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Abstract

State-of-the-art models for multi-hop question
answering typically augment large-scale lan-
guage models like BERT with additional, in-
tuitively useful capabilities such as named en-
tity recognition, graph-based reasoning, and
question decomposition. However, does
their strong performance on popular multi-
hop datasets really justify this added design
complexity? Our results suggest that the an-
swer may be no, because even our simple
pipeline based on BERT, named QUARK, per-
forms surprisingly well. Specifically, on Hot-
potQA, QUARK outperforms these models on
both question answering and support identifi-
cation (and achieves performance very close
to a RoBERTa model). Our pipeline has three
steps: 1) use BERT to identify potentially rele-
vant sentences independently of each other; 2)
feed the set of selected sentences as context
into a standard BERT span prediction model
to choose an answer; and 3) use the sentence
selection model, now with the chosen answer,
to produce supporting sentences. The strong
performance of QUARK resurfaces the impor-
tance of carefully exploring simple model de-
signs before using popular benchmarks to jus-
tify the value of complex techniques.

1 Introduction

Textual Multi-hop Question Answering (QA) is the
task of answering questions by combining informa-
tion from multiple sentences or documents. This
is a challenging reasoning task that requires QA
systems to identify relevant pieces of information
in the given text and learn to compose them to an-
swer a question. To enable progress in this area,
many datasets (Welbl et al., 2018; Talmor and Be-
rant, 2018; Yang et al., 2018; Khot et al., 2020)
and models (Min et al., 2019b; Xiao et al., 2019;
Tu et al., 2020) with varying complexities have
been proposed over the past few years. Our work
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Figure 1: Overview of the QUARK model, with a ques-
tion and context paragraphs as input. In both blue
boxes, sentences are scored independently from one an-
other. rna(s) and ra(s) use the same model architec-
ture with different weights.

focuses on HotpotQA (Yang et al., 2018), which
contains 105,257 multi-hop questions derived from
two Wikipedia paragraphs, where the correct an-
swer is a span in these paragraphs or yes/no.

Due to the multi-hop nature of this dataset, it
is natural to assume that the relevance of a sen-
tence for a question would depend on the other
sentences considered to be relevant. E.g., the rele-
vance of “Obama was born in Hawaii.” to the ques-
tion “Where was the 44th President of USA born?”
depends on the other relevant sentence: “Obama
was the 44th President of US.” As a result, many
approaches designed for this task focus on jointly
identifying the relevant sentences (or paragraphs)
via mechanisms such as cross-document attention,
graph networks, and entity linking.

Our results question this basic assumption. We
show that a simple model, QUARK (see Fig. 1),
that first identifies relevant sentences from each



paragraph independent of other paragraphs, is sur-
prisingly powerful on this task: By using only the
context of the corresponding paragraph, QUARK

can recover all gold supporting sentences within
the top-5 sentences. For QA, it uses a standard
BERT (Devlin et al., 2019) span prediction model
(similar to current published models) on the output
of this module. Additionally, QUARK exploits the
inherent similarity between the relevant sentence
identification task and the task of generating an
explanation given the answer from a QA module:
it uses the same architecture for both tasks.

We show that this independent sentence scoring
model results in a simple QA pipeline that outper-
forms other BERT models in both ‘distractor’ and
‘fullwiki’ settings of HotpotQA. In the distractor
setting (10 paragraphs, including two gold, pro-
vided as context), QUARK achieves joint scores
(answer and support prediction) within 0.75% of
the current state of the art. Even in the fullwiki set-
ting (all 5M Wikipedia paragraphs as context), by
combining our sentence selection approach with a
commonly used paragraph selection approach (Nie
et al., 2019),1 we outperform all previously pub-
lished BERT models. In both settings, the only
models scoring higher use RoBERTa (Liu et al.,
2019), a more robustly trained language model that
is known to outperform BERT across various tasks.

While our design uses multiple transformer mod-
els (now considered a standard starting point in
NLP), our contribution is a simple pipeline with-
out any bells and whistles, such as NER, graph
networks, entity linking, etc. The closest effort to
QUARK is by Min et al. (2019a), who also propose
a simple QA model for HotpotQA, but don’t con-
sider the support task and fall several points short
of SOTA on the QA task due to reasoning over only
one paragraph at a time.

Finally, our ablation study demonstrates that the
sentence selection module benefits substantially
from using context from the corresponding para-
graph. It also shows that running this module a
second time, with the chosen answer as input, re-
sults in more accurate support identification.

2 Related Work

Most approaches for HotpotQA attempt to capture
the interactions between the paragraphs by either

1While their approach selects the paragraphs jointly using
the link structure, our sentence selection approach is still
independent of the other paragraphs.

relying on cross-attention between documents or
sequentially selecting paragraphs based on the pre-
viously selected paragraphs.

While Nishida et al. (2019) also use a standard
Reading Comprehension (RC) model, they com-
bine it with a special Query Focused Extractor
that identifies relevant sentences by updating a
RNN state representation in each step, allowing the
model to capture dependencies between sentences
across time-steps. Xiao et al. (2019) propose a Dy-
namically Fused Graph Networks (DFGN) model
that first creates an entity graph from paragraphs,
dynamically extracts sub-graphs, and fuses them
with paragraph representations. The Select, An-
swer, Explain (SAE) model (Tu et al., 2020) also
first selects relevant documents and uses them to
produce answers and explanations. However, it re-
lies on a self-attention over all document represen-
tations to capture potential interactions. Addition-
ally, it relies on a Graph Neural Network (GNN) to
answer the questions. Hierarchical Graph Network
(HGN) model (Fang et al., 2020) builds a hierar-
chical graph with three levels: entities, sentences
and paragraphs to allow for joint reasoning. De-
compRC (Min et al., 2019b) takes a completely
different approach of learning to decompose the
question (using additional annotations) and then
answer the decomposed questions using a standard
single-hop RC system.

Others such as Min et al. (2019a) have noticed
that many HotpotQA questions can be answered
just based on a single paragraph. However, they did
not consider the support identification task (which
we show can also be done independently). While
they achieve strong (but not quite SOTA) QA per-
formance by only reasoning over a single para-
graph, we show that interaction is actually valu-
able for QA! Specifically, by using relevant sen-
tences spread across multiple paragraphs, our sim-
ple model outperforms previous models with more
complex interactions. We thus view QUARK as a
different, stronger baseline for multi-hop QA.

In the fullwiki setting, each question has no as-
sociated context and models are expected to se-
lect paragraphs from Wikipedia. To be able to
scale to such a large corpus, the proposed systems
often select the paragraphs independent of each
other. A recent retrieval method in this setting is
Semantic Retrieval (Nie et al., 2019) where first
the paragraphs are selected based on the question,
followed by individual sentences from these para-



graphs. However, unlike our approach, they do not
use the paragraph context to select the sentences,
missing key context needed to identify relevance.

3 Pipeline Model: QUARK

Our model works in three steps. First, we score in-
dividual sentences from an input set of paragraphs
D based on their relevance to the question. Second,
we feed the highest-scoring sentences to a span pre-
diction model to produce an answer to the question.
Third, we score sentences from D a second time to
identify the supporting sentences using the answer.
These three steps are implemented using the two
modules described next in Sections 3.1 and 3.2.

3.1 Sentence Scoring Module

In the distractor setting, HotpotQA provides 10
context paragraphs that have an average length of
41.4 sentences and 1106 tokens. This is too long for
standard LM-based span-prediction—most models
scale quadratically with the number of tokens, and
some are limited to 512 tokens. This motivates
selecting a few relevant sentences E to reduce the
size of the input to the model without losing impor-
tant context. In a similar vein, the support identifi-
cation subtask of HotpotQA also involves selecting
a few sentences that best explain the chosen an-
swer. We solve both of these problems with the
same transformer-based sentence scoring module,
with slight variation in its input.

We score every sentence s from every para-
graph p ∈ D independently by feeding the follow-
ing sequence to the model: [CLS] question
[SEP] p [SEP] answer [SEP]. This se-
quence is the same for every sentence in the para-
graph, but the segment ID for the sentence being
classified is set to 1 for tokens from the sentence,
and to 0 for the rest. Each annotated support sen-
tence forms a positive example and all other sen-
tences from D form the negative examples. Note
that our classifier scores each sentence indepen-
dently and never sees sentences from two para-
graphs at the same time. (details in App. A.1)

We train two variants of this model: (1) rna(s)
is trained to score sentences given a question but
no answer (answer is replaced with a [MASK]
token); and (2) ra(s) is trained to score sentences
given a question and its gold answer. We use rna(s)
for relevant sentence selection and ra(s) for sup-
port identification.

3.2 Question Answering Module
To find answers to questions, we use Wolf
et al. (2019)’s implementation of Devlin
et al. (2019)’s span prediction model. To achieve
our best score, we use their BERT-Large-Cased
model with whole-word masking and SQuAD (Ra-
jpurkar et al., 2016) fine-tuning.2 We fine-tune this
model on the HotpotQA dataset with input QA
context E from rna(s). Since BERT models have
a hard limit of 512 word-pieces, we use rna(s)
to select the most relevant sentences that can fit
within this limit, as described next. (See Appendix
A.2 for training details.)

To accomplish this, we compute the score rna(s)
for each sentence in the input D. Then we add
sentences in decreasing order of their scores to the
QA context E, until we have filled no more than
508 word-pieces (incl. question word-pieces). For
every new paragraph considered, we also add its
first sentence, and the title of the article (enclosed in
<t></t>). This ensures that our span-prediction
model has the right co-referential information from
each paragraph. We arrange these paragraphs in
the order of their highest-scoring sentence, so the
most relevant sentences come earlier – a signal that
could be exploited by our model. The final four
tokens are a separator, plus the words yes, no, and
noans. This allows the model to answer yes/no
comparison questions, or give no answer at all.

3.3 Bringing it Together
Given a question along with 10 distractor para-
graphs D, we use the rna(s) variant of our sen-
tence scoring module to score each sentence s in
D, again without looking at other paragraphs. In
the second step, the selected sentences are fed as
context E into the QA module (as described in Sec-
tion 3.2) to choose an answer. In the final step, to
find sentences supporting the chosen answer, we
use ra(s) to score each sentence in D, this time
with the chosen answer as part of the input.

We define the score Ra(S) of a set of sentences
S ⊂ D to be the sum of the individual sentence
scores; that is, Ra(S) =

∑
s∈S ra(s).3 In Hot-

potQA, supporting sentences always come from
exactly two paragraphs. We compute this score for
all possible S satisfying this constraint and take the
highest scoring set of sentences as our support.

2While we use the model fine-tuned on SQuAD, ablations
show that this only adds 0.2% to the final score.

3Note that ra(s) is the logit score and can be negative, so
adding a sentence may not always improve this score.



QA Model Ans EM Ans F1 Sup EM Sup F1 Joint EM Joint F1

Single-paragraph (Min et al., 2019a) – 67.08 – – – –
QFE (Nishida et al., 2019) 53.70 68.70 58.80 84.70 35.40 60.60
DFGN (Xiao et al., 2019) 55.66 69.34 53.10 82.24 33.68 59.86
SAE (Tu et al., 2020) 61.32 74.81 58.06 85.27 39.89 66.45
HGN (Fang et al., 2020) – 79.69 – 87.38 – 71.45
QUARK (Ours) 67.75 81.21 60.72 86.97 44.35 72.26
SAE (RoBERTa) (Tu et al., 2020) 67.70 80.75 63.30 87.38 46.81 72.75
HGN (RoBERTa) (Fang et al., 2020) – 81.00 – 87.93 – 73.01

Table 1: HotpotQA’s distractor setting, Dev set. The bottom two models use larger language models than QUARK.

QA Model Ans EM Ans F1 Sup EM Sup F1 EM F1

QFE (Nishida et al., 2019) 28.66 38.06 14.20 44.35 8.69 23.10
SR-MRS (Nie et al., 2019) 45.32 57.34 38.67 70.83 25.14 47.60
QUARK + SR-MRS (Ours) 55.50 67.51 45.64 72.95 32.89 56.23
HGN + SR-MRS (Fang et al., 2020) 56.71 69.16 49.97 76.39 35.36 59.86

Table 2: HotpotQA’s fullwiki setting, Test set. The bottom-most model uses a larger language model than QUARK.

At first blush, the number of possible sentence
subsets S to consider grows exponentially with the
total number of sentences, making it impossible
to evaluate them all. Fortunately, it is part of the
task specification that the sentences in S always
come from exactly two different paragraphs. This
makes the problem exponential in the number of
sentences in a single paragraph, not in the total
number of sentences across paragraphs. The num-
ber of sets to consider is O(p2 × 22s), where p is
the number of paragraphs and s is the number of
sentences per paragraph. In practice, this results
in a median of 12000 sets evaluated per question.
While evaluating this number of sets is feasible,
we also use another trick to reduce the sets: For
every paragraph, we only consider sentences with
a positive score, plus the top two sentences with a
negative score.

In the fullwiki setting, we use the paragraphs
SR-MRS (Nie et al., 2019) as a starting point. SR-
MRS assigns a score to individual paragraphs, so
we determined a score cut-off of −7.0 for optimal
performance on the dev set. The rest of the experi-
mental setup is identical to the distractor setting.

4 Experiments

We evaluate on both the distractor and fullwiki
settings of HotpotQA with the following goal: Can
a simple pipeline model outperform more complex
approaches? We present the EM (Exact Match)
and F1 scores on (1) answer selection, (2) support
selection, and (3) Joint score.

Table 1 shows that on the distractor setting,

QUARK outperforms previous models based on
BERT. Moreover, we are within 1 point of models
that use RoBERTa embeddings—a stronger lan-
guage model that has shown big improvements in
previous HotpotQA models. QUARK also performs
better than the recent single-paragraph approach for
the QA subtask (Min et al., 2019a) by 14 points F1.
While most of this gain comes from using a larger
language model, QUARK scores 2 points higher
even with a language model of the same size.

We observe a similar trend in the fullwiki setting
(Table 2). While we rely on retrieval from SR-
MRS (Nie et al., 2019) for our initial paragraphs,
we outperform the original work.4 Even when we
use the same language model as SR-MRS, BERT-
Base, we achieve a joint F1 score of 51.8 on the
Dev set compared to their joint F1 score of 49.2.

We attribute this improvement to two factors: our
sentence selection capitalizing on the sentence’s
paragraph context leading to better support selec-
tion, and a better span selection model leading to
improved QA.

4.1 Ablation

To evaluate the impact of context on our sentence
selection model in isolation, we look at the number
of sentences that score at least as high as the lowest-
scoring annotated support sentence. In other words,
this is the number of sentences we must send to
the QA model to ensure all annotated support is
included. Table 3 shows that providing the model

4Recent retrieval approaches outperform SR-MRS (Asai
et al., 2020). Evaluating our system on their retrieval is a
potential direction of future work.



top-n Sup F1 Ans F1

B-Base w/o context 10 74.45 78.59
B-Base w/ context 6 83.15 80.92
+ B-Large (rna(s)) 5 85.35 81.21
w/ answers (ra(s)) 5 86.97 –
Oracle 3 – –

Table 3: Ablation study on sentence selection in the
distractor setting. top-n is the number of sentences re-
quired to cover the annotated support sentences in 90%
of the questions.

with the context from the paragraph gives a substan-
tial boost on this metric, bringing it down from 10
to only 6 when using BERT-Base (an oracle would
need 3 sentences). It further shows that this boost
carries over to the downstream tasks of span selec-
tion and choosing support sentences (improving it
by 9 points to 83%). Finally, the table shows the
value of running the sentence selection model a
second time: with BERT-Large, ra(s) outperforms
rna(s) by 1.62% on the Support F1 metric.

5 Conclusion

Our work shows that on the HotpotQA tasks, a
simple pipeline model can do as well as or bet-
ter than more complex solutions, such as graph
networks, cross-document attention, or NER. Pow-
erful pre-trained models allow us to score sentences
one at a time, without looking at other paragraphs.
By operating jointly over these sentences chosen
from multiple paragraphs, we arrive at answers
and supporting sentences on par with state-of-the-
art approaches. This result shows that supporting
sentence identification in HotpotQA is itself not a
multi-hop problem, and suggests focusing on other
multi-hop datasets to demonstrate the value of more
complex retrieval techniques.
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A Appendix

A.1 Training the sentence scoring model
Both rna(s) and ra(s) are trained the same way.
We use the 90447 questions from the HotpotQA
training set, shuffle them, and train for three epochs.
We construct positive and negative examples by
choosing the two paragraphs containing the anno-
tated support sentences, plus two more randomly
chosen paragraphs. All sentences from the cho-
sen paragraphs become instances for the model.
If an instance contains more than 512 tokens, we
truncate the paragraph until the question, special to-
kens, and paragraph tokens fit within the 512 token
limit.

During training, we follow the fine-tuning advice
from (Devlin et al., 2019), with two exceptions. We
ramp up the learning rate from 0 to 10−5 over the
first 10% of the batches, and then linearly decrease
it again to 0.

Except where stated otherwise, we use BERT-
Large-Cased model trained with whole-word mask-
ing as a starting point. Here, whole word masking
refers to a BERT variant that masks entire words
instead of word pieces during pre-training.

To avoid biasing the training towards questions
with many context sentences, we create batches
at the question level. Three questions make up
one batch, regardless of how many sentences they
contain. We cap the batch size at 5625 tokens for
practical purposes. If a batch exceeds this size, we
drop sentences at random until the batch is small
enough. As is standard for BERT classifiers, we
use a cross-entropy loss with two classes, one for
positive examples, and one for negative examples.

Training one of these models takes about 55
hours on a single NVidia Quadro RTX 8000. Infer-
ence on the same model gets up to 1.1 questions
per second on the same GPU. Since our model does
not differ in architecture from the one described
in Devlin et al. (2019), it has the same 340M param-
eters. Most of our experiments centered around the
format of the input data instead of hyperparameters.
We only varied the number of epochs from 1 to 4,
choosing 3 as the one giving the best performance
on the development set.

A.2 Training the span prediction model
We train the BERT span prediction model on the
output paragraphs from rna(s). We use a batch
size of 16 questions and maximum sequence length
of 512 word-pieces. We use the same optimizer

settings as the sentence selection model with an
additional weight decay of 0.01. The model is
trained for a fixed number of epochs (set to 3) and
the final model is used for evaluation.

Under the hood, this model consists of two clas-
sifiers that run at the same time. One finds the first
token of potential spans, and one finds the last to-
ken of potential spans. Each classifier uses a cross
entropy loss. The final loss is the average loss of
the two classifiers. We train one model on the out-
put from our best rna(s) selection model and use
it in all our experiments (and ablations).

Once again, this model differs from BERT only
in the input and training data, and thus has the same
340M parameters. Our choice of hyperparameters
is derived from the work in Clark et al. (2019). We
did no further hyperparameter searches. Experi-
ments with three different random seeds show a
variation of QA F1 score of ±0.2%. Training takes
about 10 hours on a NVidia Quadro RTX 8000.
During inference, the span prediction model can
process 25 questions per second.


