a) = C(s,d"))
then 14, (s, a) = i (5", o)
return /.4,

Algorithm 5 ASAP-UCT Algorithm

ASAP-UCT(StartNode sy, NumAbstractions /)
ST, AST <« s //Single Node Search Tree
T <— getDecisionTime()
while 7 is not exhausted do
AST <+ ExpandTreeAndUpdateQ(AST)
After every 7/(l + 1) time units
ST < getFlatTree(AST)
AST < ComputeAbstractSearchTree(ST)

return argminge 4Q*(so, a) //best action at Sy

Adaptive Planning Time Allocation: We assume that the agent is given an execution horizon

(maximum number of decisions to be taken) and time of trial, which represents total planning
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time for taking all decisions. This setting has been previously used in the literature for online
planning with UCT [Kolobov e al., 2012]. A key meta-reasoning problem is the allocation of
available time across various decision steps. Naively, we may decide to allocate equal time per
decision. However, this can be wasteful in goal-directed settings since the goal can be reached
sooner than the execution horizon. In such scenarios, the time allocated for remaining decisions
will be wasted. To counter this, we adapt prior work on meta-reasoning algorithms for UCT
[Baier and Winands, 2012; Baudi$ and Gailly, 2012] to implement an adaptive time allocation
strategy. Our approach uses random roll-outs performed during UCT to continually re-estimate
the expected number of steps to reach the goal (effective execution horizon).

Specifically, Our allocation algorithm at each step observes all the rollout trajectories and
makes a note of the depths at which the goal was reached, if at all. If the goal was not reached,
then this value is taken to be the maximum remaining execution horizon (D). This allows the
agent to re-estimate its average execution horizon (D) as predicted through rollouts. If D < D,
then we have the potential to save future unused time. Moreover, as the agent gets closer to
the goal it may need less and less planning time, since its planning horizon is reducing.® Since
MCTS algorithms are linear in the planning horizon (the number of nodes generated at each
depth in the rollouts is the same), we use a linearly-decreasing planning time allocation.

To operationalize this we can define a fixed multiplicative constant &, such that our next
decision takes k.D time, second decision takes k.(D — 1) time and so on. Since the sum of this

time should result in the total remaining time 77Tz, we get k to be

—_ = 27T,
D(D+1)

The algorithm computes the time for next decision as k.D = %T—If. While this is a good
estimate for the next decision, the current execution step may lead it to a really good or really
bad outcome, making this average D value meaningless for the future. Thus, we discard this D
estimate after an execution step and re-estimate it based on rollouts in current step, and find a
new planning time for the next step and so on. It is important to note that this strategy can be

applied to all the variants of UCT.

Efficiently Implementing Abstraction Computation: Computing SAP abstractions naively
would require O(n?) comparisons, n being the total number of SAP nodes at each level (we
would compare each SAP pair for equivalence). This can become a bottleneck for large prob-
lems with large number of states and applicable actions. We instead hash each SAP using its

total transition probability to set of next abstract states as well the cost associated with the tran-

3Planning horizon determines the depth to which rollouts go, which is an input to the problem, but can reduce
if a goal is reached earlier.
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sition. Only the pairs falling in the same hash bucket now need to be compared bringing down
the complexity to O(rk?) where 7 is the number of buckets and k is the number of elements in

each bucket. This is crucial for scaling ASAP-UCT as observed in our experiments.

7.4 Experimental Evaluation

Our experiments aim to study the comparative performance of various abstraction approaches
in UCT. In Section 7.4.3, we compare ASAP-UCT with vanilla UCT [Kocsis and Szepesvari,
2006], AS-UCT [Jiang et al., 2014], and ASAM-UCT (our novel combination of UCT and
Ravindran and Barto [2004]’s ASAM).

7.4.1 Domains

We experiment on three diverse domains in this chapter, Sailing Wind [Kocsis and Szepesvari,
2006; Bonet and Geffner, 2012], Game of Life [Sanner and Yoon, 2011], and Navigation [San-
ner and Yoon, 2011]. Game of Life and Navigation domains were used in International Proba-
bilistic Planning Comptetition (IPPC) -2011. We briefly describe these below.

Sailing Wind: An agent in this domain is assigned the task of sailing from one point to another
on a grid. The agent can move in any direction to an adjacent cell on the grid, as long as it is
not against the stochastic wind direction. The cost at any time step is a function of the agent
movement and the wind direction. We report on two instances with grid dimensions 20x 20 and
100x 100 (#states: 3200, 80000).

Game of Life: An oracle agent is given the objective to maximize the number of alive cells in a
cellular automata environment modeled as a grid. Live cells continue into the next generation as
long as there is no overpopulation or underpopulation as measured by the number of adjacent
cells. Similarly, a dead cell can become alive in the next generation due to a reproduction
between adjacent cells. Additionally, an agent can make exactly one cell live on to the next
generation. The dynamics of the game are stochastic in nature, set differently for different
cells. The number of live cells determines the reward at every time step. Our empirical results
are reported on two IPPC-2011 instances, of dimensions 3x3 and 4 x4 (#states: 2%, 216),
Navigation: A robot has to navigate from a point on one side of the river approximated as a
grid to a goal on the other side. The robot can move in one of the four possible directions. For
each action, the robot arrives in a new cell with a non-zero drowning probability and unit cost.
If a robot drowns, it will retry navigating from the start state. We report on two IPPC instances
of sizes 20x5 and 10x5 (#states: 100, 50).
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Figure 7.3: ASAP-UCT outperforms all other algorithms on problems from three domains.
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7.4.2 Experimental Settings

All our experiments are performed on a Quad-Core Intel i-5 processor. For each parameter
configuration we take an average of 1000 trials. We use 100 as the execution horizon for
Sailing wind and Navigation domains and 40 for Game of Life domain (as per IPPC instance),
although reaching the goal earlier will stop the execution. The planning horizon for a decision
is an input to each problem. All UCT rollouts use random actions. The exploration constant
K for the UCB equation is set as the negative of the magnitude of current () value at the node
(following [Bonet and Geffner, 2012]). Also, in cases of abstraction computation approaches,
we need to set [, the number of times abstractions are computed for each decision. Since,
computing abstractions can be expensive, [ must be a small number. In our experiments we
find that the setting of [ as 1 works well for all systems. How to set this automatically is an
important question for future work. All algorithms use the adaptive time-allocation strategy,

which performs much better than equal time-allocation.

7.4.3 ASAP-UCT vs. Other UCT Algorithms

We compare the four algorithms, vanilla UCT, AS-UCT, ASAM-UCT and ASAP-UCT, in all
three domains. For each domain instance we vary the total time per trial and plot the average
cost obtained over 1000 trials. As the trial time increases each algorithm should perform better
since planning time per step increases. Also, we expect the edge of abstractions over vanilla
UCT to reduce given sufficient trial time.

Figures 7.3 shows the comparisons across these six problems in three domains. Note that
time taken for a trial also includes the time taken to compute the abstractions. In almost all
settings ASAP-UCT vastly outperforms both UCT, AS-UCT and ASAM-UCT. ASAP-UCT
obtains dramatically better solution qualities given very low trial times for Sailing Wind and
Game of Life, incurring up to 26% less cost compared to UCT. Its overall benefit reduces as the
total trial time increases, but almost always it continues to stay better or at par. We conducted
one tailed student’s t-test and found that ASAP-UCT is statistically significantly better than
other algorithms with a significance level of 0.01 (99% confidence interval) in 41 out of 42
comparisons (six graphs, 7 points each). The corresponding error bars are very small and
hence, not visible in the figures.

Discussion: We believe that the superior performance of ASAP-UCT is because of its effec-
tiveness in spite of noise in sampled trees. AS and ASAM conditions are strict as they look
for all pairwise action equivalences before calling two states equivalent. Such complete set of
equivalences are hard to find in UCT trees where some outcomes may be missing due to sam-
pling. ASAP-UCT, in contrast, can make good use of any partial (SAP) equivalences found.

ASAM’s performance does not improve over AS probably because its gain due to symmetries
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is undermined by increase in abstraction computation time.

We also experimented with the Canadian Traveler Problem (CTP) [Bonet and Geffner,
2012] but found that no abstraction algorithm gives performance gains over vanilla UCT. For
CTP, we believe this is due to lack of symmetries in the domain. This suggests that some

domains may not be that amenable to abstractions which is not too surprising.

Effect of Approximation Parameters: In our experiments, AS-UCT does not always perform
better than UCT, rather, it often underperforms. This is surprising and contradicts previous
observations [Jiang et al., 2014], which were based upon a single, deterministic domain of Oth-
ello. This could be due to the fact that our experiments set the parameters e and ¢ (see Section
7.1.4) zero for abstraction frameworks. However, we find that even after incorporating a range
of approximation parameters in AS-UCT, ASAP-UCT without those parameters continues to

perform significantly better.

7.5 Conclusion and Future Work

This chapter develops a novel class of state-action pair (SAP) abstractions, which generalizes
and extends past work on abstractions in MDPs. SAP abstractions find more symmetries in
a domain compared to existing approaches and convert an input MDP into a reduced AND-
OR graph. We present a new algorithm, ASAP-UCT, which computes these abstractions in an
online UCT framework. ASAP-UCT obtains significantly higher quality policies (up to 26%
reduction in policy costs) compared to previous approaches on three benchmark domains. We
have released our implementation for a wider use by the research community. It would be
interesting to extend these ideas to domains expressed in a factored or first-order representation
such as RDDL [Sanner, 2010].

In the next chapter, we study a more advance implementation of abstractions in UCT, called
On-the-Go Abstractions (OGA) UCT which computes abstractions as the tree is built. We
compare OGA-UCT with ASAP-UCT on these domains as well as some additional domains
illustrating that OGA-UCT is robust across variety of domains.
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Chapter 8

On-the-Go Abstractions in UCT
(OGA-UCT)

As shown in previous chapter, the performance of MCTS algorithms can be further improved
by incorporating domain abstractions. Original MCTS algorithms explore the flat state space,
which can be wasteful since many states are actually symmetric and need not be considered sep-
arately. MCTS algorithms with abstractions such as AS-UCT [Jiang er al., 2014] and ASAP-
UCT [Anand er al., 2015a] automatically compute (approximate) symmetric nodes (states,
state-action pairs) in the search tree. They aggregate such nodes into an abstract node, thus
reducing the subsequent UCT planning time considerably.

Both these algorithms alternate between two phases. One phase consists of an abstrac-
tion computation routine that uses the existing UCT tree to induce groups of symmetric nodes.
These nodes are aggregated to construct an abstract search tree. The second phase is the (mod-
ified) UCT algorithm, which is run as per original UCT in the beginning, but is modified to

incorporate the abstractions after the abstraction routine has been run at least once.

We believe that these algorithms do not achieve the full potential of abstractions since they
do not capture the true characteristics of symmetry aware learning described in Chapter 1. Since
abstractions are computed on a sampled tree, they are approximate. Erroneous abstractions
computed as part of one batch of abstraction computation may get corrected only after a full
phase of modified UCT - this wait could severely impact the solution quality. Moreover, while
UCT prefers some states over others (due to UCB exploration rule), these algorithms treat all
nodes at par while computing abstractions. This wastes valuable time on less important nodes,
which likely have limited impact on further planning.

To address this issue, we first revisit the characteristics of symmetry aware inference with
respect to planning algorithms. We first analyze the space of algorithmic design choices for

MCTS algorithms with domain abstractions. An algorithm can be phased or incremental, ab-
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straction computation may be done uniformly on all states or adaptively, and so on. We find
that existing algorithms have complimentary strengths and weaknesses. In response, we pro-
pose On-the-Go Abstractions (OGA), which incorporates the best-of-all-worlds design choices
and incorporates all the desired characteristics of symmetry aware decision making and infer-
ence.

On-the-Go Abstractions (OGA) is a novel (non-phased) approach in which abstraction com-
putation is tightly integrated into MCTS. In line with previous work, we implement these on
top of UCT and name the resulting algorithm OGA-UCT. OGA-UCT has several desirable
properties. First, it completely eliminates the expensive batch abstraction computation routine.
OGA-UCT is incremental in computing abstractions, i.e., as the tree gets built it is seamlessly
reduced by abstraction spot checks. Second, this allows new knowledge, either for correcting
old abstractions or finding new ones, to be useful without a significant wait. This keeps the
reduced tree as accurate as possible leading to better quality solutions. Finally, where to com-
pute abstractions is also adaptive — it is guided by the UCB exploration function, thus focusing
computation on the more important part of the search space.

We experimentally compare OGA-UCT! against ASAP-UCT (the state-of-the-art abstraction-
based UCT solver) as well as the vanilla UCT algorithm. We find that across a suite of planning
competition and other MDP domains, OGA-UCT performs better or at par with the best tech-
nique on each domain obtaining up to 28% solution quality improvements.

We begin by discussing the various design choices for abstraction algorithms with respect
to planning. We also characterize the existing work with respect to the design choices. Next,
we describe our main contribution of On-the-Go Abstractions in UCT (OGA-UCT) which in-
corporates the best of these design choices. Lastly, we discuss some key characteristics of
OGA-UCT giving some guarantees on its performance. Lastly, we illustrate the effectiveness

of OGA-UCT on some benchmark domains and finally we conclude this part of thesis.

8.1 Design Choices for Abstraction Algorithms

Abstraction computation and tree construction mutually depend on each other. If the tree
is complete, the abstractions computed will be accurate; if more abstractions are known, a
more reduced tree can be built saving further computation. This interplay between MCTS and
abstraction computation is relatively novel and admits several important algorithmic design
choices. We briefly describe these choices and place existing algorithms in this context. We
find that ASAP-UCT and PARSS have complimentary strengths and weaknesses; our proposal
OGA-UCT combines the best of both worlds. Table 8.1 summarizes this analysis.

'https://github.com/dair-iitd/oga-uct
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| Design choice | AS-UCT | ASAP-UCT | PARSS | OGA-UCT |
batch vs. incremental batch batch incremental || incremental
uniform vs. adaptive uniform uniform adaptive adaptive
progressive vs. split-merge split-merge | split-merge | progessive | split-merge
unit of abstraction: states or SAP state SAP state SAP
convergence to flat or aggregate nodes | aggregate aggregate flat aggregate

Table 8.1: Properties and design choices for MCTS algorithms computing abstractions

Batch vs. Incremental Computation: A key design decision is “when to initiate the abstrac-
tion computation routine”? AS-UCT and ASAP-UCT are batch-style algorithms that clearly
demarcate the tree construction phase from the abstraction computation phase. Abstraction
computation is treated as an independent procedure that is called periodically at specific time

points. Moreover, they throw away previous abstractions, and recompute them from scratch.

An alternative is an incremental algorithm that tightly couples abstraction computation with
tree construction. For example, PARSS adds nodes to its tree via abstraction refinement. It only

changes abstractions of a few nodes locally and does not compute everything from scratch.

We point out that batch-style algorithms are expensive and also suffer from stale abstrac-
tions — it can take a while to recover from erroneous abstractions (or good abstractions missed).
This can potentially lead to worse solutions because one state’s ()-value may be erroneously
and repeated transferred to another state. Incremental algorithms have the danger of spending

too much time computing abstractions and little time using them in planning.

Uniform vs. Adaptive Abstractions: The success of MCTS is, in part, due to adaptive
sampling, which zooms in on important parts of search tree (e.g., using UCB formula). The
same principle is applicable to choosing the subset of nodes on which to attempt abstraction
computation. AS-UCT and ASAP-UCT treat all search nodes in the tree equally, wasting time
on nodes that might be rarely visited. PARSS performs an explicit node selection and can

incorporate a measure of importance in choosing nodes for refinement.

Progressive Refinement vs. Split-Merge: Abstraction computation may be monotonic. For
example, it may start with the flattest nodes and progressively merge nodes to create aggregate
super-nodes. Or it may start with the coarsest supernodes and progressively split those to create
finer refinements. The former approach will create increasingly reduced trees whereas the latter
will create increasingly finer trees. A very different solution is to allow the algorithm to split or
merge as necessary based on new information. We call these Split-Merge abstractions. A newly
added node or edge in the tree may identify that two previously abstracted nodes were, in fact,
not symmetric and should be split, or that two nodes now appear symmetric, and can be merged.
This allows the maximum use of available information in creating as accurate abstractions as

possible at a given time.
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PARSS uses progressive refinement. AS-UCT and ASAP- UCT, due to their complete

recomputation of abstractions, allow both splits and merges. We know of no work that uses
progressive abstractions, in part because there are not many different abstraction procedures
available.
Convergence Conditions & Units of Abstraction: A related question is “what does the final
tree converge to?”” Does it converge to a completely flat search space? Or does it converge to a
reduced space? PARSS splits abstract states somewhat arbitrarily and, in the limit, converges
to a perfectly flat search tree. On the other hand, AS- and ASAP-UCT use the definitions of
node symmetries to converge to a reduced search space, which is guaranteed to be an accurate
reduction of the MDP in the limit. Of these two, AS-UCT abstracts only the states, whereas
ASAP-UCT can abstract state-action pairs as well, leading to more compression and runtime
savings as shown before [Anand et al., 2015a]. PARSS operates only on states and not on
state-action pairs.

Opverall, we find that both PARSS and ASAP-UCT have some desirable and some undesir-
able properties. PARSS is an incremental and adaptive algorithm, but its abstractions are ad-hoc
and do not discover accurate domain symmetries. It also reduces to a flat space in the limit, and
only aggregates states. ASAP-UCT, on the other hand, abstracts SAPs but is a batch-style al-
gorithm and uniformly computes abstractions on the whole tree. Our proposal, OGA-UCT,
combines the strengths of both algorithms: it computes SAP abstractions in an incremental and

adaptive manner.

8.2 OGA-UCT

In this section, we describe our algorithm OGA-UCT. Our algorithm is best understood in terms
of the construction of the original UCT tree. The UCT computation can be broadly divided in
two key phases 1) Sampling of a trajectory 2) Random rollout from a newly discovered leaf
node. In OGA-UCT, during the first phase, along with sampling of the trajectory, an abstraction
for each node is also maintained on- the-go. Abstraction for any node is computed using the
recursive updates similar to the ones used by ASAP-UCT (see the Background section). But
the key difference is that instead of doing the batch computation uniformly for each node, we
do it incrementally and in an adaptive manner. Each node has an associated recency count,
which stores the number of times the node was visited after its abstraction was last updated.
If the recency count reaches a pre-decided threshold K, we re-compute the abstraction for this
node and set the recency count back to 0. In the second phase when a rollout is performed,
we initialize the abstraction of the newly created leaf and set its recency count to 0. Any Q-

value updates in the UCT tree are now done over the abstract nodes rather than the original
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nodes. This effectively means that we can utilize the information from a single rollout for all
the nodes falling under the same abstraction. Since abstractions at a certain depth depend on
the abstractions in the tree below, it may happen that when a node’s abstraction changes, there
is a change in the abstraction of its ancestor nodes. Therefore, any change in the abstraction of
a node at depth d is propagated all the way up to the root of the tree, recomputing abstractions
as necessary.

Our entire algorithm can be divided in four parts. 1) OGA-UCT procedure (Algorithm 6)
which maintains the outer loop for sampling trajectories and is similar to the original UCT.
2) SampleTrajectory procedure (Algorithm 7) for sampling a single trajectory which is the
key for OGA-UCT. 3) Procedures (Algorithm 8) for updating state and SAP abstractions and
percolating the changes recursively to the ancestors once the recency count is reached for a
node. 4) Procedures (Algorithm 9) for computing the current abstraction of a state and an SAP

node. We next describe each one of them in detail.

Algorithm 6 OGA-UCT
1: procedure OGA-UCT(Sy, N, K, Horizon)
2: T < EMPTYTREE()
3 global K, Horizon,T
4: Add state node (S, 0) to tree T
5: INITIALIZESTATEABSTRACTION(Sy, 0)
6
7
8
9

10
while : < N do
SAMPLETRAJECTORY(Sj, 0)
: 1 1+1
10: return SELECTBESTACTION(Sy, 0)

OGA-UCT (Algorithm 6): The procedure OGA-UCT is very similar to the traditional UCT
algorithm. We start from a root node (.Sy, 0) and then sample the required number of trajectories
(N). Note that we need to initialize the abstraction of the root node (line 5). Horizon determines
the depth until which the tree is expanded. K controls the frequency for computing abstraction;
abstractions are re-computed when the recency count of a node becomes equal to &'

Sampling Trajectory (Algorithm 7): This is the main procedure of our algorithm. Lines
2-6 check the base condition for stopping a trajectory. Lines 7-11 add a newly discovered leaf
node to the tree, create an abstract node for it(initialize its abstraction) and perform a rollout.
If the procedure comes to line 12, we have not discovered a new leaf node yet. Line 12 selects
an action based on the UCB rule. Here, Q-Values and Counts in UCB formula are obtained
from Q-Values and Counts of corresponding abstract node. In lines 13-17, we add a newly
discovered SAP node to the tree, create a new abstract node for it (initialize its abstraction) and

set the recency count as 0. Lines 18-19 sample a new state node based on the chosen action and
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Figure 8.1: OGA-UCT in execution over a partially built MCTS tree at different stages. Num-
ber in parenthesis along each state gives recency count of that state. Rectangular boxes encap-
sulate symmetric elements at a particular level.
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recursively call SAMPLETRAJECTORY. Lines 20-23 take care of maintaining the recency count
and calling update abstractions if the count has reached the threshold K. Finally, lines 24-25
update counts and Q-Values for abstract node corresponding to (s, a, d). It is insightful to note
that if we remove the lines for computing abstractions and maintaining the recency count (lines
9,15-16,20-23), the procedure becomes identical to what standard UCT would do with lines 24,
25 updating Q-Value and Count of ground node.

Algorithm 7 Sample Trajectory in UCT

1: procedure VAL = SAMPLETRAJECTORY(S, d)
2 if terminal(s) then

3 return —reward(s)

4: else if d == Horizon then

5: return 0
6

7

8

9

if (s, d) is not in tree 7" then
Add state node (s, d) to tree T'
INITIALIZESTATEABSTRACTION(S, d)
return GETROLLOUT(s, d)

10: a < SELECT-UCB-ACTION(s, d)

11: if (s, a,d) is not in tree 7' then

12: Add SAP node (s, a,d) to tree T

13: INITIALIZE-SAP-ABSTRACTION(S, a, d)
14: RecencyCount[s,a,d] < 0

15: s' <~ SAMPLE(s, a)

16: newVal <~ SAMPLETRAJECTORY(s',d + 1)

17: RecencyCount[s, a,d] + +
18: if RecencyCount|s,a,d] == K then

19: UPDATE-SAP-ABSTRACTION(S, a, d)
20:  INCREMENTCOUNT(u4,(s, a))

21: UPDATEQ(u4, (s, a), newVal)

22: return newV al

Updating Abstractions (Algorithm 8): We update the abstractions for nodes whose re-
cency count has reached K. There are two different procedures, one for updating SAP abstrac-
tions and other for updating state abstractions. The symbol z¢ (14,) denotes the mapping from
a state (SAP) node to its abstraction, as defined in the Background section. In the procedure
for updating SAP abstractions, we first reset the recency count. Line 3 retrieves the current
abstraction (v) of this node and line 4 computes the new abstraction (u). In lines 5 to 9, if the
new abstraction is different from the old abstraction (i.e. u # v), the data of the old abstract
node (v, d) and new abstract node (u, d) needs to be updated (since a ground node is leaving
one and entering the other).The details about updating data(Q-Values and Counts) in line 7 is

discussed in detail in sub-section on Maintaining Q-Values and Counts later. In line 8, update
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abstraction is then called on the parent node (s, d) to propagate up the influence of change in
abstraction of node (s, a, d).

The procedure for updating state abstraction (starting line 12) is similar. Since, a state node
could have resulted from multiple (s’, a’) nodes, abstractions have to be updated for each one of
them (lines 17 - 19). Note that we do not need to maintain any data for state nodes. The V-value
of a state node is not explicitly required in UCT, and, the count of a state node is obtained by
summing up the count of its children SAP nodes.

Figure 8.1 shows partial MCTS trees at different stages of execution for a simple example.
The first part (a) shows the state at the beginning of a trajectory while last part (d) indicates
how abstractions are updated in the ancestors depending on whether abstraction has changed or
not at the current node. The intermediate stages of reaching the leaf node and updation based

on recency count are shown in (b) and (c).

Algorithm 8 Update Abstractions

procedure UPDATE-SAP-ABSTRACTION(s, a, d)
: RecencyCount[s,a,d] < 0

1:
2
3 v pd(s,a)

4: u <— COMPUTE-SAP-ABSTRACTION(S, a, d)

5: if u # v then > if abstraction changed
6 1l (s, a) < u

7 Update data of (v, d) and (u, d)

8 UPDATE-STATE-ABSTRACTION(S, d)

9

10: procedure UPDATE-STATE-ABSTRACTION(S, d)

11: y < pud(s)

12: x < COMPUTE-STATE-ABSTRACTION(S, d)

13: if z # y then > if abstraction changed
14: pE(s) <

15: for (s',a’) € Parentsls,d] do

16: UPDATE-SAP-ABSTRACTION(s',a’,d — 1)

Computing Abstractions (Algorithm 9): There are two different procedures for comput-
ing abstractions: one for SAP nodes and one for state nodes. Let us look at the case of SAP
nodes (Compute SAP Abstractions) first. Recall that X’ denotes the set of abstract state nodes at
a given depth (d+ 1 in this case). Let T’y denote the vector of transition probabilities to abstract
state nodes in depth d + 1 from SAP node (s, a, d). Initially, these transition probabilities are
set to O (line 2). In lines 3-5, Ty is populated by iterating over each node (s’, d + 1) in the next
level, finding its abstraction p&"! and adding the transition probability 7 (s, a, s') to the corre-
sponding element of vector T. We also, maintain a hash map M¢ which stores the mapping

from the pairs of form [Ty, C'(s, a)] to an abstract SAP node at depth d. If the key [Ty, C(s, a)]
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already exists in M ¢, the desired abstraction of (s, a, d) is the corresponding value ( w in the
line 7). Else we create a new SAP abstraction (u) containing (s, a, d) as the only node and add
it to map M¢ (lines 10,11).

Similarly for computing abstraction of state node (s) at depth (d), we maintain a set [J;, consist-
ing of abstract SAP nodes of form (s, a, d) at depth d. Hash map M stores the mapping from
set of form 7, to the state abstractions at depth d. If J;, already exists in hash-map, then we

return the corresponding state abstraction else a new abstraction is created and returned.

Maintaining Q-Values and Counts: The ideal design principle would be to set the Q-value
of an abstract SAP node as the weighted average of Q-values of the constituent nodes, and the
associated count to be the sum of the constituent counts. Unfortunately, operationalizing this (at
the time of abstraction change) requires significant bookkeeping. Hence, we maintain data(Q-
values and Counts) only for abstract SAP nodes instead of individual nodes.

Let the abstraction of an SAP node (s, a, d) change from v to u. Let the original counts for v and
u be given by C, and C), respectively and new counts be given by C'* and C}'“* respectively.

The new C}'*" and C]*" can be computed in the following manner:

crew = ¢, — & omew — 0, 4 & 8.1)
o] ol

Here, |v| is number of ground nodes present in abstract node v. Intuitively, since we maintain
count only for abstract SAP nodes, we take proportionate count from v and add it to u. Next,
let ), and (), denote the original Q-values for v and u respectively. Then, the new Q-values,
Q7" and Q7" can be computed by:

Cu+ &

Q" = Qv Q" = (8.2)
Note that (), remains unchanged and (), is updated by taking a weighted average between (@),
and Q).

Pruned OGA-UCT: Many applications need to deal with domains with a very high stochastic
branching factor. In such cases, OGA-UCT will spend a significant amount of time in com-
puting SAP abstractions since large number of transitions need to be considered. In order to
ameliorate this problem, while constructing transition tables, we do not consider nodes with
very low transition probabilities. Assume that we need to compute abstraction of an SAP node
(s,a,d). Let T = maxyT (s,a,s’) where the maximization is taken over the states s’ such
that (s’, d+1) is a node present in the UCT tree. Then, during abstraction computation, we only
consider those nodes (s, d + 1) in the tree whose transition probability 7 (s, a,s’) > a * T..

Here « is a constant s.t 0 < a < 1. In addition, we achieve this without a complete linear
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Algorithm 9 Compute-Abstraction

1: procedure COMPUTE-SAP-ABSTRACTION(S, a, d)
2 Vee X : Tylz] =0

3 for (s',d + 1) in Tree T do

4 Tx [:ug+l(sl)]+ = T(S’ a, 5,)

5. if [Ty, C(s,a)] exists in M¢ then
6

7

8

9

w = Mg[Tx,C(s,a)]
return w
u <— CREATE-NEW-SAP-ABSTRACTION(d)
. Insert [Tx,C(s,a)],uin M4
10: return
11:
12: procedure COMPUTE-STATE-ABSTRACTION(Ss, d)

13: Ju <~ {}

14: for a € Ado

15: Tu — Tu U {pd (s,a)}

16:  if Jy exists in My then

17: z = Mg{[ju]

18: return z

19: x <— CREATE-NEW-STATE-ABSTRACTION(d)
20: Insert Jy/, z in M

21: return x

scan over nodes at depth d + 1 by a small optimization. We call the resulting algorithm Pruned
OGA-UCT. Note that Pruned OGA-UCT defaults to OGA-UCT when a@ = 0. As demon-
strated by our experiments, Pruned OGA-UCT (for a suitably chosen value of «) is competitive
with OGA-UCT while giving improved performance on domains with high branching factor.

Implementation Details: Whenever the abstraction of a state or SAP node changes, we might
need to update the abstraction of its ancestors continuing all the way up to the root of the tree.
Since UCT tree is a Directed Acyclic Graph, a single update of abstraction at a node may result
in multiple such updates on an ancestor through different paths. In our implementation, we

carefully avoid these multiple updates by performing them in a breadth first manner.

8.3 Characteristics of OGA-UCT

OGA-UCT has several desirable theoretical and algorithmic properties. We first prove that it

converges to the optimal solution in the limit of infinite samples.

Theorem 8.3.1. Given an MDP M = (S, A, T,C, H), the value function computed by OGA-
UCT for the abstract node containing a state s at depth d converges to the value function

computed by UCT for state s, as number of trajectories N — < i.eVs € S Vd < H
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lim Voga(pk(s),d) = lim Vier(s, d)
N—o0 N—o0
Here V), , and V% denote the value functions computed by OGA-UCT and UCT, respec-
tively.

Proof. The proof will proceed in two parts.

Part 1 (Sound abstractions lead to correct values): We say that abstractions computed by
OGA-UCT are sound if two state (SAP) nodes that fall in the same abstraction under OGA-
UCT, also fall in the same abstraction using the ASAP definition of abstractions in the ground
finite-horizon MDP. Further, ASAP abstractions are guaranteed to have identical Q-values and
V-values [Anand et al., 2015al]. Therefore, applying UCT on such a sound abstract tree will
result in simulation of ground UCT which will converge to the optimal values in the limit.
Part 2 (OGA-UCT leads to sound abstractions): Let /V(, 4) denote the number of trajectories
passing through the state node (s, d). We say that (s, d) is visited sufficiently if Ny 4 — oo when
N — oo. We define sufficient visits for SAP nodes in a similar manner. We will inductively
prove that the abstractions in a sub-tree rooted at the state node (s, d) are sound if (s, d) is
visited sufficiently. Let the D be the maximum depth in the tree. We will prove the claim
by using backward induction from D going all the way to 0. Clearly, the claim is true for
d = D (leaves of the tree). Let us assume that it holds for state nodes at depth d + 1. We
will now prove it for depth d. Consider a state node (s, d). Since (s, d) is visited sufficiently,
all its children SAP nodes must be in the tree (due to the exploration in UCT). Let (s, a, d) be
one such child node. Let u € U denote the abstract node corresponding to (s, a,d). Then,
again due to exploration in UCT, 3 at least one node (s, a’, d) with abstraction v which is
visited sufficiently (all the nodes in an abstraction can not be starved). Since an SAP node
samples its child nodes based on the transition probabilities, all its children (s”,d + 1) must
be in the tree, must be visited sufficiently, and hence, should have sound abstractions using
the inductive hypothesis. Combining the above two facts, we can say that (s, a’, d) will also
have a sound abstraction with any node in u. This implies that (s, a,d) (child of (s,a)) will
have a sound abstraction. But since (s, a, d) was arbitrary, all the children of (s, d) must have
sound abstractions. Combining this with the fact that all the children of (s, d) are already in the
tree, (s, d) must also have sounds abstraction. Finally, since the root is visited sufficiently by
the statement of the theorem, all the abstractions in the UCT tree must be sound in the limit.

Hence, proved. 0
]

We now place OGA-UCT into the context of our previous analysis of algorithmic design

choices. OGA-UCT is incremental — it tightly integrates the abstraction computation routine
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with tree construction and makes only local changes in abstractions. Its focus on where to
recompute abstractions is adaptive — it recomputes abstractions for frequently visited nodes
much more often than others, thereby effectively utilizing the abstraction computation time on
important parts of the search space. OGA-UCT can both split and merge existing abstractions,
allowing itself to maintain as accurate a domain abstraction as possible given current knowl-
edge. Last but not the least, it abstracts both states and state-action pairs, and in the limit

converges to a reduced search space.

8.4 Experiments

We compare the performance of OGA-UCT with ASAP-UCT, the state-of-the-art UCT-based
algorithm that employs domain abstractions. Previous work [Anand er al., 2015a] showed
that it obtains better performance than AS-UCT and variants. We also compare OGA-UCT
with vanilla UCT to assess the overall value of abstractions in UCT. In addition, we also do
a sensitivity analysis for different values of K in OGA-UCT. We illustrate our experiments

on six popular MDP planning domains from literature and International Probabilistic Planning
Competition (IPPC).

8.4.1 Experimental Settings

We implement OGA-UCT on the top of MDP Engine,? the UCT implementation from Bonet &
Geffner [2012] in C++. ASAP-UCT? is also implemented over the same codebase. This makes
the runtime comparisons between the three algorithms meaningful.

In spite of having access to PARSS source-code [Hostetler et al., 2015], we could not com-
plete a meaningful comparison. PARSS is implemented in Java giving it a rather different ex-
ecution profile. Its basis in sparse sampling and its unique style of abstractions makes PARSS
very different in nature compared to UCT implementing AS, ASAP, or OGA. Because it starts
with a tree pre-built up to the planning horizon, we do not expect PARSS performance to match
up to UCT-based algorithms for large horizons — original PARSS experiments are on horizons
of up to five. Their results are also on significantly modified versions of original benchmarks.
We leave empirical comparison with PARSS to future work.

In our experiments, all algorithms were given equal time per decision, computed as total
planning time divided by the execution horizon. UCT rollouts employed a random base policy.
We set the exploration constant for UCB rule to be the absolute value of current ()-value of
node, as per recommendations in [Bonet and Geffner, 2012]. The [ value in ASAP-UCT, which

2 Available at https: //code.google.com/p/mdp-engine/
*Downloaded from https://github.com/dair-iitd/asap-uct
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determines the number of abstraction phases per decision, was set to 1 as done in previous
chapter. We tried various K values and found OGA-UCT performance to vary slightly in a few
domains, with no clear winner. We choose K to be 3 in all experiments for its marginally better
overall performance.

All our experiments are performed on Intel Quad core i-7 system. For all the domains, we
use a planning horizon of 50 and execution horizon of 100, i.e, a total of 100 decisions are taken

per problem, and each decision is taken with a maximum lookahead of 50.

8.4.2 Domain Descriptions

In this case, we employ three more domains of Sysadmin, Academic Advising and Race Track
in addition to Sailing Wind, Game of Life and Navigation domains used in previous chapter of
ASAP-UCT. We also experiment with 5 instances of each domain. We next describe the new
domains briefly and also, describe the characteristics of the instances used for each domain.
Race Track: This traditional MDP [Barto et al., 1995; Bonet and Geffner, 2012] consists of a
race track with acceleration and deceleration in either direction as the available actions. We test
on six different race-tracks as implemented in Bonet’s MDP Engine.

SysAdmin: We use IPPC 2011 [Sanner and Yoon, 2011] version of this traditional domain
[Guestrin et al., 2003]. The agent is a network administrator, and can reboot machines. Ma-
chines can probabilistically crash based on the number of alive machines that are neighbors.
We test on six problems — ring, hub, and line topologies with 10 and 15 machines each.
Academic Advising: This domain from IPPC 2014 requires an agent to pass various courses
that have pre-requisite relations [Guerin er al., 2012]. Good grades in pre-requisites makes it
more likely to pass a course. We test on 4 different IPPC instances for this domain.
Navigation: This domain is similar to the domain description defined in Section 7.4.1. We test
on five IPPC 2011 instances of varying sizes.

Sailing Wind: This domain was also used in experiments in Section 7.4.1. We use 5 different
instances having grid sizes {10, 15, 20, 25, 30} in our tests.

Game of Life: Similar to Navigation and Sailing Wind, this domain was also used in Section
7.4.1. The domain has a very high branching factor. We test on two instances for grid sizes

3x3, 4x4, and 5 x5 with uniform noise probabilities in each cell.
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Figure 8.2: OGA-UCT performs better or at par with ASAP-UCT and UCT for most of the
domains

Domains UCT ASAP-UCT | OGA (K=3) | Pruned ASAP | Pruned OGA (K=3)
Acadadvising | 0.48 +£0.07 | 0.23 £0.16 | 0.89 £ 0.03 | 0.23 +0.16 0.88 + 0.03
Navigation 041 +0.16 | 045+£0.13 | 0.57 £0.13 | 0.45+0.12 0.54 + 0.08
RaceTrack 0.84 +0.13 | 0.38+0.09 | 0.84 £0.13 | 0.46 +£0.11 0.82 + 0.14
Sailing Wind | 0.61 +0.03 | 0.80 + 0.05 | 0.82 + 0.05 | 0.82 + 0.04 0.82 + 0.03
GameOfLife | 0.14 +0.17 | 0.81 £0.06 | 0.64 = 0.11 | 0.44 +0.21 0.82 + 0.04
Sysadmin 0.02 +0.01 | 0.66 +=0.03 | 0.54 £0.01 | 0.454+0.05 0.57 £ 0.08

Table 8.2: Aggregate performance across different problems and planning times per domain
normalized between O and 1. Pruned OGA-UCT is best or on par with the best on almost all
domains, including those with high branching factors.
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8.4.3 Observations

We compare OGA-UCT with ASAP-UCT and unabstracted UCT on these problems with dif-
ferent total planning times and draw cost vs. time curves. Representative runs on each domain
are 1llustrated in Figure 8.2. Each curve is an average of 1,000 reruns and also draws 95%
confidence interval bars.

In addition to the representative curves we also show aggregate performance of an algo-
rithm on each domain across different planning times (Table 8.2). We choose six equi-spaced
planning times for each problem and run the three algorithms along with all variants (pruned
versions and different K values). Of all of these points, we give the least cost a score of 1, and
the worst cost a score of zero. We normalize each cost value to a number between O and 1.
This normalization is related to the metric used by IPPCs, with small differences. For example,
IPPCs normalize only across algorithms and not across planning times.

We observe that OGA-UCT performs the best or on par with the best on four out of the
six domains. In AcadAdvising and Navigation, OGA’s performance is substantially better than
both algorithms. It matches performance with UCT on RaceTrack and with ASAP-UCT on
Sailing Wind. In Game of Life (GOL) and Sysadmin, OGA-UCT performs worse than ASAP-
UCT. Both of these domains have exponential branching factors, which severely slow down
abstraction computation routines. Since OGA recomputes abstractions more often than ASAP,
it suffers significantly.

The pruned version of OGA-UCT helps with exactly this (we set probability threshold to
0.1). Pruned OGA-UCT makes abstraction computations approximate and only higher prob-
ability transitions are taken into account while computing abstractions. This improves perfor-
mance on both domains, with pruned OGA-UCT becoming at par with ASAP-UCT on GOL.
The performance in other domains remains mostly similar. For fair comparison, we also at-
tempt pruning with ASAP-UCT and find that it hurts substantially in GOL and Sysadmin. Since
ASAP-UCT computes abstractions only a handful of times per decision step, computing them
accurately is likely more important for it than the computational savings due to approximation.

Overall, we find that performances of ASAP-UCT and UCT can depend heavily on the
domain, but OGA-UCT admits least variance and is robustly good across several domains.
Sensitivity Analysis across different K-Values: We ran all our experiments for X = 1,3,5,7.
Table 8.3 shows the aggregate score for different /'s. While there is no single A, which is best
across all domains, most of the performances are significantly close to each other. We choose

K = 3, which gives an overall balanced performance across all domains.
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Domains OGA (K=1) | OGA (K=3) | OGA (K=5) | OGA (K=7)
AcadAdvising | 0.86 £0.02 | 0.89 +0.03 | 0.91 = 0.03 | 0.87 £ 0.08
Navigation 0.73£0.07 | 0.57£0.13 | 0.50 £0.11 | 0.45 £ 0.13
RaceTrack 0.79+0.17 | 0.84 £0.13 | 0.85+0.12 | 0.85 £ 0.13
SailingWind 0.76 =0.03 | 0.82 £ 0.05 | 0.84 +0.03 | 0.83 +£0.03
GameOfLife | 0.62 +£0.09 | 0.64 +0.11 | 0.63 +0.11 | 0.61 £ 0.11
Sysadmin 042 +0.02 | 0.54 £0.01 | 0.59 +£0.02 | 0.61 +0.02

Table 8.3: Comparison of OGA-UCT different K-values for all domains. Performances remain
similar, and there is no clear winner.

8.5 Conclusions

We present OGA-UCT, an algorithm to compute domain abstractions on the go within the UCT
framework for Al planning. It makes several desirable design choices such as it computes ab-
stractions of state-action pairs, using an incremental and adaptive computation of abstractions,
with a tight coupling between abstraction computation and tree construction. This allows OGA-
UCT to efficiently recover from inaccurate abstractions as more information gets available. In
the limit of infinite samples, OGA-UCT obtains a sound reduction of the original search tree
and converges to the optimal solution.

Our experiments demonstrate that OGA-UCT is robust across domains. It compares favor-
ably to the best of the algorithms in many domains. However, it can suffer when the branching
factor is very high because that directly impacts the abstraction computation routine. An ex-
tension of OGA-UCT that prunes various low-probability transitions allows it to scale to such
domains. Overall, Pruned OGA-UCT obtains best performance in almost all domains obtaining
up to 28% quality gains.

We also contribute our analysis of algorithmic design choices applicable to MCTS with
abstractions. We hope that this analysis will be useful in understanding existing algorithms and
also for algorithm development in the future. This work comprehensively classifies the existing
work of incorporating abstractions in MCTS algorithms. It makes some novel contributions in
defining new abstractions as well as using these in modern Al planning algorithms.

In this work, ASAP abstractions have been applied in UCT which is a widely used MCTS
algorithm. Apart from using abstractions, many works [Keller and Eyerich, 2012] have im-
proved the performance of UCT using various other heuristics and optimizations. Prost [Keller
and Eyerich, 2012] is one of these and have been a state-of-the-art solver in International Prob-
abilistic Planning Competitions(IPPC)-2011 and IPPC-2014. Prost incorporates many more
additional heuristics like bounding the search depth, identifying the reward locks and Q-Value
initialization instead of roll outs to enhance the performance of vanilla UCT algorithm. There

have been some recent attempts [Jain, 2017; Steindel, 2017] at incorporating ASAP abstrac-
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tions in the Prost [Keller and Eyerich, 2012] but with limited success. Theoretically, ASAP
framework must capture many more abstractions as compared to abstractions captured within
Prost. The only symmetry based abstraction in Prost is that of removing equivalent actions
within a state. On the other hand, OGA-UCT not only identifies state equivalences but also
state-action pair equivalences among actions belonging to two different states.

However, ASAP abstractions have not shown that much benefit over Prost experimentally
as demonstrated in [Jain, 2017]. In most cases, symmetries discovered by our algorithm are
precisely the ones discovered by Prost using his optimizations/enhancements. There is not
much additional benefit. (2) In some cases, symmetries lose out due to the time spent in trying
to find them whereas in reality there are hardly any symmetries. Figuring out apriori which
decision making problems may gain from exploiting symmetries (so that this overhead could
be avoided in case of no or little symmetries) is a direction for future work.

We would also like to point out that some of the differences in performance may stem from
different underlying implementations of Prost (which uses a Tree based data structure) vs MDP
engine (which uses a DAG), and accounting for this differences may also result in discovery of
additional symmetrical structures. Carrying out these experiments carefully is a direction for

future work.
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Chapter 9

Symmetries for Structured Output

Prediction in Computer Vision

This part of the thesis focuses on symmetry aware Al from the point of view of specific appli-
cations in computer vision. It differs from the previous parts in two major aspects. Firstly, both
the previous parts applied symmetries in classic algorithms for those problems. This included
MCMC algorithms for application of state symmetries in PGMs and MCTS algorithms in Al
planning. This part investigates whether the proposed symmetry aware template is also useful
in state-of-the-art algorithms which include many additional optimizations. It applies symme-
try aware template to off the shelf near to state-of-the-art algorithms in stereovision and image
segmentation. Secondly, both the previous parts used exact symmetries. This included multiple
novel notions of state symmetries in PGMs and ASAP symmetries in planning. These exact
symmetries may or may not be found in real world problems and domains. This part analyze
the kind of symmetry which can be useful in real world problems specific to a particular do-
main. Then, it adapts the ideas of exact symmetries to propose novel notions of approximate

symmetries which are really effective on real world datasets.

Specifically, we focus on the applications that use Probabilistic Graphical Models (PGMs)
and apply the ideas proposed in lifted inference literature to speedup inference. Algorithms
for NLP, computational biology, and computer vision (CV) problems make heavy use of PGM
machinery (e.g., [Blei et al., 2003; Friedman, 2004; Szeliski et al., 2008al). But, they also
include significant problem-specific insights to get high performance. Barring a handful of
exceptions as in [Jernite er al., 2015; Nath and Domingos, 2016], lifted inference has not been

applied directly to such algorithms.

Our work studies the potential value of lifting to CV problems such as image denoising,
stereo vision, and image segmentation. Most CV problems can be modeled as structured output

prediction tasks, typically assigning a label to each pixel. A large class of solutions are PGM-

141



142 Symmetries for Structured Output Prediction in Computer Vision

based: they define a Markov Random Field (MRF) , where each pixel represents a node, with a
unary potential that depends on the pixel value, and pairwise neighborhood potentials that favor
similar labels to neighboring pixels. Inference on this MRF is computationally expensive since
it is grid structured, and hence has high tree width [Koller and Friedman, 2009]. This work
explores the use of symmetries to speedup the inference process.

We see three main challenges in applying existing lifted inference literature to these prob-
lems. First, most existing algorithms focus on computing marginals [Singla and Domingos,
2008; Kersting et al., 2009; Gogate and Domingos, 2011; Niepert, 2012; Anand et al., 2016b;
Anand et al., 2017] whereas most of CV problems are MAP inference problems. Second,
among the algorithms performing lifted MAP [Noessner et al., 2013; Mladenov et al., 2014,
Sarkhel et al., 2014; Mittal et al., 2014], most focus on exact lifting. Exact symmetries are not
readily found in CV since most pixels may not have the exact same neighborhood. Third, the
few algorithms that perform approximate lifting for MAP, e.g. [Sarkhel et al., 2015], can not
handle a distinct unary potential on every node. This is essential for our application since image
pixels take ordinal values in three channels (RGB).

In response, we develop an approximate lifted MAP inference algorithm, which can ef-
fectively handle distinct unary potentials. We initialize our algorithm by merging together the
pixels having the same order of top-k labels based on the unary potential values. It then adapts
an existing symmetry finding algorithm [Kersting et al., 2009] to discover groupings that also
have similar neighborhoods. We refer to our groupings as lifted pixels. The algorithm, further,
imposes the constraint that all pixels in a lifted pixel must be assigned the same label. Our
approximate lifting reduces the model size drastically leading to significant time savings. Un-
fortunately, such approximate lifting could adversely impact the solution quality. However, we
vary the degree of approximation in symmetry computation to output a sequence of coarse-to-
fine models with varying quality-time trade-offs. By switching between such models, this work
develops a coarse-to-fine (C2F) inference procedure applicable to many CV problems. Our
C2F approach is an illustration of joint symmetry aware inference described in Part-I, where
the symmetry computation module closely interacts with the inference procedure in an iterative
fashion. Although the initial symmetries are precomputed but there is incremental symmetry
improvement due to continuous refining of partitions. These ideas are formalized in a novel
template for using lifted inference in CV.

This work tests C2F lifted inference on two problems: stereo matching and image segmen-
tation. We start with one of the best MRF-based solvers each for both problems. Mozerov
& Weijer [2015] use a two-way energy minimization to effectively handle occluded regions in
stereo matching. Co-operative cuts [Kohli ez al., 2013] for image segmentation use concave
functions over a predefined set of pixel pairs to correctly segment images with sharp edges.

Our work implements C2F inference on top of both these algorithms and find that C2F versions
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have a strong anytime behavior i.e., given any amount of inference time, they output a much
higher quality (and are never worse) than their unlifted counterparts, and do not suffer any loss
in the final quality.

Overall, this chapter makes the following three contributions. Firstly, we present an ap-
proximate lifted MAP algorithm that can efficiently handle a large number of distinct unary
potentials. We develop a novel template for applying lifted inference in structured prediction
tasks in CV. Secondly, we provide methods that output progressively finer approximate symme-
tries, leading to a C2F lifted inference procedure. Thirdly, we implement C2F inference over a
near state-of-the-art stereo matching algorithm, TSGO and one of the popular MRF-based im-
age segmentation algorithms, Cooperative Graph Cut. We release our implementation for wider
use by the community.! We find that C2F has a much superior anytime behavior. In particular,
for stereo matching it achieves 60% better quality on average in time-constrained settings while
for image segmentation C2F reaches convergence in 33% less time.

This work was done jointly with Haroun Habeeb. While Haroun came up with the top-K
heuristic, Ankit developed the framework for coarse-to-fine inference. Experiments were done
jointly by Haroun and Ankit, with significant contributions from both of them. The part done

by Haroun appeared in his bachelor’s thesis.

9.1 Background

Most computer vision problems are structured output prediction problems and their PGM-based
solutions often follow similar formulations. They cast the tasks into the problem of finding the
lowest energy assignment over grid-structured MRFs (denoted by G = (&X', y)). This represen-
tation of graphical model differs from our earlier representation of graphical models as a set of
weighted features G = { f;, w;}"*, in Part-II. Although, the two representations are mathemat-
ically equivalent, we introduce the new representation to align it with formulations popularly

used in computer vision research.

9.1.1 Computer Vision Problems as MRFs

Given an MRF G = (X, ) for an input image, the random variables in G are the set of pixels
X in the image. Given a set of labels L : {1,2,...,|L|}, the task of structured output prediction
is to label each pixel X € X with a label from L. The MRFs have two kinds of potentials ()
— unary and higher-order. Unary potentials are defined over each individual pixel, and usually
incorporate pixel intensity, color, and other pixel features. Higher order potentials operate

over cliques (pairs or more) of neighboring pixels and typically express some form of spatial

I Available at https://github.com/dair-iitd/c2fidcv/
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homophily — “neighboring pixels are more likely to have similar labels.” While the general
PGM structure of various tasks are similar, the specific potential tables and label spaces are
task-dependent.

The goal is to find the MAP assignment over this MRF, which is equivalent to energy min-
imization (by defining energy as negative log of potentials) or probability maximization. We
denote the negative log of unary potentials by ¢, and that of higher-order potentials by .2

Thus, energy of a complete assignment x € L!*| can be defined as:

E(x)= Y ¢(xi>+2wj(iy-) 9.1)

i€l | X

Here Z; denotes the assignment x restricted to the set of variables in the potential v);. And

the output of the algorithm is the assignment Xyap:

Xyap = arg min £(x) 9.2)
x€LIXI

The problem is in general intractable. Efficient approximations exploit special characteris-
tics of potentials like submodularity [Jegelka and Bilmes, 20111, or use variants of graph cut or
loopy belief propagation [Boykov et al., 2001; Freeman et al., 2000].

Though there are various methods to solve the energy minimization, the methods based on
graph cuts [Boykov and Jolly, 2001] have been fairly popular and effective. The main idea is
to reduce each energy minimization problem to finding a min cut in the associated graph. For a
binary pairwise labeling, the graph is constructed as follows: there is one vertex for each pixel.
In addition, there are two additional vertices labeled as source and sink which are connected
to each pixel vertex and the weight of that edge is the unary energy for that pixel. Also, there
are edges between pixels whose weight is determined by pairwise energy on those pixels. Any
labeling in this graph can be seen as defining a cut with the weight of that cut being the energy
of the labeling. The problem of energy minimization, then, reduces to finding the minimum
weight cut in the graph.

Many optimizations for this problem have been proposed for higher order potentials and
multi-label case. Specifically, we use Alpha-Expansion fusion algorithm [Lempitsky et al.,
2010] which handles the problem of multiple discrete labels in these problem by combining two
sub-optimal labelings using graph cut. The algorithms have been widely used and implemented

in multiple MAP inference libraries.

’In the interest of readability, we say ‘potential’ to mean ‘negative log of potential’ in the rest of the paper.
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9.1.2 Symmetries in Graphical Models

As described in Part-II, two popular methods for symmetry computation are color passing for
computing symmetries of variables [Kersting et al., 20091, and graph isomorphism for symme-
tries of states [Niepert, 2012; Bui et al., 2013]. Part-II of thesis deals with graph isomorphism
for computing state symmetries. In this chapter, we focus on color passing which is similar to
message passing for bisimulations based symmetries used in MDPs as described in Part-III.

Color passing for an MRF operates over a colored bipartite graph containing nodes for all
variables and potentials, and each node is assigned a color. The variable nodes form one side
of the bipartite graph while potential nodes form the other side with the edges defined across
these two sides. Each potential node has undirected edges to all the variables which participate
in that potential. The colors in the graph are initialized as follows: all variables nodes get a
common color; all potential nodes with exactly same potential tables are assigned a unique
color. Now, in an iterative color passing scheme, in each iteration, each variable node sends
a message containing its color to all neighboring potential nodes. The potential nodes store
incoming color signatures (messages) in a vector, append their own color to it, and send the
vector back to variable nodes. The variable nodes stack these incoming vectors. New colors are
assigned to each node based on the set of incoming messages such that two nodes with same
messages are assigned the same unique color. This process is repeated until convergence, i.e.,
no further change in colors.

A coloring of the bipartite graph defines a partition of variable nodes such that all nodes of
the same color form a partition element. Each iteration of color passing creates successively
finer partitions, since two variable nodes, once assigned different colors, can never get the same

color.

9.2 Lifted Computer Vision Framework

In this section, we will describe our generic template which can be used to lift a large class of
vision applications including those in stereo, and segmentation. Our template can be seen as
transforming the original problem space to a reduced problem space over which the original
inference algorithm can now be applied much more efficiently. Specifically, our description in
this section is entirely algorithm independent.

We will focus on MAP inference which is the inference task of choice for most vision ap-
plications. Our formulation is based on the realization that pixels that are involved in the same
(or similar) kinds of unary and higher order potentials, and have the same (or similar) neigh-
borhoods, are likely to have the same MAP value. Therefore, if somehow we could discover

such sets of pixels a priori, we could explicitly enforce these pixels to have the same value
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while searching for the solution, substantially reducing the problem size and still preserving the
optimal MAP assignment(s). Since in general doing this exactly may lead to a degenerate net-
work, we do it approximately. Our approximations trade-off speed for marginal loss in solution
quality. The loss in solution quality is offset by resorting to coarse-to-fine inference where we
start with a crude approximation, and gradually make it finer, to guarantee optimality at the end

while still obtaining significant gains. We next describe the details of our approach.

9.2.1 Obtaining a Reduced Problem

Consider an energy minimization problem over a PGM G = (X, 7). Let L = {1,2,--- ,|L|}
denote the set of labels over which variables in the set X can vary. We denote a partition of
variables by V¥ in this chapter instead of A which is used for describing a partition in rest of
the thesis. Specifically, let V¥ = {Y/" Y,F' ... Y.’} denote a partition of X into r disjoint
subsets, i.e., Vk, V,0 C X, VP NY,P = 0 when ky # ky, and |, Y, = X. We refer to each
Y,"” as a partition element. Correspondingly, let us define Y = {V3,Ys,---,Y,} as a set of
partition variables, where there is a one to one correspondence between partition elements and
the partition variables and each partition variable Y}, takes values in the set L. Let part(X;)

denote the partition element to which X; belongs. Let X ; € X denote a subset of variables.

Definition 9.2.1. We say that a partition element Y, is represented in the set X ;if3X; € X j
s.t. part(X;) = Y,F.

Let ; (X ;) be a potential defined completely over the subset X ;. Let Z; denote an assign-
ment to variables in the set Xj. Let Z;.elem(7) denote the value taken by a variable X; in

A~

X;.

J

Definition 9.2.2. We say that an assignment X ; = &; respects a partition Y if the variables
in X ; belonging to the same partition element have the same label in &, i.e., part(X;) =
part(Xy) = &;.elem(i) = &;.elem(i'), VX;, Xo € X;.

Next, we introduce the notion of a reduced potential.

Definition 9.2.3. Let X be a set of variables and let V¥ denote its partition. Given the potential
v;(X;), the reduced potential T; is defined to be the restriction of ~;(X;) to those labeling
assignments of X ; which respect the partition Y*. Equivalently, we can define the reduced

potential I, (37]) over the set of partition variables f/j which are represented in the set X -

For example, consider a potential v(X;, X5, X3) defined over three Boolean variables.
The table for v would have 8 entries. Consider the partition Y* = {V/”"| Y;7'} where Y{" =
{X1, X} and Y = {X3}. Then, the reduced potential I is the restriction of ~y to those rows in
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the table where X; = X,. Hence I has four rows in its table and equivalently can be thought of
defining a potential over the 4 possible combinations of Y; and Y> variables. We are now ready

to define a reduced graphical model.

Definition 9.2.4. Let G = (X, ) represent a PGM. Given a partition Y of X, the reduced
graphical model G(Y, 1) is the graphical model defined over the set of partition variables )
such that every potential y; € v in G is replaced by the corresponding reduced potential I'; € T

inG.

Let F(x) and £(y) denote the energies of the states x and y in GG and G, respectively. The

following theorem relates the energies of the states in the two graphical models.

Theorem 9.2.1. For every assignment 'y of Y in G, there is a corresponding assignment x of X
such that £(y) = E(x).

~

Proof. The theorem can be proved by noting that each potential I';(Y;) in G was obtained by
restricting the original potential ~; (X ;) to those assignments where variables in X; belonging
to the same partition element took the same label. Since this correspondence is true for every
potential in the reduced set, to obtain the desired state x, for every variable X; € X we simply
assign it the label of its partition element in y. And since, the value of each potential is exactly

same, the Energy value E/(x), which is sum of potentials, is exactly same as E(y). [

Let xyap and yyap be the MAP states (i.e. having the minimum energy) for G and G,
respectively. Then, £(ymap) > E(Xnap).

Proof. The process of reduction can be seen as curtailing the entire search space to those as-
signments where variables in the same partition take the same label. Let the set of states where
the variables in the same partition element take the same label be denoted by X red Let yyap
be MAP-state in G , then, as per Theorem 9.2.1, Ix such that E(x) = &E(ymap). If MAP
state exists in X7, then, this x corresponding to yyap will be MAP-state i.e xpyjap = X
and hence, £(ynap) = F(xuap). Otherwise, let MAP state xyap € X — X7, then,
E(xmap) < E(x) where x is state corresponding to yyap as per theorem 9.2.1. Hence,
E(ymar) = E(x) > E(Xumap)- O

A reduction in the problem space will lead to computational gains, but might result in loss of
solution quality, where the solution quality can be captured by the difference between & (yyap)
and E'(xyap). Therefore, we need to trade-off the balance between the two.

Intuitively, a good problem reduction will keep those variables in the same partition that are
likely to have the same value in the optimal assignment for the original problem. How do we
find such variables approximately without actually solving the inference task? We will describe

one such technique in Section 9.2.3.
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There is another perspective. Instead of solving one reduced problem, we can instead work
with a series of reduced problems, which successively get closer and closer to the optimal
solution. The initial reductions are coarser and far from optimal, but can be solved efficiently
to quickly reach near the region where the solution lies. The successive iterations can then
refine the solution iteratively getting closer to the optimal. This leads us to the coarse-to-fine

inference described next.

9.2.2 Coarse-to-Fine Inference

We will define a framework for C2F (coarse-to-fine) inference so that we maintain the compu-
tational advantage while still preserving optimality. In the following, for ease of notation, we
will drop the superscript P in )* to denote the partition of X'. Therefore, ) will refer to both
the partition as well as the set of partition variables. Before we describe our algorithm, let us

start with some definitions.

Definition 9.2.5. Let ) and )’ be two partitions of X. We say that Y is coarser than ),
denoted as Y < V', if VY] € V', IY; € Y such that Y] C Y; where Y/ and Y; denote the

partition elements of respective partition. We equivalently say that )’ is finer than ).

It is easy to see that X" defines a partition }* where we have a separate partition element
corresponding to each variable. This partition is the finest among all partitions, i.e., V) such
that ) is a partition of X', J < YV*. We also refer it to as the degenerate partition. We will
refer to the corresponding PGM as G* (same as (). Next, we state a theorem which relates two

partitions with each other.

Lemma 9.2.1. Let Y and )’ be two partitions of X such that Y < Y'. Then for every state
y corresponding to reduced graphical model G associated with ), there is a state 'y’ in the
reduced graphical model G' associated with ' such that E(y) = E(y’). Further, if ymap and
y'vap are MAP states corresponding to G and G' respectively, then, E(ynvap) > E(Y vap)

Proof. The proof of this lemma is similar to theorem 9.2.1. Given the state y, we can construct
the state y’ in the following way. Since ) is finer than ), VY € )', 3Y; € Vst Y/ C Y, we
assign the same label to each partition element Y, in y’ exactly the same label as taken by its
counterpart Y; in state y. Then, we need to prove that the energy obtained for y’ constructed in
this way is same as energy of state y. It should be noted that both y and y’ will have the same
state x in the ground model given by theorem 9.2.1. This is because, multiple partition elements
of )’ each of which is a subset of a particular partition element Y; € ) will get the same label.
Let X, be a ground pixel which belongs to partition element Y, in }'. If Y/ C Y] then, X,

must belong to the Y; in ). Hence, X, will get the same label whether x is constructed through
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Y or )V’ (as both partition-elements have same label). Hence, £(y) = E(x) and £(y’) = E(x).
Therefore, E(y) = E(y').

For the second part, it should be noted that there are more states in graphical model cor-
responding to )’ than in the graphical model associated with ). Also, from the first part, for
every state in graphical model for ), there is a state in graphical model associated with )

which has same energy. Hence, £(ymap) > (Y vap)-
[

Consider a set Y of coarse to fine partitions given as J* < V!, ... <, V! < ... V*. Let
Gt &'y 4 p respectively denote the reduced problem, energy function and MAP assignment
for the partition ). Using Lemma 9.2.1, we have £ (y%) = £ (y**1) for every state y'.
Also, we have we have Vt £ (yt\p) > EF(yiilp). Together, these two statements imply
that starting from the coarsest partition, we can gradually keep on improving the solution as we
move to finer partitions.

Our C2F set-up assumes an iterative MAP inference algorithm A, which has the anytime
property i.e., can produce solutions of increasing quality with time. C2F Function (see Al-
gorithm 10) takes 3 inputs: a set of C2F partitions Y, inference algorithm A, and a stopping
criteria C. The algorithm A in turn takes three inputs: PGM G, starting assignment y*, stop-
ping criteria C. A outputs an approximation to the MAP solution once the stopping criteria
C is met. Starting with the coarsest partition (¢ = 0 in line 2), a start state is picked for the
coarsest problem to be solved (line 3). In each iteration (line 4), C2F finds the MAP estimate
for the current problem (G') using algorithm A (line 5). This solution is then mapped to a same
energy solution of the next finer partition (line 6) which becomes the starting state for the next
run of A. The solution is thus successively refined in each iteration. The process is repeated
until we reach the finest level of partition. In the end, A is run on the finest partition and the
resultant solution is output (lines 8,9). Since the last partition in the set is the original problem
G*, optimality with respect to A is guaranteed.

Next, we describe how to use the color passing algorithm (Section 9.1) to get a series of
partitions which get successively finer. Our C2F algorithm can then be applied on this set of

partitions to get anytime solutions of high quality while being computationally efficient.
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Algorithm 10 Coarse-to-Fine Lifted MAP Algorithm
1: procedure C2F Lifted MAP(C2F Partitions Y, Algo A, Criteria C)
2 t=0,T7=1Y|
3 y! = getlnitState(G")
4: while t < T do
5 YiAAP :A<gt’ytjc)
6
7
8
9

yiT = get Equiv Assignment (Y, Y yiiap)
t=t+1

Yiap = A(G",y",C)

return yi ,p

9.2.3 C2F Partitioning for Computer Vision

We now adapt the general color passing algorithm to MRFs for CV problems. Unfortunately,
unary potentials make color passing highly ineffective. Different pixels have different RGB
values and intensities, leading to almost every pixel getting a different unary potential. Naive
application of color passing splits almost all variables into their own partitions, and lifting offers
little value.

A natural approximation is to define a threshold, such that two unary potentials within that
threshold be initialized with the same color. Our experiments show limited success with this
scheme because two pixels may have the same label even when their actual unary potentials are
very different. What is more important is relative importance given to each label than the actual
potential value.

In response, we adapt color passing for CV by initializing it as before, but with one key
change: we initialize two unary potential nodes with the same color if their lowest energy labels
have the same order for the top /Ny labels (we call this unary split threshold). Experiments
reveal that this approximation leads to effective partitions for lifted inference.

Finally, we can easily construct a sequence of coarse-to-fine partitions in the natural course
of color passing’s execution — every iteration of color passing creates a finer partition. More-
over, as an alternative approach, we may also increase /N;. In our implementations, we inter-
sperse the two, i.e., before every next step we pick one of two choices: either, we run another
iteration of color passing; or, we increase Ny, by one, and split each variable partition based on
the NI lowest energy labels of its constituent variables.

We parameterize C'P(Np,, Ny, ) to denote the partition from the current state of color pass-
ing, which has been run till Ny, iterations and unary split threshold is /Ny. It is easy to prove
that another iteration of color passing or splitting by increasing /N as above leads to a finer
partition. Le., CP(Np, Nyer) = CP(Np+ 1, Nye,) and CP(Np, Nyer) = CP(Np, Nijger +1).

We refer to each element of a partition of variables as a lifted pixel, since it is a subset of pixels.
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Figure 9.1: (a) Average (normalized) energy vs. inference time (b) Average pixel error vs. time. C2F
TSGO achieves roughly 60% reduction in time for reaching the optima. It has best anytime performance
compared to vanilla TSGO and static lifted versions. (c) Average (normalized) energy vs. time for
different thresholding values and CP partitions. Plots with the same marker have MRFs of similar sizes.
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(b) (c)

(d (e
Figure 9.2: Qualitative results for Doll image at convergence. C2F-TSGO is similar to base TSGO.(a)
Left and Right Images (b) Ground Truth (c) Disparity Map by TSGO (d) Disparity Map by C2F TSGO
(e) Each colored region (other than black) is one among the 10 largest partition elements from CP(1,1).
Each color represents one partition element. Partition elements form non-contiguous regions
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9.3 Lifted Inference for Stereo Matching

We first demonstrate the value of C2F lifted inference in the context of stereo matching [Scharstein
and Szeliski, 2002]. It aims to find pixel correspondences in a set of images of the same scene,
which can be used to further estimate the 3D scene. Formally, two images I' and I" corre-
sponding to images of the scene from a left camera and a right camera are taken such that both
cameras are at same horizontal level. The goal is to compute a disparity labeling D' for every
pixel X = (a,b) such that I'[a][b] corresponds to I"[a — D'[a][b]][b]. We build a lifted version
of a popular MRF based stereomatching algorithm, Two Step Global Optimization (TSGO)
[Mozerov and van de Weijer, 2015]. TSGO ranks 2" on the Middlebury Stereo Evaluation

Version 2 leaderboard at the time of publication of this work.?

9.3.1 Background on TSGO Algorithm

Traditionally, stereomatching methods are classified in two categories: cost filtering methods
and energy minimization methods. A neighborhood based filter is applied in cost filtering meth-
ods based on the fact that neighboring pixels have similar disparity while the energy minimiza-
tion methods perform a global optimization over the complete image space. Though energy
minimization methods have shown good results but cost filtering methods perform better in oc-
cluded regions. Our base algorithm, TSGO combines the virtue of both the methods to propose
a novel two step global optimization algorithm.

The first step of the algorithm is a cost filtering method on a fully connected MRF with
pairwise potentials while the second is a global energy minimization on a conventional locally
connected pairwise MRF (4-connected model). At the high level, TSGO runs message passing
on a fully connected MRF, computes marginals of each pixel X;. The marginals computed by
the first step act as unary potentials ¢?([) for the MRF of second step. We use the superscript
to denote the step (out of 2 steps) of energy minimization in TSGO.

The fully connected MRF with pairwise potentials has the energy given by

E'(x)= > ola)+ Y, wli,j)(l—0d(zx)) (9.3)

i=1—|X]| {ig}=1—=1X|,i#j

where the unary potential for the first stage ¢; is computed as a linear combination of two terms:
1) Dissimilarity between the right and left images (u!) 2) Dissimilarity between the gradient of
two images (uf).

The dissimilarity between left and right images (u!) is given by popular Birchfield-Tomasi

measure [Birchfield and Tomasi, 1999] given by

3Available at http: //vision.middlebury.edu/stereo/eval/
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u! = min(  min Z |1 () —d)]),7) 9.4)

1—0.5<d<I+0.5

where C is the set of channels and 7 is a parameter. The gradient image is a 6-D vector function
in the same space as image and computed as given in [Mozerov and van de Weijer, 2015].

The pairwise terms is a product of two terms where w (%, j) is a weight of pairwise potential
function which captures the influence between two pixels ¢ and j in the position and color space
of pixels ¢, j and 0(X;, X;) is the Kronecker delta function. The marginals of each pixel for the
first stage can be computed by belief propagation or message passing method. The aim of the
message passing algorithm is to compute the marginals of each pixel ¢_1 This is accomplished

by iterative message passing between connected nodes where a message (m!_, ;) is passed at

i—]
iteration ¢ between pixels ¢ and j if an edge exists between them. The marginals at iteration ¢ is
given as ¢t

o' =oi )+ D mh(0) 9.5)

j=1=X]

where the message is given by

mi;(0) = min(é; () —mii O+ Y w(i )1 -1 (9.6)

Vel N o
{i,5}=1-|X],i#j

Since increasing the number of iterations of message passing at this stage does not improve
the final result, only one iteration of message passing is performed at this stage. Further, un-
der appropriate constraints on unary potentials (as described in [Mozerov and van de Weijer,
2015]), this iteration of message passing is shown to be equivalent to a bilateral filter and can
be performed efficiently. The computed marginals are used as unary potentials for the second
layer.

The MRF used in second stage is a standard grid MRF which have pairwise potentials over
neighbors in space. The pairwise potential ¢) used in step two is ¢ (X, X;) = w(X;, X;)p(Xi, X;),
where ¢(X;, X;) is a truncated linear function of | X; — X}, and w(X;, X;) takes one of three
distinct constant values (\1,2 , A\3) depending on color difference between pixels. The color dif-
ference captures the gradient and hence, edges are divided in three categories depending on low
or high image gradient. The unary potentials are marginals computed by first stage. The MAP
assignment xy;ap computes the lowest energy assignment of disparities D' for every pixel for
this MRF. The energy minimization in this second space is Np-hard and hence, approximate
inference algorithms have to be used to compute the MAP state. Specifically, TRW-S algorithm
[Kolmogorov, 2006] based on belief propagation framework was used for computing the MAP
state in TSGO. This step is computationally expensive in the whole pipeline.

The last stage in TSGO algorithm is post-processing of disparity map obtained in Step-2
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of energy minimization. TSGO involves a complex multi-stage post processing which consists
of a left-to-right disparity map cross checking, weighted median filtering the obtained disparity
map and outlier suppression techniques (details in [Mozerov and van de Weijer, 2015]. Since
these post processing techniques are orthogonal to applying symmetry in MAP inference, we

use these techniques as used in base algorithms directly in our work.

9.3.2 Lifted TSGO

Since step two is costlier (as first step runs only single iteration), we build its lifted version as
discussed in previous section. For color passing, two unary potential nodes are initialized with
the same color if their lowest energy labels exactly match (N, = 1). Other initializations are
consistent with original color passing for general MRFs. A sequence of coarse-to-fine models is
outputted as per Section 9.2.3. C2F TSGO uses outputs from the sequence CP(1,1), CP(2,1),
C'P(3,1) and then refines to the original MRF. Model refinement is triggered whenever energy
has not decreased in the last four iterations of alpha expansion (this becomes the stopping

criteria C in Algorithm 1).

Experiments: Our experiments build on top of the existing TSGO implementation,* but we
change the minimization algorithm in step two to alpha expansion fusion [Lempitsky et al.,
2010] from OpenGM2 library [Andres ef al., 2010; Kappes et al., 20151, as it improves the
speed of the base implementation. We use the benchmark Middlebury Stereo datasets of 2003,
2005 and 2006 [Scharstein and Szeliski, 2003; Hirschmuller and Scharstein, 2007]. For the
2003 dataset, quarter-size images are used and for others, third-size images are used. The label
space is of size 85 (85 distinct disparity labels).

We compare our coarse-to-fine TSGO (using C'P(Np,, N, ) partitions) against vanilla TSGO.
Figures 9.1(a,b) show the aggregate plots of energy (and error) vs. time. We observe that C2F
TSGO reaches the same optima as TSGO, but in less than half the time. It has a much superior
anytime performance — if inference time is given as a deadline, C2F TSGO obtains 59.59%
less error on average over randomly sampled deadlines. We also eyeball the outputs of C2F
TSGO and TSGO and find them to be visually similar. Figure 9.2 shows a sample qualita-
tive comparison. Figure 9.2(e) shows five of the ten largest partition elements in the partition
from C'P(1,1). Clearly, the partition elements formed are not contiguous, and seem to capture
variables that are likely to get the same assignment. This underscores the value of our lifting
framework for CV problems.

We also compare our C'P(Np, Ny.,) partitioning strategy with threshold partitioning dis-
cussed in Section 9.2.3. We merge two pixels in thresholding scheme if the L1-norm distance

of their unary potentials is less than a threshold. For each partition induced by our approach, we

4Available at http://www.cvc.uab.es/$\sim$mozerov/Stereo/
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Figure 9.3: (a-c¢) Qualitative Results for Segmentation. C2F has quality similar to CoGC algo-
rithm (@) Original Image (b) Segmentation by CoGC (c¢) Segmentation by C2F CoGC

find a value of threshold that has roughly the same number of lifted pixels. Figure 9.1(c) shows
that partitions based on C'P(1,1) and C'P(3,1) converges to a much lower energy quickly
compared to the corresponding threshold values (T'hr = 50 and Thr = 1 respectively). For
C'P(2,1), convergence is slower compared to corresponding threshold (T'hr = 5) but eventu-
ally C'P(2, 1) has significantly better quality.
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Energy vs time
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Figure 9.4: C2F CoGC has lower energy compared to CoGC and other lifted variant at all times
on three random samples
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9.4 Lifted Inference for Image Segmentation

We now demonstrate the general nature of our lifted CV framework by applying it to a second
task. We choose multi-label interactive image segmentation, where the goal is to segment
an image [ based on a seed labeling (true labels for a few pixels) provided as input. Like
many other CV problems, this also has an MRF-based solution, with the best label-assignment
generally obtained by MAP inference using graph cuts or loopy belief propagation [Boykov er
al., 2001; Szeliski er al., 2008al.

However, MRFs with only pairwise potentials are known to suffer from short-boundary bias
— they prefer segmentations with shorter boundaries, because pairwise potentials penalize every
pair of boundary pixels. This leads to incorrect labeling for sharp edge objects. For example,
Figure 9.5 (b), shows the original image and ground truth for a tree while Figure 9.5(c) shows
the segmentation obtained by a traditional pairwise model. Kohli ez al. [2013] use CoGC,
cooperative graph cuts [Jegelka and Bilmes, 2011], to develop one of the best MRF-based
solvers that overcome this bias. Figure 9.5(d) shows the segmentation obtained by cooperative

graph cut which clearly captures the sharp edges better.
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Figure 9.5: Example of Short Boundary Bias on a sample tree image (a) Original Image (b)
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9.4.1 Background on Cooperative Graph Cut (CoGC)

Traditional MRFs define the energy function over a grid structured model where each state x

has the following energy

Ex)= > ¢il@)+ >, vylw,) 9.7

1=1—|X| {i,j}€edges

Here, the function ¢ encode the unary potential of a particular pixel intensity taking a particular
label while the 1) encode the contrast sensitive pairwise potential of two neighboring pixels
taking the same label. Depending on contrast difference between two neighboring pixels, it
penalizes each pair of neighboring pixels differently if they do not take the same label.

In the graphical structure, each pixel corresponds to a vertex and there is an edge corre-
sponding to each pairwise potential. A particular labelling, then, can be thought of as a parti-
tion of vertices and as a cut in this grid graph. Label discontinuity on neighboring pixels can
be seen as edges across the cut. The energy minimization, therefore, corresponds to finding the
minimum cut in this graph. The problem with this model is that it linearly penalize the number
of label discontinuities at edges (boundary pixel pairs). This helps in ensuring smoothness on
neighboring pixels but at the same time restricts the model to always prefer a short boundary
or perimeter of an object. This problem is particularly critical when segmenting objects with
sharp boundaries like tree leaves, insect wings etc.

CoGC, on the other hand, overcomes this problem by not penalizing the number of label
discontinuities but the diversity of different types of label discontinuities. This is helpful for
sharp objects where the same label discontinuity is repeated again and again. The cooperative
cut achieves this by dividing the set of edges in groups. A set of edge groups, G, are created
such that each element, g, € G represents one type of label discontinuity. Associated with each
element of edge group g is a set, €., of edges or pixel pairs. The model obtains the partition of
all edges into ¢, by clustering edges based on the color difference. The cooperative cut model

has the following energy function:

X
Ex)=> ¢iz)+> Y F| Y wa)lz=1a+I) (9.8)

i=1 9€G IEL (z,a)€eq
The key difference in this energy function is F' which is a concave function. [ is the indicator
function, and w(z, z") depends on the color difference between x, 2. Intuitively, F' collects
all edges with similar discontinuities and penalizes them sub-linearly, thus reducing the short-
boundary bias in the model. The model is a strict generalization of classical energy function. If
the function F' is identity, the model reduced to classical pairwise energy function.

The usage of a concave function over the edge groups makes the MRF higher order with
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complexity exponential to the number of vertices in a group. Though MAP inference over
higher order potentials is expensive in general, it can be shown that the higher order poten-
tial over edge groups can be reduced to pairwise potentials through the addition of auxiliary
variables [Jegelka and Bilmes, 2011]. However, the number of auxiliary variables required
are exponential in the number of pixels taking part in higher order potentials. [Kohli et al.,
2013] showed that in the presence of structure as available for these cooperative cut potentials,
the number of auxiliary variables required are linear in number of edges. They further optimize
their algorithm using dynamic max-flow algorithms which compute a series of related max-flow

problems efficiently.

9.4.2 Lifted CoGC

CoGC is lifted using the framework of Section 9.2, with some additional changes. The unary
potentials are grouped using K-Label heuristic and specific number of iterations of color passing
as earlier. It should be noted that the each edge group, which signifies a different higher order
potential, is colored differently during initialization of color passing. This avoids merging two
pixels together which have edges in different edge groups. This also results in having the
resulting lifted model’s energy function exactly same as the original CoGC. Hence, the lifted
model can also use the same set of optimizations as proposed for CoGC.

Another change in Lifted CoGC from proposed CoGC is how we obtain edge groups. We
cluster edge groups using color difference and the position of the edge. This is performed by
doing k-means clustering over edges. Edge groups that are formed only on the basis of color
difference make the error of grouping different segment’s boundaries into a single group. For
e.g., it erroneously cluster boundaries between white cow and grass, and sky and grass together
in the top image in Figure 9.3.

Coarse-to-fine partitions are obtained by the method described in Section 9.2.3. C2F CoGC
uses outputs from the sequence C'P([£7,2), CP([%], 3) before refining to the original MRF.
Model refinement is triggered if energy has not reduced over the last | L| iterations.

Experiments: Our experiments use the implementation of Cooperative Graph Cuts as pro-
vided by [Kohli et al., 2013].> Energy minimization is performed using alpha expansion fusion
[Boykov et al., 2001]. The implementation of CoGC performs a greedy descent on auxiliary
variables while performing alpha expansion fusion on the remaining variables, as described in
Kohli et. al. [2013]. The dataset used is provided with the implementation. It is a part of the
MSRC V2 dataset.®

5 Available at https://github.com/aosokin/coopCuts_CVPR2013

6 Available at https://www.microsoft.com/en-us/research/project/
image-understanding/?from=http%$3A%2F%2Fresearch.microsoft.com%2Fvision$%
2Fcambridge%2Frecognition%2F
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Figure 9.3 shows the qualitative performance of C2F CoGC with respect to CoGC on three
different images. C2F CoGC obtains the same quality as CoGC. Figure 9.4 shows three indi-
vidual energy vs. time plots. Results on other images are similar. We find that C2F CoGC
algorithm converges to the same energy as CoGC in about two-thirds the time on average.
Overall, C2F CoGC achieves a much better anytime performance than other lifted and unlifted
CoGC.

Similar to Section 9.3, refined partitions attain better quality than coarser ones at the ex-
pense of time. Since the implementation performs a greedy descent over auxiliary variables,
refinement of current partition also resets the auxiliary variables to the last value that produced
a change. Notice that energy minimization on output of C'P(2,3) attains a lower energy than
on C'P(3,2). This observation drives our decision to refine by increasing N;.,.. Qualitatively,
C2F CoGC produces the same labeling as CoGC. Finally, similar to stereo matching, parti-
tions based on thresholding scheme perform significantly worse compared to C'P(Np,, Nier)

for image segmentation as well.

9.5 Related Work

There is a large body of work on exact lifting, both marginal [Kersting et al., 2009; Gogate
and Domingos, 2011; Niepert, 2012; Mittal et al., 2015] and MAP [Kersting et al., 2009;
Gogate and Domingos, 2011; Niepert, 2012; Sarkhel er al., 2014; Mittal et al., 20141, which is
not directly applicable to our setting. There is some recent work on approximate lifting [Van den
Broeck and Darwiche, 2013; Venugopal and Gogate, 2014a; Singla et al., 2014; Sarkhel et al.,
2015; Van den Broeck and Niepert, 2015] but its focus is on marginal inference whereas we are
interested in lifted MAP. Further, this work cannot handle a distinct unary potential on every
node. An exception is work by Bui et al. [2012] which explicitly deals with lifting in presence of
distinct unary potentials. Unfortunately, they make a very strong assumption of exchangeability
in the absence of unaries which does not hold true in our setting since each pixel has its own
unique neighborhood.

Work by Sarkhel et al. [2015] is probably the closest to our work. They design a C2F hierar-
chy to cluster constants for approximate lifted MAP inference in Markov logic. In contrast, we
partition ground atoms in a PGM. Like other work on approximate lifting, they cannot handle
distinct unary potentials. Furthermore, they assume that their theory is provided in a normal
form, i.e., without evidence, which can be a severe restriction for most practical applications.
Kiddon & Domingos [2011] also propose C2F inference for an underlying Markov logic the-
ory. They use a hierarchy of partitions based on a pre-specified ontology. CV does not have

any such ontology available, and needs to discover partitions using the PGM directly.
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Nath & Domingos [2010] exploit (approximate) lifted inference for video segmentation.
They experiment on a specific video problem (different from ours), and they only compare
against vanilla BP. Their initial partitioning scheme is similar to our thresholding approach,
which does not work well in our experiments.

In computer vision, a popular approach to reduce the complexity of inference is to use
superpixels [Achanta et al., 2012; Van den Bergh et al., 2012]. Superpixels are obtained by
merging neighboring nodes that have similar characteristics. All pixel nodes in the same super-
pixel are assigned the same value during MAP inference. SLIC [Achanta ef al., 2012] is one
of the most popular algorithms for discovering superpixels. Our approach differs from SLIC
in some significant ways. First, their superpixels are local in nature whereas our algorithm can
merge pixels that are far apart as can be seen in Figure 9.2(e). This can help in merging two
disconnected regions of the same object in a single lifted pixel. Second, they obtain superpixels
independent of the inference algorithm, whereas we tightly integrate our lifting with the under-
lying inference algorithm. This can potentially lead to discovery of better partitions; indeed,
this helped us tremendously in image segmentation. Third, they do not provide a C2F version
of their algorithm and we did not find it straightforward to extend their approach to discover
successively finer partitions. There is some recent work [Wei ef al., 2016] which addresses last
two of these challenges by introducing a hierarchy of superpixels. In our preliminary experi-

ments, we found that SLIC and superpixel hierarchy perform worse than our lifting approach.

9.6 Conclusion and Future Work

We develop a generic template for applying lifted inference to structured output prediction tasks
in computer vision. We show that MRF-based CV algorithms can be lifted at different levels of
abstraction, leading to methods for coarse to fine inference over a sequence of lifted models. We
test our ideas on two different CV tasks of stereo matching and interactive image segmentation.
We find that C2F lifting is vastly more efficient than unlifted algorithms on both tasks obtaining
a superior anytime performance, and without any loss in final solution quality. To the best of
our knowledge, this is the first demonstration of lifted inference in conjunction with top of the
line task-specific algorithms. Although we restrict to CV in this work, we believe that our ideas
are general and can be adapted to other domains such as NLP, and computational biology. We

plan to explore this in the future.
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Chapter 10
Conclusion and Future Directions

“ A conclusion is the place where you get tired of thinking.”
—Arthur Bloch

This thesis discusses the importance of exploiting symmetries to improve the efficiency and per-
formance of Al and ML algorithms. Specifically, it discusses symmetry aware algorithms in the
context of probabilistic inference and sequential decision making under uncertainty. In prob-
abilistic inference, it characterizes different types of state symmetries that can be captured by
graph automorphism. It also proposes novel notion of Contextual Symmetries, Variable-Value
Symmetries, Non-Equicardinal Symmetries and Block-Value Symmetries. We also illustrates
the effectiveness of these symmetries in end-to-end systems that use MCMC algorithms. Fi-
nally, we also study the hierarchy of state symmetries and relations among different types of
state symmetries.

In the context of decision making, we study different notions of abstractions which uses
symmetry. We find that existing notions of abstractions in MDPs only capture state abstractions
by the ideas of bisimulations and homomorphisms. We extend these ideas to propose a novel
notion of state-action pair abstractions which can provide gains even when there is no state
abstraction present in the domain. In the line of recent work, we apply these abstractions in
Monte Carlo Tree Search Algorithms. We develop a novel algorithm ASAP-UCT which applies
abstraction of state-action pairs in UCT. We, further, improve the ASAP-UCT algorithm by
applying abstractions on-the-go in UCT in our novel algorithm, OGA-UCT. Our experimental
results on several benchmark domains illustrate the usefulness of applying ASAP abstractions
in MCTS algorithms.

In addition, our work on applying symmetries in computer vision is one of the few works
which have looked at symmetries from the application’s point of view. We propose a novel top-
k label heuristic which captures approximate symmetries for MAP inference in computer vision

applications. Our coarse-to-fine Lifted MAP framework provided end-to-end time gains on near
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state-of-the-art algorithms for the problems of Stereovision and Semantic Image Segmentation,
thereby leveraging the theoretical study on lifted inference.

In addition, there are multiple research directions emanating from this thesis and contem-
porary research which can be pursued in future:

* End-to-End Lifted Inference for Deeply Learned PGMs: Most of the earlier works
applying PGM inference to various tasks used hand tuned potentials. But recent works
have shown that neural network learned representations can be used as potentials in the
graphical models. A critical challenge in end to end learning these networks is that each
learning step involves a computationally expensive PGM inference as a sub-step making
learning not scale beyond a few iterations. We will like to address this challenge by the
application of lifted inference which interestingly opens up following new directions:

a) Lifted Inference for end-to-end learning: Since lifted inference provides speedup
upto 10x, application of lifted inference in training of PGM augmented neural network
models will make training significantly faster. The gain in time allows training algorithms
to run many more iterations thereby improving the performance. Initial investigations by
[Nandwani et al., 2018] illustrate the benefit of using lifted inference to reduce the train-
ing time of PGM augmented neural networks significantly.

b) Learning to Learn Symmetries: Most of the approximate lifted inference algorithms
work on manually defined heuristics for calculating symmetries. The end to end system
cannot leverage its power fully for these manually defined symmetries. In such a sce-
nario, learning to automatically learn approximate symmetries is a critical component
for an end-to-end system. How to devise an end-to-end differentiable symmetry learn-
ing module is a key question to be addressed here. With the advent of neural networks,
Graph Convolutional Networks[Kipf and Welling, 2017] have become popular recently
to find good representations for graph problems where the kernel parameters are shared
across the complete graph. GCNs are able to embed graph nodes with similar neighbour-
hood structure by applying a message passing algorithm within a neural network. These
parameters determine the size of neighborhood used for determining which nodes are
symmetric to each other. It would be interesting to compute state symmetries in this way.
One interesting insight could be to use these embeddings to compute symmetries instead
of our graph automorphism / bisimulation based approach. This may help in computing
approximate symmetric nodes as well. This could be clearly helpful in identifying states

and/or actions which are symmetric.

* Approximate Symmetries: An important and forthcoming question for the lifted infer-
ence community is to adapt the ideas of theoretically sound symmetries into appropriate

practical notions of approximate symmetries. There has been some work in this direc-
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tion exemplified by the works of [Broeck and Niepert 2015], [Habeeeb et.al 2017]. A
first step in this direction is to define different notions of relaxation and identify metrics
to define and precisely quantify different types of approximations for real world sym-
metries. For e.g, defining bisimulation metric distance between two symmetric states
could be one such metric. This should be motivated by the fact that certainalgorithmic
guarantees should be preserved under these approximations like the convergence to sta-
tionary distributions. The second step is to compute these approximate symmetries fast.
I believe representation learning by neural networks could play critical role in learn-
ing good approximate symmetries. Thirdly, some algorithmic innovations are required
that our current lifted inference algorithms are applicable and flexible enough to identify
symmetries early and handle wrongly identified approximate symmetries . We believe
coarse-to-fine approach and On-the-Go abstractions have provided some of the first steps
in this direction but we certainly believe more work is needed to push the ideas of lifted

decision making and inference to real world domains

* Symmetries for Resource Constrained ML: Most of 10T devices and smart phones
need to make some prediction for their usual operations. Though the capability of these
devices are no less than a small computer, these devices operate in resource constrained
settings of memory, battery power and CPUs. To avoid the communication delays and
amidst privacy concerns, there has been a lot of push to do predictions on device in limited
memory and power scenario([Kumar et al., 2017]). Some works([McMabhan et al., 20171])
have pushed to do training updates on the device giving rise to paradigm of Federated
Learning. In such scenarios, abstractions play a critical role in not only reducing the
prediction time but also reducing the model size. I would like to explore how abstractions
discussed above can be computed efficiently in such scenarios of limited resources. I will
look forward to collaborations with people having experience in embedded devices for

this work.
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Appendix

Theorem 2.3.1: PGM-Num_Orbit is NP-Hard.

Proof. We show that given any 3-SAT formula, we can construct a PGM, such that the formula
is not satisfiable if and only if the number of orbits in the coarsest probability preserving parti-
tioning is < 2. The construction of this PGM should be polynomial in the size of the input for
3-SAT.

Consider an instance of 3-SAT over variables (01, ()2, - - - , Q),, and clauses C',Cs, - - -, C,,.
Let us assume for now that the given problem instance is not a tautology. We will handle
this case later. We construct a graphical model as shown in Figure 10.1. Every clause C; is
connected to the variables that appear in the clause. We define a feature over each clause and
the variables that appear in the clause. Consider the feature for the i*" clause, defined over
variables Q);, Qr, ;. The feature has weight 1 and is true if the assignment to the Q;, Qx, @Q;
“agrees” with the assignment to C;, and false otherwise. Note that it is not necessary for value
of C; to be 1 for feature to be true. It could also be possible that C; has an assignment 0 and the

feature is still true, as long as the value “agrees” with the assignment to Q);, Qr, Q;.

Further we have some additional variables A;’s and we define a feature associated with each A;
in a similar way. This feature having weight 1 is true if A; = C; 1 A A;_; and false otherwise.
Finally we define a feature with weight 3 associated with the node X as true if X = 1 and
X = C,, N Ap_o. In addition, we define a feature with weight 1 which is true if X = 0 and
X =C,, \ A,,_- and false otherwise.

Note that in case there is some satisfying assignment to the variables @)1, Q, - - - , Q,, the un-
normalized probability for the state corresponding to this assignment and

{C1,Cq, -+ ,Cpy Ay, Agy o S Ao, X} = {1,1,--- , 1} is 3. Since this is not a tautology,
there would be some assignment to )1, QJs, - - - , Q),,, such that some clause is violated. In this
case, the unnormalized probability for the complete assignment to the state is 1. Also, there
would always be some states with unnormalized probability 0, which would be the states in

which the values for some C; or some A; or X do not “agree” with the required condition.
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Figure 10.1: Outline of Network Structure for Reduction. Source: Adapted from [Koller and
Friedman, 2009]

Therefore, in case there is a satisfying assignment, the number of orbits in the coarsest valid

partitioning would be 3, and in case there is no satisfying assignment, it would be 2.

Now consider the case in which the given problem instance is a tautology. Since the prob-
lem is in CNF form, it can be checked in linear time that each clause is a tautology. In case it is
a tautology, we specify a fixed graphical model that has number of orbits in the coarsest valid

partitioning to be 3.

Therefore, the graphical model we construct would have the number of orbits in coarsest prob-
ability preserving state partitioning to be 3 (for unnormalized probabilities - 0,1 and 3) if and
only if there is a satisfying assignment to the variables, and the number of orbits in coarsest
probability partitioning to be 2 if and only if there is no satisfying assignment to the variables.
Giving this as an input to PGM-NumSym with the graphical model defined as above, and set-
ting k=2, if the solver for PGM-NumSym outputs a Yes, then the given instance for 3-SAT is
not satisfiable and if it outputs a No, then the given instance for 3-SAT is satisfiable.
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